
Proc. of International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA 2025)
7-9 August 2025, Antalya-Türkiye

Wireless Mesh Networks Routing Optimization
using Machine Learning and Deep Learning

Eric Tran
Institute of Communication Technologies (IICT)

University of Applied Science (HES-SO)
Yverdon, Switzerland
eric.tran@heig-vd.ch

Yann Charbon
Institute of Communication Technologies (IICT)

University of Applied Science (HES-SO)
Yverdon, Switzerland

yann.charbon@heig-vd.ch

Mahboob Karimian
Institute of Communication Technologies (IICT)

University of Applied Science (HES-SO)
Yverdon, Switzerland

mahboob.karimian@heig-vd.ch

Pierre Favrat
Institute of Communication Technologies (IICT)

University of Applied Science (HES-SO)
Yverdon, Switzerland
0000-0002-5735-709X

Abstract—Wireless mesh networks (WMNs) are increasingly
deployed in large-scale infrastructures, requiring efficient and
reliable routing to ensure high performance. Traditional routing
protocols such as RPL rely on local decision-making, which
often leads to suboptimal global routing structures, particularly
in dense or complex topologies. This work investigates whether
machine learning (ML) and deep learning (DL) techniques can be
used to globally optimize Directed Acyclic Graph (DAG)-based
routing in WMNs.

To enable this exploration, we developed a high-performance
simulation framework capable of evaluating the routing efficiency
of arbitrary spanning trees using realistic link quality metrics
derived from physical parameters such as RSSI. The simulator
generates a labelled dataset of optimal and suboptimal routing
trees across randomly generated topologies, which we use to train
various ML and DL models. Our approach frames the optimiza-
tion task as a multi-label classification problem, predicting the
presence of links in the optimal routing DAG.

Despite extensive experimentation with classical classifiers,
MLPs, and RNNs, our results show that standard ML/DL
models consistently underperform compared to RPL, particularly
as topology size increases. However, the simulator consistently
identifies spanning trees that outperform RPL in terms of
global routing efficiency, highlighting the potential for further
improvement. Our findings suggest that while naive ML/DL
approaches are insufficient to solve this NP-hard problem, our
methodology and tools lay the groundwork for future research
into constraint-aware or graph-based learning techniques for
global mesh network optimization.

Index Terms—Machine Learning, Deep Learning, Routing,
Wireless Mesh Networks, DAG, Optimization, Fast Simulator,
Spanning Tree, Classification, MLP, RNN

I. INTRODUCTION

Wireless mesh networks (WMNs) are increasingly adopted
across various standards (e.g. Wi-SUN, Thread) to intercon-
nect thousands of nodes. Ensuring the efficient operation

Funded by the Swiss Innovation Agency under grant 104.251 IP-ICT

of such large-scale networks requires an effective routing
algorithm capable of minimising latency, congestion, and
bottlenecks.

Although protocols like RPL [1] build a Directed Acyclic
Graph (DAG) or spanning tree based on local decision-making,
such decentralized approaches can lead to global inefficiencies.
Slight local changes often cascade into suboptimal overall
topologies, especially in dense or complex WMNs. A more
global perspective is required to improve routing performance,
yet DAG structural optimization is NP-hard [2].

In this work, we investigate whether ML/DL can learn
global DAG structures that improve network-wide perfor-
mance, thereby overcoming the local shortcomings of RPL.
We developed a high-performance simulator to generate re-
alistic, physics-based datasets for supervised learning, then
applied classical ML classifiers, MLPs, and RNNs to predict
globally optimized DAGs. Despite the simulator showing that
solutions better than RPL do exist, naive ML models could
not outperform RPL’s. Our results highlight the difficulty of
applying standard ML/DL in a domain with strict acyclicity
and parent constraints, suggesting more advanced graph-based
or constraint-aware learning approaches are needed.

A. Related Work

Research on WMN routing often focuses on local protocol
improvements or specialized link metrics [3], rather than glob-
ally optimized DAG structures. Meanwhile, ML for combina-
torial graph problems has shown potential in tasks like TSP or
subgraph selection [4]. Methods like NOTEARS [2] propose
continuous relaxations to learn DAGs but without spanning-
tree constraints. Thus, our problem lies at the intersection
of classical RPL-based WMN routing and cutting-edge ML
approaches for global structural optimization.

