

OliQuell™ | Nature-Based Carbon Removal for Soil, Water & Waste Systems

Scalable, field-validated CDR from olive waste

FROM AGRICULTURAL EMISSIONS TO SOIL-BASED CARBON REMOVAL

THE PROBLEM: EMISSIONS & SOIL HEALTH CRISIS

Smallholder farmers and agri-processors in emerging markets face an emissions crisis without access to scalable, verifiable CDR tools

- □ 5.4 GtCO₂e/year is emitted globally from agriculture a major driver of climate change.
- ☐ In Kenya, the East African Rift contributes nearly half of the nation's agri-emissions.
- \Box CH₄ (84×) and N₂O (264×) are far more potent than CO₂ amplified by anaerobic soils, waste mismanagement, and poor nutrient cycling.
- □ 40–60% of soil organic carbon is lost due to erosion and degradation
 driving higher fertilizer use and emissions.
- □ Over 5 million hectares in Kenya are severely degraded, with no validated soil-based CDR system currently in use.
- □ Current CDR tools cost €100–600/tCO₂e, require infrastructure, and are inaccessible to off-grid or smallholder ecosystems.

THE SOLUTION: OliQuell™ – Decentralized Nature-Based Carbon Removal

A CDR-ready, low-cost, powder-based biocatalyst that enhances carbon storage via microbial soil regeneration — no grid, no infrastructure

- ✓ CH₄ \downarrow 84%, H₂S \downarrow 81% in soils, compost, and organic waste systems
- \checkmark CO₂ → O₂ conversion ↑ 22% boosts oxygenation & microbial respiration
- ✓ Net carbon removal: 2.5–4.3 tCO₂e/ha per 3-month cycle
- ✓ Ammonium ↑ 370%, Nitrate ↑ 97%, N₂ ↑ 81.7% reduces fertilizer needs & N₂O emissions
- ✓ Up to 70% soil carbon retention in field trials long-term sequestration
- ✓ Delivered as a dispersible powder no electricity, no equipment
- ✓ Cost: < €20/ha/application field-ready and scalable for the Global South

OLIQUELL™: A MULTI-USE, PLUG-AND-PLAY PLATFORM – THE PRE-AOP FRONT-END SOLUTION

COMPARISON WITH COMPETITORS:

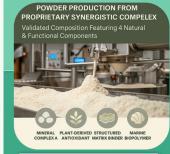
PRODUCT	CORE INGREDIENTS	SECTOR	DISADVANTAGES	OPEX/CAPEX	OLIQUELL™ ADVANTAGES
Activated Carbon	Charcoal, synthetic binders	HVAC/W ater	Single-function, disposable, limited CO ₂ effect	¥50–70/m³ OPEX	CO ₂ -to-O ₂ conversion, odor & emission suppression, multiuse
Chemical Flocculant s	Alum, Ferric chloride	Water Treatme nt	Harsh pH, non- circular, residue toxicity	Moderate OPEX, waste handling	Natural, pH-neutral, safe for agri reuse
Zeolite/Pe rlite	Natural silicates	Biogas/S oil	Low bioactivity, no microbial support	Variable	Boosts microbial balance & nitrogen fixation
AOP / Microbub ble	Ozone (O ₃), Hydrogen Peroxide (H ₂ O ₂), UV, TiO ₂ , Iron catalysts	PFAS / Pharma Waste	High CAPEX (¥12– 35M), high OPEX, 6– 12 month install, produces toxic by- products	CAPEX: ¥12–35M; OPEX: ¥150–200/m³	OliQuell handles bulk load → lowers AOP size, OPEX, CAPEX. Pre-AOP platform
OliQuell™	Olive leaf extract, polysacchari des, minerals	Multi- sector	_	CAPEX near zero; OPEX ¥15– 25/m³	Circular, GRAS, zero energy, plug-and-play. Validated in wastewater, biogas, HVAC, EV, cosmetics, pharma. Pre- AOP platform for PFAS.

