

Potentiel de stockage d'énergie géothermique dans le sous-sol suisse

Jérôme FaesslerCo-Directeur Géothermie-Suisse

Potentiel de stockage d'énergie géothermique dans le sous-sol suisse

Forum CONNECT

29 Septembre 2022

Jérôme Faessler

Co-directeur Géothermie-Suisse

Sommaire

- Présentation de Géothermie-Suisse
- Pourquoi stocker? Les avantages du stockage
- Comment stocker? Les technologies de stockage
- L'intégration dans le système énergétique des stockages en sous-sol
- Prise de position Géothermie-Suisse sur le potentiel de stockage du sous-sol suisse
 - Champs de sondes géothermiques BTES
 - Aquifères basse température ATES LT
 - Aquifères haute température ATES HT
- Messages-clés

Géothermie-Suisse: développons ensemble les filières

Formations

Développer les compétences avec

- Cours de formation continue
- Séminaires / Webinaire
- Communautés de pratiques

Centre de compétence

Améliorer les connaissances

- Renseignements et conseils
- Mise en relation des spécialistes
- Normes, directives
- Recherche & Développement

Marketplace

51 Opportunities found

Prospection Marché

Rendre les projets possibles avec

- Plateforme Connect
- Informations sur le marché
- Initiation de projets

Politique

Créer les conditions-cadres

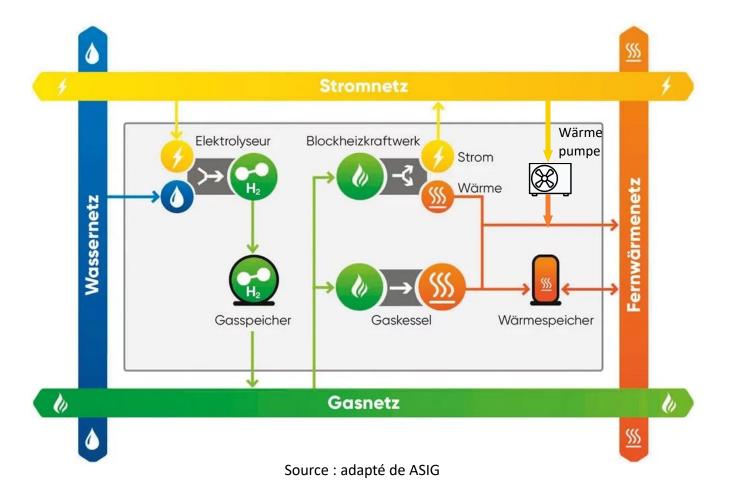
- Prises de position
- Propositions et interventions
- Initiatives parlementaires

Evénements

Community Building

- Forum
- Visites
- Echanges d'expériences
- Assemblée Générale

Communication

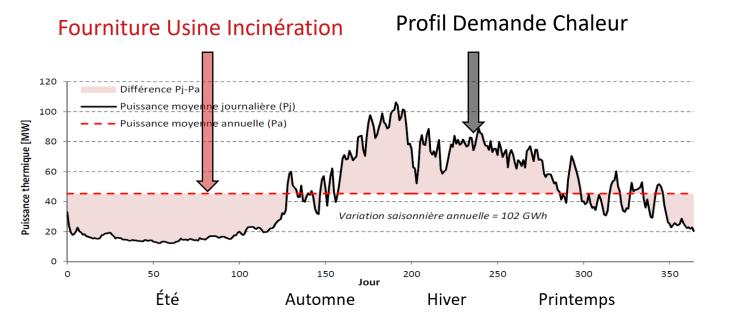

Informations de base et campagnes via

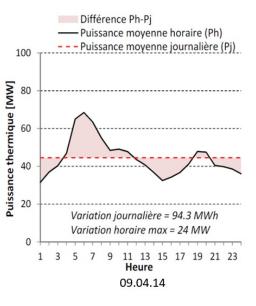
- Internet, réseaux sociaux
- Newsletters
- Médias

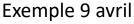
La nécessité de la convergence des réseaux

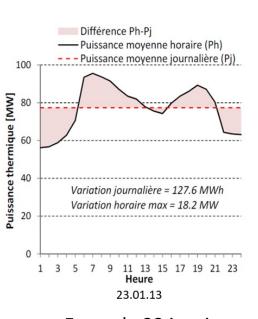
Eau - électricité - gaz - chaleur

Mots-clés


- Multi-ressource
- Multi-usage
- Concordance de temps
- Efficacité
- Optimisation
- Stockage
- Court terme (infrajournalier)
- Long terme (saisonnier)


Pourquoi stocker?