XXX-X-XXXX-XXXX-X/XX/$XX.00 © 20XX IEEE

II. METHODOLOGY

We aim to replace or augment local routing decisions with
an ML-driven global topology constructor. In practice, the
local routing protocol (e.g., RPL) can form an initial tree;
then all nodes report RSSI and link-quality data to a central
service, which trains or applies an ML model to infer a better
DAG. The new DAG constrains the parent-child relationships
in the network, although local overrides can occur for drastic
link changes.

We developed a fast simulator to generate a labeled dataset
of network topologies and corresponding spanning trees,
and an emulator to replicate real-world behavior for cross-
validating both the predicted topologies and the simulator’s
outputs.

The dataset is used as training data for different ML/DL
models. Different models are compared against each other,
but also cross-validated against the performance of RPL (em-
ulator) and the simulator.

Both the simulator [5] and the emulator [6] are openly avail-
able on GitHub for further experimentation and validation.

A. Cross-validation
A key aspect of our methodology is to evaluate ML/DL

model predictions in an environment that closely approximates
real-world conditions. Because we do not have access to mul-
tiple large-scale WMNs, we developed an emulator capable
of modelling networks with hundreds or even thousands of
nodes (subject to computational resources). This emulator runs
a complete stack for each node, including PHY-level noise and
collision modelling, MAC, and RPL.

III. FAST SIMULATOR FOR DATASET GENERATION

A. Core Requirements and Workflow
The simulator must execute quickly, accurately estimate per-

formance, and handle topologies of various sizes. Its pipeline,
shown in Fig. 1, creates random topologies, enumerates sub-
sets of possible spanning trees, and simulates each tree’s end-
to-end performance under a simple CSMA/CA-like model.
The best performing tree is identified and stored alongside
randomly sampled trees to create a rich training dataset.

Fig. 1. High-level view of generation workflow

B. Topology Creation and Link Quality
We represent the network as an n× n adjacency matrix A,

with entries Aij = 0 for no link or [0.85, 1.0] for viable links.
We start with random uniform draws plus a density factor,
ensure connectivity with DFS checks, and limit each node’s
neighbour count k to curb the exponential growth in possible
spanning trees. Physical realism is maintained by mapping an
RSSI threshold near −96 [dBm] to an ≈ 0.85 probability of
successful transmission (2-FSK assumption aligned with Wi-
SUN standard).

1) Enumerating Spanning Trees: Naively, to form a span-
ning tree in a topology of n nodes, we must select exactly n−1
edges from the available set E. However, the total number
of such combinations grows super-exponentially with n and
the average node degree, making exhaustive search quickly
infeasible.

To manage this, we apply a skip factor ξ, skipping large
blocks of combinations. If iS is our current combination index
in the sorted list of C =

(|E|
n−1

)
subsets, we jump ahead by

iS ← iS + τ, τ = U(0, (n− 1) · |E| · ξ)

where U(a, b) is a uniform integer in [a, b]. By performing
this statistical analysis on various topologies of different sizes
we define:

ξ(C) = max
(
1,

⌊
C

30,000,000

⌋)
(1)

This function is conservative and could potentially be fur-
ther optimized.

Fig. 2 shows how larger ξ can discard the best 5% of trees
in a topology. Once candidate subsets are formed, we validate
each for connectivity using DFS; valid trees are simulated
(Section III), and their best performers become references,
alongside randomly selected suboptimal examples to broaden
the dataset.

Fig. 2. Occurrence of tree performance values grouped into 5% bins, example
topology of n = 20, density factor of d = 0.55 (Total combinations C =
1, 855, 967, 520). Lower performance values correspond to better-performing
trees.

C. Simulation of Uplink/Downlink Flooding

We assess the routing performance (i.e. the overall network
bandwidth) of each spanning tree by simulating network traffic
in both uplink (down → up) and downlink (up → down)
directions concurrently at every time step, orchestrated by
a simplified CSMA/CA-like mechanism with collisions and
retransmissions. No actual data is transferred; instead, each
node maintains counters representing the number of packets
to transmit, effectively emulating packet buffers.