OliQueII™

Nature-Based Bio-Catalysis

Adsorption & Precipitation - Part A

Microbial Modulation-Part B



pH Rebuffering-Part C

- Multi-Contaminant Reduction
- Nutrient Preservation
- Zero Energy
- No Toxic Residues
- Plug and Plug Solution
- Low Cost

€500–2,000 / unit | 6–8 weeks deployment No energy

PHYSICO-CHEMICAL & FUNCTIONAL PROFILE OF OLIQUELL™

PROPERTY	SPECIFICATION		Enhances nitrogen fixation
Source	Olive leaf extract + bioactive biopolymers	Ch+	
Components	Component A (35%), Component B (25%), Component C (25%), Functional Agent D (8%)	CH	Reduces CH ₄ emissions by 84%
Heavy Metals Compliance	Conforms to EU regulatory limits for Pb, Cd, Hg, and As	Eix —	Stabilizes pH and boosts oxygenation
Appearance	Off-white dispersible fine powder		Water-dispersible &
Water Solubility	Fully dispersible in irrigation and reuse systems		easy to apply
pH Stability	Stable across a broad pH range (acidic to alkaline)		
Shelf Life	Minimum 3 years under standard storage conditions		
Microbial Safety	Low microbial count in accordance with EU agronomic standards		

A multifunctional, MRV-aligned solution for carbon removal, water reuse, and emissions control — ready for global deployment in low-infrastructure settings

APPLICATION AREAS OF OLIQUELL™ Multi Sector Applications for Environmental and Industrial Impact

CO₂/VOC reduction in EV & truck filters (Volvo, Zeekr pilots)

COD, turbidity, and heavy metal removal before membrane filtration (IMDEA, Troil)

Soil regeneration, nitrogen fixation (+81,7%), and carbon cycling

OliQuell™-Coated Filters Reduce In-Cabin CO₂ by ~22%

TIME POINT	FILTER TYPE	NON-COATED FILTERS CO ₂ (PPM)	OLIQUELL (10%- 4g)- COATED FILTERS CO ₂ (PPM)	% INHIBITION VS. CONTROL
1h 46m	Particulate Filter	740	634	14.3%
1 46	Carbon Filter	700	634	13.7%
ے 3	Particulate Filter	740	577	22.0%
2h 52m	Carbon Filter	700	577	21.9%

- Non-coated filters: No meaningful CO_2 adsorption (flat baseline at ~700–740 ppm).
- OliQuell-coated filters: Consistently reduced CO₂ vs. controls.
 - ~14% reduction after ~1h45m.
 - ~22% reduction after ~3h.

Veos In-Cabin Airflow Simulator: Optimizing OliQuell™ for CO₂ ↓ / O₂ ↑

PURPOSE

- Rapidly optimize OliQuell™ concentration and coating method on carbon cabin
- Quantify effects on CO₂ reduction, O₂ increase, pressure drop, and durability
- System Overview (Closed-Loop, Recirculating)
- Honeycomb flow straightener + 100 mm ducting to replicate stable cabin airflow.
- Variable-speed in-line fan (up to ~320 m³/h ≈ 89 L/s) to match OEM blower
- Filter test chamber (fits OEM carbon media; quick-swap cartridge).
- Gas injection ports to spike CO₂ (exhalation proxy) and adjust O₂ baselines.
- Sensor array: dual CO₂ (pre/post), O₂, ΔP taps across filter, T/RH, and blower
- Automated data logging (1-2 s cadence) for time-to-threshold and breakthrough curves.

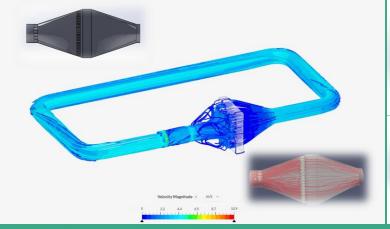
OPTIMIZATION PLAN

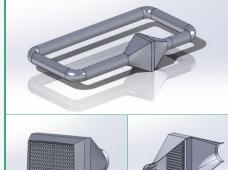
- Design of Experiments (DoE):
 - OliQuell[™] loading: **0%**, **2.5%**, **5%**, **7.5%**, **10%** (by media weight).
 - Airflow setpoints: 40 / 60 / 90 L/s (idle → max cabin).
 - Humidity: 30% / 60% RH; Temp: 20-30 °C.
- KPIs: CO₂ drop (% vs. control), O₂ delta (ppm), pressure-drop change (Pa), VOC retention, and cycle life.
- Target: ≥20% CO₂ reduction with ≤5% ΔP penalty vs. stock carbon filter.