• La fonction principale du stockage est d'assurer une concordance temporelle entre une source d'énergie (chaleur fatale, géothermie, solaire) et son utilisation (jour/nuit ou été/hiver)


Saisonnier

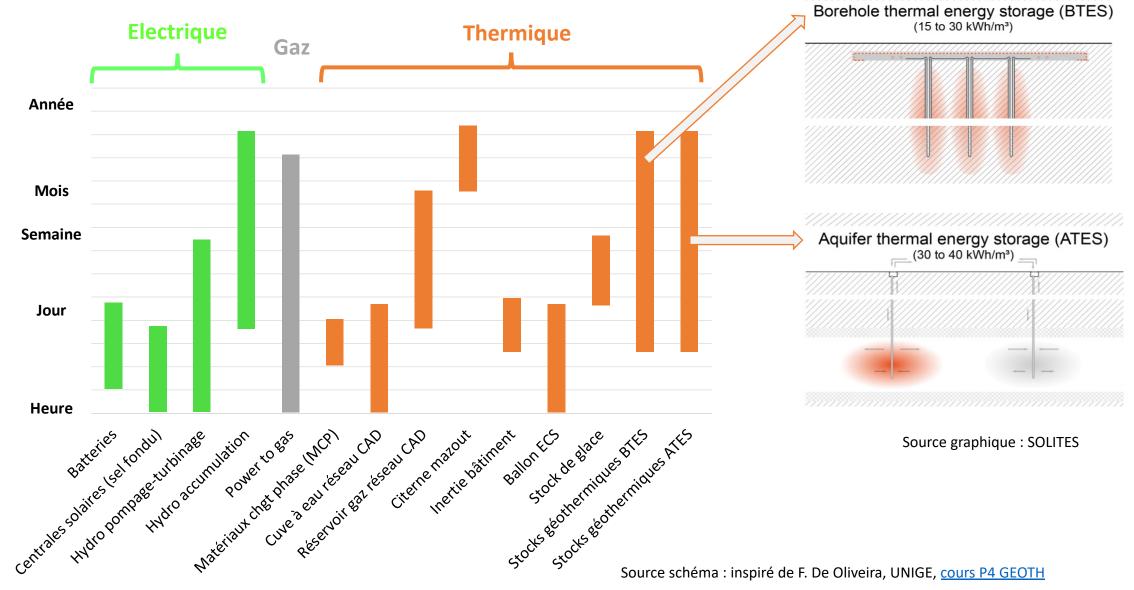
Intra-Journalier

Exemple 23 janvier

Source: Quiquerez L. et al. (2015) UNIGE https://archive-ouverte.unige.ch/unige:77547

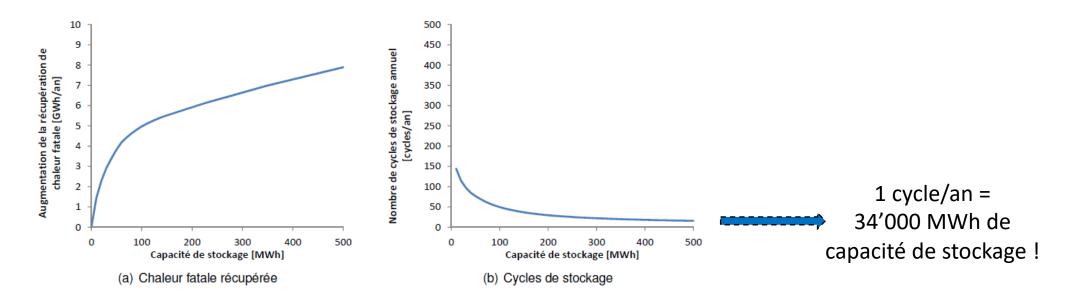
Avantages du stockage

Electrique


- Valoriser toute l'électricité renouvelable intermittente (PV, éolien) -> pompageturbinage, power-to-gaz (P2G)
- Participer aux services secours : maintien de la fréquence du réseau, stabilité à court terme, délestage

Thermique

- Réduire les émissions de CO₂
- Répondre à la demande de froid
- Réduire les besoins électriques des pompes à chaleur en hiver
- Contribuer à réduire les besoins de capacités de production de pointe du réseau


Technologies de stockage

Intégration dans le système énergétique (thermique)

- Prix d'achat de l'énergie à stocker
- Pertes et température du stock
- Prix de vente de l'énergie stockée
- nombre de cycle de stockage annuel

Source: Quiquerez L. et al. (2015) UNIGE https://archive-ouverte.unige.ch/unige:77547