In the simulation, each non-root node is initially assigned
m uplink packets to deliver to the root, while the root
progressively injects downlink packets aimed at filling each
node’s buffer with m packets. At each simulation step, a
random permutation of nodes is processed, where each node
attempts either an uplink or downlink transmission. If both

phases remain incomplete, the direction is randomly chosen.
Transmission success is determined probabilistically based on
the link quality Aij , while collisions or busy recipients result
in deferred retries.

The simulation proceeds until all uplink packets have
reached the root and each node has received its full quota of
downlink packets, or until a user-defined maximum number
of steps is reached. The final performance metric is the
total number of simulation steps required, with fewer steps
indicating more efficient routing.

The simulation algorithm is detailed by Algorithm 1.
Explanation of variables and conditions:
• E as the set of edges in the tree; for each node i, let C(i)

be the set of all children nodes of node i, i.e.,

C(i) = {j ∈ N | (i, j) ∈ E}

• A as the adjacency matrix describing the network topol-
ogy, where Aij denotes the probability of a successful
transmission along the edge (i, j).

• pup(i) as the number of packets destined for the root node
(uplink packets) held by node i.

• pdwn(i) as the number of packets destined for each node
(downlink packets) held by node i.

• Iup(i) as a boolean indicating whether node i intends to
transmit an uplink packet.

Iup(i) =
{
1, if Pup(i) > 0

0, otherwise

• B(i) as a boolean indicating whether node i is busy being
engaged in a transmission (either transmitting or receiving
a packet).

• Φup and Φdwn as the termination conditions for
each simulation directions, formally defined as:

Φup =

{
0, if ∃i pup(i) = 0

1, otherwise
Φdwn =

{
0, if ∃i pdwn(i) < m

1, otherwise
• Φearly as the early termination condition defined by:

Φearly =

{
0, s > smax

1, otherwise

The algorithm outputs the average (or capped value) of the
number of steps required per epoch, which corresponds to the
mean performance of the considered spanning tree. A lower
number of steps implies a more efficient routing configuration.
If the simulation exceeds a maximum step threshold, the
process terminates early, ensuring efficiency in computation
when it is used to get the best performing tree out of a set.
This is performed by dynamically adjusting the threshold to
not compute useless steps when the performance is bad.

This simulation is crucial for evaluating the global perfor-
mance of spanning trees, simulating both uplink and downlink
flooding concurrently. The algorithm is described in such way
that it takes into account a lot of important features required to
assess the routing performance, including overall bandwidth,
overall latency, bottlenecks, and more physical feature such as
link-quality and retransmissions.

This algorithm is available on GitHub [5].

Algorithm 1 Evaluate spanning-tree performance
Input: E (edges), n (nodes), Lepochs (simulation epochs), m
(packets per node), Aij (link quality), smax (max steps)
for l = 1 to Lepochs do

Initialize pup(i) = m, pdwn(i) = 0,B(i) = 0, ∀i ∈ N
Reset the simulation step counter s← 0
while Φup = 0 AND Φdwn = 0 do

Count a new simulation step s← s+ 1
Introduce on downlink packet at root:
pdwn(0)← pdwn(0) + 1
for each node i do

Update Iup(i) based on pup(i)
end for
Uniform random permutation of node order: π(N)
for each node i ∈ π(N) do

Randomly decide transmission direction d ∈ {−1,+1}
if d = +1 (uplink) then

if B(i) = 0 then
Select a random child j from C(i) with Iup(j) = 1
if Aij > U(0, 1) AND pup(i) < m then

