Computational Fluid Dynamics Simulations of Fluid Flow with Algae at IMH

Peter Farber

IMH - Institute of Modelling and High-Performance Computing, Hochschule Niederrhein - University of Applied Sciences, Krefeld, Germany

The IMH in a Few Words - 1

People:

- 4 professors (Parallel Systems, Robust Design Optimization, Mathematics, Optimization, FEM, FSI and CFD)
- 2 scientific assistants
 Computer Science, Parallel Computing, Process
 Engineering, CFD
- 2 PhD students
 Robust Design Optimization, FEM, FSI
- 1 assistant for finance and organisation

The IMH in a Few Words - 2

- Computer:
 - Several compute cluster, the newest has 1200 CPU cores and 38 Nvidia A100 GPU
 - Workstation up to 128 GB RAM and 16 cores / high-end GPU's
- This stands for the possibility of modelling and simulating complex geometries and complex physics

The IMH in a Few Words - 3

- 77 permanent licenses Ansys Multiphysics,
 512 permanent parallel licenses Ansys Multiphysics
- DSMC OpenFOAM, incl. self established coupling with Fluent
- Self established program extensions to Fluent and DSMC OpenFoam
- 106 permanent licenses optiSLang/optiPLug
- 4 licenses Diffpack
- 50 licenses Matlab

Fluid Flow with Algae: Starting point - 1

- Micro-photosynthetic solar cell experiments by Shahparnia (2011) and Shahparnia et al. (2015)
- New means of electricity generation by algae

shahparr

Fluid Flow with Algae: Starting point - 2

- Algae Chlamydomonas reinhardtii is used in the experiments of Shahparnia (2011) and Shahparnia et al. (2015)
- Diameter approx. 8 micrometer

Principle of Operation

Electrons are produced and utilised during

photosynthesis and respiration

Targets of the Project

- Overall goal is a model of the bio-solar cell and an optimization of the electrical current
- Current aim is the modelling and simulation of the algal movement
- Algae react with orientation on
 - the gravitational field: Gravitaxis
 - the gravitational field and the vorticity of the surrounding fluid: Gyrotaxis
 - the intensity of the incident light: Phototaxis
 - the concentration gradient of air: Aerotaxis
 - the concentration gradient of chemical substances:
 Chemotaxis

Gravitaxis

 Algae mostly swim in the opposite direction of the gradient of the gravitational field in helices with sudden turns

Polin et al. (2009)

Mathematical Model of the Gravitaxis - 1

In the mathematical model
 the fluid (water) is modeled in Eulerian description

Total mass balance equation

Total momentum balance equation _____Two-way coupling

and the algal cells are modeled as a sphere of diameter of 8 micrometer in Lagrangian description

Sum of forces on the particle = mass of particle * acceleration of particles

Sum of torques on the particle = tensor of inertia of the particle * angular acceleration

Mathematical Model of the Gravitaxis - 2

In the mathematical model
 the fluid (water) is modeled in Eulerian description

$$\begin{split} &\frac{\partial \rho}{\partial t} + \nabla \cdot \left(\rho \vec{v} \right) = 0 \\ &\frac{\partial \rho \vec{v}}{\partial t} + \nabla \cdot \left(\rho \vec{v} \otimes \vec{v} \right) = -\nabla p + \nabla \cdot \vec{T} + \vec{F}_{p} \\ &\vec{F}_{p} = -\frac{1}{V_{c}} \sum \left(\frac{\vec{v} - \vec{v}_{p}}{\tau_{r}} \right) m_{p} \end{split}$$

and the algal cells are modeled as a sphere of diameter of 8 micrometer in Lagrangian description

$$\frac{\partial \vec{v}_p}{\partial t} = \frac{\vec{v} - \vec{v}_p}{\tau_r} + \frac{\vec{g}(\rho_p - \rho)}{\rho_p} \qquad \tau_r = \frac{\rho_p d_p^2}{18\mu} \frac{24}{C_d \operatorname{Re}_p} \qquad \operatorname{Re}_p = \frac{\rho d_p |\vec{v}_p - \vec{v}|}{\mu} \qquad C_d = \frac{24.0}{\operatorname{Re}_p}$$

$$(\operatorname{Re}_p < 0.1)$$

Sum of torques on the particle = tensor of inertia of the particle * angular acceleration

