

CENTRUM VOOR VACCINOLOGIE

A first-in-human study of a <u>novel adjuvant</u> for increased immunogenicity and dose-sparing of <u>seasonal influenza vacci</u>nes

Influenza

Influenza Vaccines

Adjuvants

Litevax Adjuvant & CMS

TETRALite-1, a first-in-human trial

- Objectives
- Study Design
- Study Population

Safety & Reactogenicity of CMS

Humoral & Cellular Immunogenicity of CMS

Conclusions & Future Directions

Influenza

Increased risk for severe disease and complication in

- Pregnant women
- Children <5 years
- Older adults
- Immunosuppressive conditions

Seasonal epidemic (Winter)

- 1 billion infections/year worldwide
- 3-5 million severe cases
- 300,000 650,000 deaths/year

Vaccination remains the most effective way of preventing disease

• Effectiveness is low: 60% to as low as 10%

CEVAC | CENTRUM VOOR VACCINOLOGIE

Influenza

Influenza types A,B,C & D

- Influenza A causes disease and pandemics
 - Subtyping based on Hemagglutin & Neuramidase (H1N1, H3N1, H5N1,...)
- Influenza B causes disease
 - 2 lineages: Victoria & Yamagata
- Influenza C & D less important for human disease

Antigenic drift decreases Vaccine Effectiveness

Mutations in HA and NA genes

Immunosenescence decrease immunogenicity

- Ageing causes an 'exhausted' immune system
- Vaccine-induced immune responses are less adequate

Hemagglutinii

Neuraminida

M2 Ion Channe

RNP

Influenza Vaccines in use & in development

Licensed Vaccines

- Tetravalent (4 influenza types)
- Inactivated split most used in Belgium

Vaccines in development

- mRNA
- Nanoparticles

Adjuvants

An adjuvant is any substance (or a mixture of substances) that enhances the immune response to an antigen with which it is mixed

- Increased immunogenicity for OA
- Dose-sparing

Only 7 adjuvants are licensed for human use

Litevax Adjuvant / CMS

- CMS: fully synthetic molecule, organic synthesis
 - Carbohydrate fatty acid Mono Sulphate ester (CMS) is the active ingredient of LiteVax Adjuvant (LVA)
- LVA: formulated CMS; oil-in-water emulsion
 - Aqueous solution, ready-for-use
 - Ingredients: CMS, synthetic squalane, Polysorbate 80, PBS
 - No preservatives, sterile emulsion
 - Storage 2-8 °C, up to 25 °C possible
 - Stable emulsion: GMP batch >2 years, ongoing
 - Use for single dose vaccines

Litevax Adjuvant / CMS

Immunogenicity TETRALITE in ferrets

Litevax Adjuvant / CMS

Mode of action

- O/W emulsions (MF59, AS03, GLA-SE)
- No TLR4-activation; receptor not known
- Strong G-CSF, KC, IL-5, IL-6 (mice)
- Increased WBCs: neurophils & monocytes
- Muscle & dLN: clustering DC/lymphocytes/macrophages
- In vitro: DC activation; CD80/CD86 upregulation
- Many unknows, role of CMS

First-in-human trial in which a single intramuscular injection with TETRA^{LITE} containing 1/5th of the standard dose of VaxigripTetra® plus 2 or 0.5 mg of LiteVax Adjuvant (LVA) was tested in healthy adult volunteers and compared with a normal dose of VaxigripTetra® without adjuvant

VaxigripTetra (season 2022-2023)

- A/H1N1
- A/H3N2
- B/Victoria
- B/Yamagata

Primary

To evaluate **safety and tolerability** of a single administration of TETRALITE (3 μg VaxigripTetra + 0.5 mg or 2 mg adjuvant) versus 15 μg VaxigripTetra without adjuvant in healthy participants (18-50 years).

Secondary

To evaluate the **humoral immune responses** of a single administration of TETRALITE (3 μg VaxigripTetra + 0.5 mg or 2 mg adjuvant) versus 15 μg VaxigripTetra without adjuvant in healthy participants (18-50 years).

Exploratory

To evaluate the **cellular (T cell) immune responses** of a single administration of TETRALITE (3 μg VaxigripTetra + 0.5 mg or 2 mg adjuvant) versus 15 μg VaxigripTetra without adjuvant in healthy participants (18-50 years).

Study Design

Randomized, active-controlled, double-blind, single-center, first-in-human Phase 1 trial

3 Cohorts

- Cohort 1: 15 μg VaxigripTetra (commercial vaccine) = control vaccine
- Cohort 2: 3 μg VaxigripTetra + 2 mg LVA
- Cohort 3: 3 μg VaxigripTetra + 0.5 mg LVA

Staggered design & Sentinel participants for safety

Study Design

CEVAC | CENTRUM VOOR VACCINOLOGIE

Study Population

N = 60 participants

• N = 20 per cohort

Healthy adults

- No active disease/medication
- No seasonal influenza vaccine 6 months prior
- No other vaccines 1 month prior