TECH TRANSFER TO VEHICLES

- Pick **best dose** from simulator (performance × ΔP × durability).
- Install in vehicles (DENSO/AISIN/TB formats) for in-cabin trials.
- On-road logging: CO₂, O₂, PM2.5, VOCs, ΔP, blower power, driver alertness proxy.
- Compare against OEM premium carbon filters → create CO₂-active "safety" tier.

Sensor


CO₂ Sensor


1

CO₂ Sensor # 2

VEOS BIODIGESTER & FARM EMISSIONS SIMULATOR

Purpose

- Optimize OliQuell[™] for livestock effluents (pig slurry, dairy manure).
- Quantify reduction in CH_4 , H_2S , NH_3 , and stabilization of organic solids.
- Demonstrate suppression of odor-causing microbial groups (SRB, methanogens).
- Translate results → farm lagoons, manure pits, parlor flush systems.

System Overview (Closed Digesters)

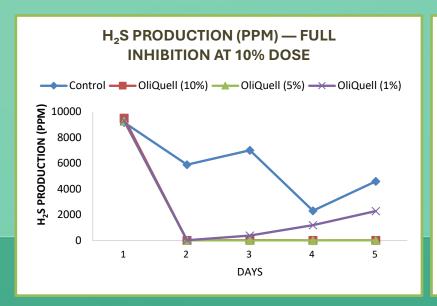
- Sealed 2 L biodigesters, mesophilic 34 °C.
- Inoculum: pig slurry (10⁹–10¹⁰ CFU/mL), representative microbial load.
- Sensors: **CH₄, H₂S, CO₂**, pH, redox.
- Monitoring: gas fluxes + microbial group balance (Desulfovibrio, methanogens, Bacillus, etc.).

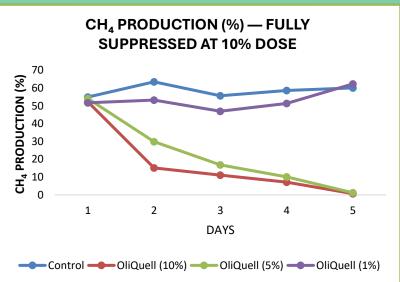
Optimization Plan

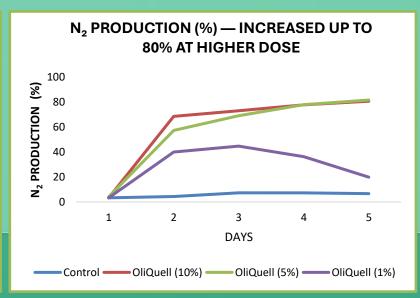
- OliQuell™ loading: 0%, 0.5%, 1.0%, 2.0% (w/w).
- Duration: 30 days, daily gas sampling.
- KPIs: ≥50% H₂S suppression, ≥20% CH₄ reduction, ≥30% odor reduction.

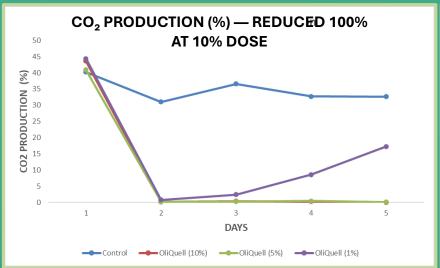
Farm Tech Transfer

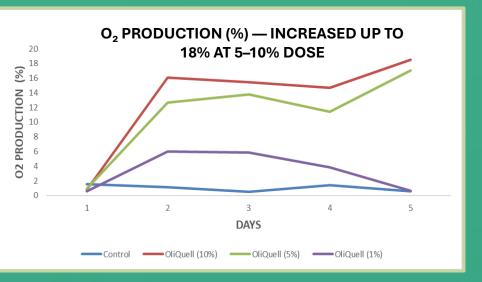
- Apply to pre-lagoon washwater or manure pits.
- Target: odor control, reduced aeration demand, lower GHG footprint.
- Value: odor complaints ↓, sludge hauling ↓, carbon credits ↑.