Notre prise de position sur le stockage géothermique

Réduit les émissions de CO₂

Arrête le gaspillage d'énergie

Répond à la demande de froid

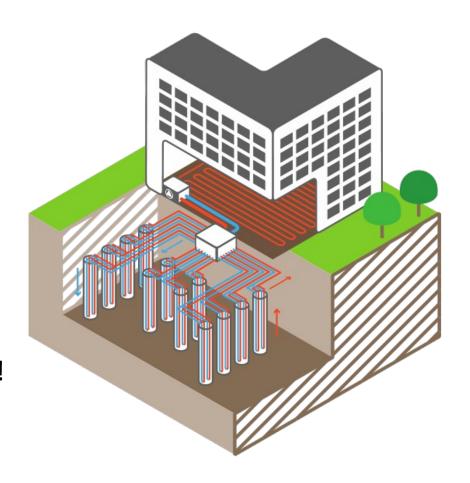
Faible emprise au sol

Assure la durabilité

Réduit les besoins électriques en hiver

Réduit les coûts d'investissements

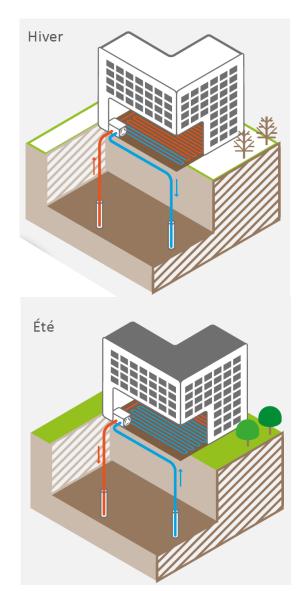
Plus grande indépendance énergétique



Le potentiel des champs de sondes géothermiques (SGV) - BTES

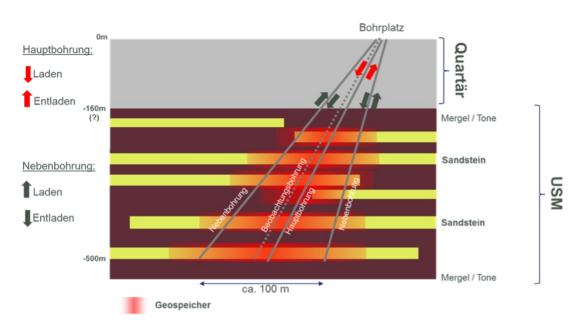
• Quatre approches «macro» différentes ont été évaluées

	Approche 1 Kilomètres SGV	Approche 2 Demande et Zones autorisées SGV	Approche 3 Approche GIS multi-variables	Approche 4 Approche demande climatisation	Valeurs retenues par Géothermie- Suisse
	TWh/an	TWh/an	TWh/an	TWh/an	TWh/an
Scénario MIN	0.8	2.3	3.6	0.8	1
Scénario MAX	1.6	4.6	7.2	4.5	3


- ➤ Potentiel de 2 à 3 TWh/an pour le stockage en BTES
- ➤ Plusieurs milliers de champs de sondes de 10 km (20 x 250m)!
- ➤ Marché actuel -> 3'000 km/an

Le potentiel des aquifères à basse température (LT-ATES)

- Estimation «macro» des volume d'eau disponible dans les formations quaternaires de plus de 10m d'épaisseur
 - Scénarios de m³ d'eau par volume de l'aquifère (10, 25 ou 50%)
 - Seuil densité thermique (500, 750 ou 1000 MWh/ha)
- $> \approx 0.5$ à 5 milliards de m³ d'eau disponible
- Si ΔT=3K, alors potentiel ≈ 1 TWh/an
- Si ΔT=8K, alors potentiel ≈ 3 TWh/an
- > 500 à 1'000 doublets
- ➤ Potentiel de 2 à 3 TWh/an pour le stockage en LT-ATES



Le potentiel des aquifères à haute température (HT-ATES)

- Il existe quelques exemples en Europe (Berlin, Neubrandenburg, ...)
- Il s'agit encore de projets pilote
- Avantage -> stocker de l'énergie saisonnière à un niveau de température correspondant à la demande
- Désavantages -> Problématique de la chimie des eaux, coûts forages plus élevés
- <u>Exemple à Berne</u> -> couplage à l'usine d'incinération Forsthaus
- ➤ Potentiel théorique de plusieurs TWh/an pour le stockage en HT-ATES

Forsthaus

Source: EWB

Keys message

- Les systèmes BTES et LT-ATES sont matures et rentables
- Le potentiel du stockage géothermique est de l'ordre de 4 à 6 TWh/an
- Le stockage géothermique permet de décarboner le système énergétique
- Il a l'avantage de mobiliser de grands volumes avec une faible emprise au sol
- Le stockage pour le froid permet de rafraichir les bâtiments tout en régénérant activement le sous-sol -> meilleure durabilité de l'exploitation du sous-sol
- Le stockage et la vente de chaud ET de froid permet d'améliorer le business plan
- La possibilité d'utiliser un delta T de 8K plutôt que de 3K dans les aquifères, comme cela se pratique aux Pays-Bas, permettrait de stocker 3 fois plus d'énergie pour un coût d'investissement similaire

Merci de votre attention