Transmit:
pup(i)← pup(i) + 1, pup(j)← pup(j)− 1
Parent is busy while receiving: B(i)← 1
Reset intent: Iup(j)← 0

end if
Child is busy both on TX success/failure: B(j)← 1

end if
else if d = −1 (downlink) then

if B(i) = 0 AND pdwn(i) > 0 then
Select a random child j from C(i)
if B(j) = 0 AND Aij > U(0, 1) AND
pdwn(j) < m then ▷ Not reached target packets
Transmit:
pdwn(i)← pdwn(i)− 1, pdwn(j)← pdwn(j) + 1
Child is busy while receiving: B(j)← 1

end if
Parent is busy both on TX success/failure: B(i)← 1

end if
end if

end for
Reset B(i)← 0, ∀i
pup(0)← 0 ▷ Root does not store uplink packets
Compute Φup,Φdwn,Φearly

if Φearly = 1 then
Break loop

end if
end while
Accumulate sim. steps across epochs: scumul ← scumul + s
if Φearly = 1 then

Exit epoch loop
end if

end for
Output:

s̄ =

{
scumul
Lepochs

, if Φearly = 0

smax, otherwise

D. Dataset generation

To generate a reference dataset suitable for ML/DL, multiple
executions of the simulation workflow are performed. This
process computes the best tree(s) for each topology. While the
raw adjacency matrix and best tree data can be used directly
for training, introducing additional telemetry data enhances

the model’s diversity. An extra simulation step is employed to
compute metrics for each tree, including:

• Node ranks
• Transmission success/failure rates
• Retransmission rates
These metrics provide valuable context for training ML/DL

algorithms, potentially improving the model’s understanding
of network dynamics and performance.

IV. MACHINE LEARNING APPROACHES

A. Problem Formulation and Data Post-Processing

We treat our problem as multi-label classification: for a
topology with n nodes, we create a vector of length n(n−1)/2
representing the upper-triangular entries of the adjacency ma-
trix. Each entry is assigned a label of 1 if the corresponding
edge is used in the final tree, or 0 otherwise. We may also
add “telemetry” features (e.g., rank or success rates) to enrich
model inputs.

However, the predicted adjacency must still form a valid
spanning tree with one parent per node and no cycles. After
prediction, we apply a simple post-processing rule to ensure
validity. If any node is disconnected, we attach it to the best
candidate edge by predicted probability; if a cycle arises, we
remove the edge with the lowest probability in that cycle.
In practice, this step is crucial for compliance with DAG
constraints.

B. Considered Models

We explored classical ML classifiers (logistic regression,
SVM variants) and two DL paradigms (MLP, RNN/LSTM).
All share the same fundamental classification target: predict
1 if an edge is in the optimal tree, else 0. For the RNN, we
constructed a pseudo-time-series of multiple suboptimal trees
from the same topology. The aim is to let the LSTM observe
incremental variations and approach a best structure.

TABLE I
SUMMARY OF MODEL ARCHITECTURES

Model Core Arch. Config Loss
Logistic Reg. - L2 penalty Multinomial
SVM (SGD) - L2 penalty Hinge
Linear SVM - L2 penalty Sq. Hinge

MLP In/Dense/Dense/Out 214-495 ReLU BCE
RNN (LSTM) In/LSTM/Out 1000 LSTM BCE

C. Evaluation Metrics and Cross-Validation

During training, we evaluate model performance using pre-
cision and recall, with the F1-score computed on the predicted
adjacency vectors. However, these classification metrics alone
are insufficient to fully characterize routing effectiveness. To
address this, we incorporate a cross-validation step using net-
work simulation. Specifically, the predicted adjacency matrix
is fed into the same flooding protocol employed for evaluating
RPL. The average number of simulation steps required for
successful uplink and downlink transmissions serves as a direct
measure of routing efficiency.

V. RESULTS AND DISCUSSION

Fig. 3 first compares classical ML: linear SVM typically
outperforms logistic regression slightly, while SVM+SGD lags
behind.

Fig. 3. F1-scores of ML classifiers (test fold). Linear SVM has a slight
advantage.

We also tested MLP vs. RNN with various input sets (topol-
ogy alone, plus telemetry, plus an initial RPL-based DAG).
Fig. 4 shows the results, where the RNN has a marginally
higher F1 score but is more expensive to train.

Fig. 4. Comparison of different DL architectures on classification metrics.