VEOS BIODIGESTER & FARM EMISSIONS SIMULATOR: OLIQUELL™ ACHIEVES COMPLETE INHIBITION OF CH₄ & H₂S

- OliQuell^{\mathbb{M}} fully inhibited methane (CH_A) and hydrogen sulfide (H_AS) generation in sealed pig slurry digesters.
- At higher doses, CO_2 production was completely suppressed, while N_2 conversion rose to ~80% and O_2 generation reached 18%.
- This demonstrates a breakthrough platform for farm emission control, odor suppression, and improved soil gas balance.

Veos Water Clarification Platform: Reducing COD, Nutrients & Metals in Agri-Purge Streams

PURPOSE

- Optimize OliQuell™ for greenhouse purge, aquaponics bleed, and dairy wastewater.
- Reduce COD, turbidity, nutrients, heavy metals.
- Lower sewer fees and enable reuse.

SYSTEM OVERVIEW (Inline & Side-Stream)

- Inline bag filtration (greenhouse purge).
- Inline cartridges (aquaponics, irrigation)
- Side-stream polishing (dairy parlor water).
- Monitoring: COD, turbidity, N, P, metals.

OPTIMIZATION PLAN

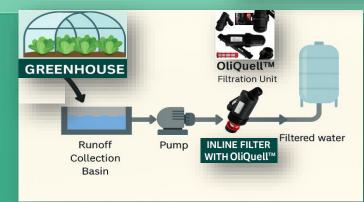
Dose: 0.05-0.2 g/L.

Validated by jar tests \rightarrow inline pilots.

KPIs:

- Turbidity ↓74%
- Metals ↓50% (Cr, Pb, Cd)
- COD ↓41–50%
- Phosphate ↓30–40%
- O₂ 18%

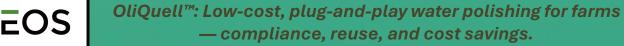
TECH TRANSFER TO FARMS


Deployable in 6–8 weeks, no external energy.

Cost: €500–2,000/unit.

Applications:

- Greenhouses → compliance + cost savings.
- Aquaponics → lower purge, clearer water.
- Dairy farms → lower surcharges, sludge disposal savings.

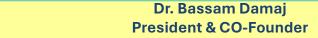


INLINE CARTRIDGES

OLIQUELL™: COVERING >90% OF JAPAN'S WASTEWATER BURDEN VS. AOP'S PFAS NICHE

- OliQuell covers >90% of Japan's wastewater load (COD, turbidity, metals, gases, APIs).
- AOP covers <1% niche (PFAS, lab scale only).
- OliQuell is cheap, fast, plug-and-play (6–8 weeks vs 6–12 months).
- OPEX is near zero vs very high.
- No toxic by-products vs AOP residues.
- Hybrid-ready: OliQuell front-end + compact AOP polishing = best of both.

