INJELEC CONECTUS

OFFICIAL INNOVATION PROVIDER

·····INJELEC

Our new technology proposes a different PEDOT synthesis on specific particles to create electrically conductive polymer fillers.

:::: Our novel synthesis uses conductive polymers, like PEDOT, which are very good candidates in the field of printed electronics and avoids the classic solvent-based processing of these materials.

- TRL 3 > 4
- MATURATION PROGRAM > 2026
- INDUSTRIAL DEMONSTRATOR > \$1 2026

- CONDUCTIVE PARTS
- INJECTED/EXTRUDED THERMOPLASTICS
- 3D PRINTING
- PRINTED ELECTRONICS CIRCUITS
- BIPOLAR PLATES FOR FUEL CELLS

•••• HOW TO OBTAIN AN ELECTRICALLY CONDUCTIVE THERMOPLASTIC MATERIAL?

2 MAIN STRATEGIES

Examples :

- Polyacetylene (PA)
- Polyaniline (PANI)
- Polypyrrole (PPy)
- Polythiophene (PTH)
- Poly(para-phenylene) (PPP)
- Poly(-phenylenevinylene) (PPV)
- Polyfurane (PF)

10

S.cm⁻¹

ENERGY STORAGE & BATTERIES close to 100 S.cm⁻¹

0,1

Conductive filament Protopasta® PLA filled with graphene

PLASTRONIC APPLICATIONS
1 S.cm⁻¹

100

CONECTUS

CONFIDENTIAL

K. Namsheer and al, (2021), *RSC Adv*.

J. Rivnay and al, (2016) *Nature Communications*.

***** STRATEGY USED TO OBTAIN AN ELECTRICALLY CONDUCTIVE THERMOPLASTIC MATERIAL

Conductive Zone

Insulating Zone

Percolation Threshold

Polymerization

Characterization of the conductive filler Processing by extrusion

Characterization of the composite

....

PROOF OF CONCEPT

Electroconductive thermoplastic composite

- Processing by melt extrusion of an electroconductive thermoplastic composites using an intrinsically conductive polymer as filler
 - Compared to carbon materials similar conductivities could be obtained with 2 times less filler.
 - The expected benefits are better cost / performance and better processability

Maximal conductivities

....

INJELEC filler 50 S.cm⁻¹
12 S.cm⁻¹ in PEO / PP to be retested

INJELEC is competitive with other conductive thermoplastic composites commercially available using carbon or metallic based fillers

ONGOING PROGRAM

Development of an electrically conductive thermoplastic composite

CONDUCTIVE PARTICLES SYNTHESIS

INCREASING THE CONDUCTIVITY

Optimization of the synthesis parameters

<u>Target</u>
conductive PEDOT particles
conductivity higher than 100 S.cm⁻¹

Maximal conductivity :
PEDOT up to 180 S/cm
INJELEC 50 S/cm

CONDUCTIVE THERMOPLASTIC COMPOSITE

MATRIX CHANGING

Modification of the thermoplastic matrix from PEO to PP

Extrusion of PP composites filled until 50% of filler

PROCESSING OF THE CONDUCTIVE COMPOSITE

PROOF OF CONCEPT

Realization of a demonstrator using the INJELEC technology

On going

THIBAULT < **PARPAITE**

SADRON

Mature Your PhD Laureate

IP² team is dedicated to applicative polymer research with numerous academic & industrial collaborations

Hello!

CONCLUS

OFFICIAL INNOVATION PROVIDER

TECH TRANSFER ACCELERATION COMPANY

www.conectus.fr

TECHNOLOGY TRANSFERS

SOLUTION PROVIDER

1

DETECTING
INNOVATIONS AT
THE HEART OF
PUBLIC LABS

#ALSACE

2

ASSESSING
THE ECONOMIC
& SOCIETAL

#GROWTH NICHES

3

SECURING INTELLECTUAL PROPERTY

KNOW-HOW PATENT & SW

4

FINANCING SCIENTIFIC AND TECHNOLOGICAL DEVELOPMENT

DE-RISKING
Co-maturation

CO-DEVELOP
TECHNOLOGY + MOVE
UP THE TRL LADDER
OUT-LICENSING
START-UP

Co-maturation

Financial contribution (deductible)

20% of the total investment provided by the manufacturer involved

Measuring the industrial effort and techno challenges

De-risking the technology, move up the TRL and target the growth niche(s)

Common vector # LICENSING

Transfering the technology at the end of the 18-month co-maturation program

Sébastien zuin

ENGINEERING INNOVATIONS

CHEMISTRY - MATERIALS - TECHMED sebastien.zuin@satt.conectus.fr

Anaïs LIEGEON Don't hesitate to contact us

PROJECT LEADER
CHEMISTRY - IT- SOCIAL SCIENCES
anais.liegeon@satt.conectus.fr