Mathematical Model of the Gravitaxis - 3

- The term: tensor of inertia of the particle * angular acceleration is very much smaller than the term: Sum of torques on the particle (Hopkins, 2002)
- This leads to an equation for the angular velocity vector Ω (Alqarni, 2016)

$$\vec{\Omega} = \frac{L_0}{8\pi\mu \left(\frac{d_p}{2}\right)^3} \vec{p} \times \vec{k} + \frac{T}{8\pi\mu \left(\frac{d_p}{2}\right)^3} \vec{n} + \frac{1}{2} f \cdot \vec{j}$$

Maraun (2018)

Simulation of Gravitaxis - 1

The helical movement was modeled and simulated

Simulation of Gravitaxis - 2

The helical movement was modeled and simulated

Downward Oriented Plumes

 Due to density differences between algae and fluid the algae and the fluid together form downward oriented plumes

Model of the Downward Oriented Plumes - 1

In the mathematical model
 the fluid (water) is modeled in Eulerian description

Total mass balance equation

Total momentum balance equation

Two-way coupling

and the algal cells are modeled as spheres of diameter of 8 micrometer in Lagrangian description (so far without torque balance equation)

Sum of forces on the particle = mass of particle * acceleration of particles

Model of the Downward Oriented Plumes - 2

 Geometrical model: Width 80 mm, height 12 mm and depth 1 mm

 Boundary conditions: top wall - no stress, side walls symmetry, bottom wall - no slip, front and back wall-

symmetry

Model of the Downward Oriented Plumes - 3

The formation of plumes was modeled

t = 0.2 s

t = 60 s

Conclusion and Outlook - 1

- Mathematical models for the gravitaxis and plume formation were developed
- The models will be extended to modelling the gyrotaxis and tested for numerical accuracy
- The comparison with experiments will come in the near future
- The other taxi like e.g. phototaxis will be incorporated next
- Then the generation of electrons will be included in the mathematical model and the comparison with experiments will be conducted

Conclusion and Outlook - 2

- Long-term aim is the optimization of the bio-solar cell, e.g.
 - optimise the geometry of the cell
 - realise a flow through the cell
 - optimise the volume flow rate
 - optimise the filling degree
 - optimise the density of cells

- ...

References - 1

- Alqarni MS, Bearon RN (2016) Transport of helical gyrotactic swimmers in channels, Physics of Fluids 28 (071904).
- Hopkins MM, Fauci LJ (2002)A computational model of the collective fluid dynamics of motile microorganisms, J. Fluid Mech. 455:149-174.
- Maraun C (2018) Modelling, implementation and simulation of gravitaxis of algae in a bio-solar cell by means of Computational Fluid Dynamics, master thesis Hochschule Niederrhein University of Applied Sciences, Krefeld, Germany.
- Polin M, Tuval I, Drescher D, Gollup JP, Goldstein RE (2009) Chlamydomonas Swims with Two "Gears" in a Eukaryotic Version of Run-and-Tumble Locomotion. Science 325:487-490.
- Shahparnia M (2011) Polymer Micro Photosynthetic Power Cell: Design, Fabrication, Parametric Study and Testing. Master Thesis, Department of Mechanical and Industrial Engineering, Concordia University, Montreal, Quebec, Canada.
- Shahparnia M, Packirisamy M, Juneau P, Zazubovich V (2015) Micro photosynthetic power cell for power generation from photosynthesis of algae. Technology 3:119-126.
- Williams CR, Bees MA (2011) A tale of three taxes: photo-gyro-gravitactic bioconvection. The Journal of Experimental Biology 214:2398-2408. doi:10.1242/jeb.051094

Hochschule Niederrhein

University of Applied Sciences

Institut für Modellbildung und Hochleistungsrechnen

Institute of Modelling and High-Performance Computing

https://www.hs-niederrhein.de/imh/

peter.farber@hs-niederrhein.de

http://orcid.org/0000-0002-7640-6555