18 – 50 years of age

Participants screened

N = 96

Participants Excluded

Screen failed: N = 17

Study Population

		VaxigripTetra (15µg)	VaxigripTetra (3µg) + 0.5 mg CMS	VaxigripTetra (3µg) + 2 mg CMS	Total
		(N=20)	(N=20)	(N=20)	(N=60)
Age (years)		39.8 (9.8)	38.9 (10.0)	34.1 (10.0)	37.6 (10.1)
Gender	Female	12 (60.0%)	14 (70.0%)	16 (80.0%)	42 (70.0%)
	Male	8 (40.0%)	6 (30.0%)	4 (20.0%)	18 (30.0%)
Race	White	20 (100.0%)	19 (95.0%)	18 (90.0%)	57 (95.0%)
	Black or AA	0 (0.0%)	1 (5.0%)	0 (0.0%)	1 (1.7%)
	Asian	0 (0.0%)	0 (0.0%)	1 (5.0%)	1 (1.7%)
	Other	0 (0.0%)	0 (0.0%)	1 (5.0%)	1 (1.7%)
Weight (kg)		74.34 (13.4)	73.96 (12.78)	68.49 (8.68)	72.26 (11.91)
BMI (kg/m ²)		24.33 (3.43)	24.33 (3.07)	23.84 (2.69)	24.17 (3.03)

I CENTRUM VOOR VACCINOLOGIE

Safety and Reactogenicity

Solicited Adverse events

- 7 days after vaccination
- Local
 - Pain, Redness, Swelling, Induration
- Systemic
 - · Headache, Fatigue, Malaise, Arthralgia, Myalgia, Fever

Unsolicited Adverse events

• 28 days after vaccination

Severe Adverse events & potential Immune-mediated diseases

Safety and Reactogenicity

Reactogenicity is acceptable for all doses

UNIVERSITEIT

- Higher reactogenicity for 2mg CMS
- Higher severity for AEs for 2mg CMS
- 2mg CMS is maximum dose for humans
 - Lower reactogenicity expected for OA

CENTRUM VOOR VACCINOLOGIE

Humoral Immunogenicity

Hemagglutinin inhibition titer

- Surrogate measure for protective immunity
- Defined using serial dilutions of serum & its ability to bind to HA antigen

No differences in HI titers between 3 cohorts

 HI titers are as high for adjuvanted 1/5th antigen dose as full antigen dose

Peak on Day 28, decrease after 6 months but higher than baseline

Vaxigrip Tetra (15µg)

Vaxigrip Tetra (3µg) + 0.5mg CMS

→ Vaxigrip Tetra (3µg) + 2mg CMS

CENTRUM VOOR VACCINOLOGIE

Cellular Immunogenicity

Intracellular Cytokine Staining & Flow Cytometry

- CD3, CD4, CD8
 - Extracellular markers
- CD40L, IFN γ , IL-2, TNF α
- Polypositive cells
 - CD4 OR CD8 positive AND
 - Positive for at least 2 intracellular markers

CD4+ polypositive cells

- No significant differences
- Peak at Day 7

CD8+ polypositive cells

Same trend but lower than LOD

Conclusion

- CMS is safe in humans
 - Higher reactogenicity of 2mg CMS compared to 0.5mg CMS or control.
- Humoral and cell-mediated immunogenicity was similar for adjuvanted and control vaccines
 - Even with 1/5th antigen dose
- CMS can have beneficial implications in low-resource settings or in a pandemic context.
 - Studies in older adults are needed

Future Directions

- CMS can have beneficial implications in low-resource settings or in a pandemic context.
 - Phase 1 clinical trial in India
 - Dose-sparing in YA can have

beneficial impact		
•	1 Vaccine = 5	vaccinations
UZ GENT	UNIVERSITEIT	Cor
- I GLIVI	GENT	IN

ntrol MP

	EU - Phase 1	IN - Phase 1
Age	18-50y	18-50y
Antigen	Vaxigrip Tetra ('22-'23)	VaxiFlu-4 ('24-'25)
Adjuvant	CMS	CMS
Vaccine 1	15μg (n = 20)	15μg (n = 25)
Vaccine 2	3μg + 2mg LVA (n = 20)	3μg (n = 25)
Vaccine 3	3μg + 0.5mg LVA (n = 20)	3μg + 1mg LVA (n = 25)

Future Directions

- Studies in older adults are needed
 - Phase 1b trial started
 - There is a clear effect of LVA (1/5th dose = similar immunogenicity)
 - What are the mechanisms of action?
 - A systems vaccinology approach: single cell RNA sequencing techniques
 - In a non-dose sparing context, can LVA help enhance the immune response in older adults?

A Beautiful Collaboration

Harmony Clinical Research

Els Michels Marike Van Dongen Aline Brulein Jelle De Keukeleire, PhD Tom Van Paepegem Evelien De Waele, PhD

Universitair Ziekenhuis Gent

C. Heymanslaan 10 | B 9000 Gent | Ingang 99 | route 995

T+32 [0]9 332 20 68 | E cevac@uzgent.be

www.uzgent.be/cevac Volgions op **f**

Litevax

Luuk Hilgers, PhD Peter Paul Platenburg, PhD

VisMederi

dr. Francesca Vanni

CEVAC Clinical Trial Unit

Prof. dr. Isabel Leroux-Roels, PI

dr. Valentino D'Onofrio, postdoc

Dr. Azhar Alhatemi, MD

Dr. Simon De Gussem, MD

Dr. Bart Jacobs, MD

Prof. dr. Geert Leroux-Roels, MD

Fien De Boever, CTU manager

Anthony Willems, study coordinator

Anne Depluverez, study coordinator

All study nurses

CEVAC Lab

dr. Gwenn Waerlop, LAB manager Sharon Porrez, project manager Sophie Decuypere, project manager Marjolein Verstraete, project manager All lab technicians

Apr. Ann-Sophie Franki

INDIGO Consortium

Universitair Ziekenhuis Gent

C. Heymanslaan 10 | B 9000 Gent | Ingang 99 | route 995 T+32 (0)9 332 20 68 | E cevac@uzgent.be

www.uzgent.be/cevac Volg ons op **f**