	CATEGORY	OLIQUELL™ (FIELD & LAB DATA)	AOP / MICROBUBBLE (LAB & COMMERCIAL DATA)
	COD / Organics	√41–50% COD (Hydrolab21, IMDEA)	√80–90% COD removal (UV/O ₃ /H ₂ O ₂ , high energy)
	Turbidity / TSS	√74% (Cajamar, L'Oréal pilots); visible clarification	Not a primary target; requires pre-filtration
	Metals	Cr 4.02 mg/g; Cu 3.99 mg/g; Pb/Zn ↓20–54% (Hydrolab21, IMDEA)	Not targeted; metals persist
	Dyes / Colorants	√68% Reactive Black 5 (IMDEA); precipitation of methylene blue	↓90–95% methylene blue (lab-only, controlled feeds
•	APIs	100% NSAIDs (Ibuprofen, Diclofenac, Paracetamol); 100% Antibiotics (Amoxicillin, Tetracycline, Ciprofloxacin, Sulfamethoxazole); 100% β-blockers (Atenolol); partial Fluoxetine (25–50%); poor Carbamazepine (10–25%)	Partial oxidation; leaves toxic intermediates; poor for neutral APIs
	CH ₄ / H ₂ S	√84% methane; √81% H ₂ S (biogas, wastewater pilots)	Not applicable; AOP does not address gas suppression
	CO ₂ / VOCs	√22% CO ₂ ; +18.5% O ₂ in EV/HVAC filters (Volvo, Zeekr pilots)	Not applicable; no effect on CO ₂ or VOCs
	PFAS	No direct degradation; hybrid-ready with Axine (99.99%) / Aclarity (90–99.9%)	PFOA ↓12,000×, PFOS ↓48× (lab data only, no field deployment)
	Nutrients	Preserves NO ₃ ⁻ , PO ₄ ³⁻ (Cajamar agri pilots)	Oxidizes/degrades nutrients — bad for agri reuse
	Energy	0 — passive, plug-and-play	High — UV lamps, ozone, cavitation chambers
	Deployment	Cartridges, bags, sponges; 6–8 weeks to deploy	Heavy skid (UV/O ₃ reactors); 6–12 months install, permits needed
	CAPEX	€500–2,000/unit (~¥70K–300K)	¥12M-35M (\$80K-200K) per skid
	OPEX	Near zero; compostable cartridges; no chemicals	High: power, lamp replacement, sludge disposal
	By-products	Compostable media; no toxic residues	Residual ozone, H_2O_2 ; risk of bromate & aldehydes; sludge in some configs



VEOS PHARMA: LEADERSHIP IN NATURE-BASED INNOVATION WITH EXPERIENCE IN JAPAN

WHO WE ARE

- Spanish biotech-led cleantech company scaling circular water, air & soil purification
- Commercial-scale output (powder, cartridges, sponges)
 validated in Spain, France, Sweden, Switzerland, USA, China,
 KenyaTier-1 pilots with USBR (USA), PepsiCo, Nestlé
 (Switzerland), Zeekr (China), Volvo (Sweden), Tencent CarbonX
 (Kenya), L'Oréal (France), IMDEA Water (Spain)
- 3,750+ DTC & B2B users across EU, North America & Africa in water reuse, biogas, HVAC/EV filters, cosmetics & agriculture
- Founder-funded, profitable in 2024, delivering 112% YoY CAGR
- Led by biotech entrepreneurs with 3 IPOs, 7 builds, and \$1B+ in global partnerships

- Founded 7 companies, 3 IPOs, \$1B+ in partnerships
 - Raised \$500M+ across US, EU & MENA
 - Over 120 publications

Former leadership at Pfizer, Genentech, Mitsubishi Tanabe
 Collaborative history & multi-million dollar deals with respected companies such as Takeda,

I-million dollar deals with respected companies such as Taked

Novartis Japan, and ANGFA

· Deep expertise in biotech commercialization & climate health

World-Class Team with Deep Expertise in Biotech, Climate Science, Regulatory & Commercialization

Samira Wifak, MA, CB CFO & CO-Founder

- CEO of R&D Healthcare (\$80M+ Revenue)
- Experienced in scaling global biotech ventures
- Oversees Financial Strategy &
 Expansion

Vicente Oller, Eng. Design/Materials

Specializing In Design And Material Optimization For Emissions Control

Max Sasanchyn, Eng.
Digital Growth & Sales
Expert

- Scaled Veos Pharma's online market presence globally
- Led Amazon & D2C sales expansion strategies
- Expertise in digital GTM and commercialization

Dr. Mona Damaj Head of Scientific Research

- Plant Biologist & AgriTech
 Expert
- Ph.D., Agri-Eng. Texas A&M, Université Laval. Canada
- 20+ Years in Biotech & Plant Genomics
- Led R&D for BioPropello™ & Crop Resilience Platform

Ysabell Fernando, RAC Head of Regulatory Affairs

CE O AWARDS

- 60+ Product Approvals Worldwide
- Regulatory Expert: GRAS, EFSA, Health Canada
- Experienced in environmental & agricultural approvals
- Guides global market entry strategy for Veos Pharma