Most importantly, cross-validation by re-simulating the ML-
predicted trees (Fig. 5) shows that all tested ML/DL solutions
still perform worse on average than RPL. Meanwhile, the sim-
ulator’s systematic exploration of candidate trees frequently
identifies solutions that outperform RPL, demonstrating that
improved topologies do exist but remain difficult to capture
using standard classification approaches.

Fig. 5. Cross-validation results, comparing predicted trees (MLP or RNN)
vs. RPL. Lower values are better.

A. Analysis

Our results highlight the difficulty of imposing DAG con-
straints via naive classification. The single-parent-per-node
rule and the need to avoid cycles complicate direct ML ap-
proaches. Standard classification excels at recognising patterns
but not enforcing combinatorial structure. Future advances will
likely hinge on graph-aware or constraint-driven ML methods.

VI. CONCLUSION AND FUTURE WORK

We explored global DAG routing optimisation in WMNs
via ML/DL. We developed a high-performance simulator to
generate realistic data and tested classical and deep classifiers.
Although brute force can find spanning trees superior to RPL,
our trained models did not surpass RPL performance, with the
gap widening in larger network topologies.

Nonetheless, the simulator and dataset creation pipeline
form a solid foundation. Future work should investigate:

• Graph-Constrained Learning: Graph Neural Networks
(GNNs) or reinforcement learning that enforces spanning-
tree structure explicitly.

• Hybrid Approaches: Leverage RPL’s local heuristics but
let a central solver refine partial constraints or detect
global bottlenecks.

• Scalability: Extending the skip-factor sampling to larger
n, perhaps with advanced importance-sampling or paral-
lelisation.

In closing, purely data-driven methods for DAG routing
remain challenging. With more sophisticated architectures or
explicit constraints, a global ML-based optimiser may eventu-
ally complement or surpass RPL in real-world WMNs.

REFERENCES

[1] T Winter et al. Rpl: Ipv6 routing protocol for low power
and lossy networks, RFC 6550, IETF, 2012. 2011. DOI:
10.17487/RFC6550.

[2] Xun Zheng et al. DAGs with NO TEARS: Continuous
Optimization for Structure Learning. 2018. arXiv: 1803.
01422 [stat.ML]. URL: https: / /arxiv.org/abs/1803.
01422.

[3] Georgios Parissidis et al. “Routing Metrics for Wireless
Mesh Networks”. In: Feb. 2009, pp. 199–230. ISBN: 978-
1-84800-908-0. DOI: 10.1007/978-1-84800-909-7 8.

[4] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost.
Machine Learning for Combinatorial Optimization: a
Methodological Tour d’Horizon. 2020. arXiv: 1811 .
06128 [cs.LG]. URL: https://arxiv.org/abs/1811.06128.

[5] Eric Tran and Yann Charbon. DAGFastSimulator.
2025. URL: https : / / github . com / YannCharbon /
DAGFastSimulator.

[6] Yann Charbon and Mahboob Karimian. wisun-mbed-
simulator. 2024. URL: https : / / github . com /
mahboobkarimian/wisun-mbed-simulator.

https://doi.org/10.17487/RFC6550
https://arxiv.org/abs/1803.01422
https://arxiv.org/abs/1803.01422
https://arxiv.org/abs/1803.01422
https://arxiv.org/abs/1803.01422
https://doi.org/10.1007/978-1-84800-909-7_8
https://arxiv.org/abs/1811.06128
https://arxiv.org/abs/1811.06128
https://arxiv.org/abs/1811.06128
https://github.com/YannCharbon/DAGFastSimulator
https://github.com/YannCharbon/DAGFastSimulator
https://github.com/mahboobkarimian/wisun-mbed-simulator
https://github.com/mahboobkarimian/wisun-mbed-simulator

	Introduction
	Related Work

	Methodology
	Cross-validation

	Fast Simulator for Dataset Generation
	Core Requirements and Workflow
	Topology Creation and Link Quality
	Enumerating Spanning Trees

	Simulation of Uplink/Downlink Flooding
	Dataset generation

	Machine Learning Approaches
	Problem Formulation and Data Post-Processing
	Considered Models
	Evaluation Metrics and Cross-Validation

	Results and Discussion
	Analysis

	Conclusion and Future Work

