

PLANT-BASED ALTERNATIVES OF FERMENTED FOODS: YOGURTS AND KOMBUCHA, NUTRITIONALLY COMPLETE AND WITH DESIRABLE ORGANOLEPTIC CHARACTERISTICS FOR CONSUMERS. FORMENTERA

¹Francisco Lorca-Salcedo, ¹David Quintín- Martínez, ²Rafael Bermejo-Fernández, ²Sergio Ariel Streitenberger-Jacobi, ¹Presentación García- Gómez*.

¹National Technological Centre for the Food and Canning Industry – CTNC, Murcia, Spain. *sese@ctnc.es ²AMC IDEAS, Murcia, Spain.

INTRODUCTION

The increasing production of oat-based beverages generates significant by-products, particularly okara, which are often discarded, leading to environmental concerns. This project focuses on developing green extraction technologies to valorize these by-products, transforming them into substrates for plant-based fermented foods. By integrating sustainable methodologies, the project aim to reduce food waste and promote a circular economy in the food industry.

OBJECTIVE AND RESULTS

1. To evaluate and implement environmentally friendly extraction techniques for recovering valuable nutrients from oat drink by-products. 2, To compare three green extraction technologies: conventional maceration, enzymatic extraction, and ultrasound-assisted extraction. 3. To assess the nutritional composition of the okara oat and extracted soluble fractions for use in plant-based fermented foods.

- Maceration: Traditional soaking and stirring method for nutrient extraction.
- Enzymatic: Application of specific enzymes to enhance bioactive compound release.
- Ultrasound: Use of ultrasonic waves to break cell walls and improve extraction efficiency.

Figure 1. Methodology for nutrients solubilization from okara oat

Table 1. Characterization of okara oat and soluble extracted fraction				
Component	Okara Oat	Conventional Extracted fraction	Enzymatic Extracted fraction	Ultrasound Extracted fraction
Protein (%)	9,1	5,4	11,5	7,0
Fiber (%)	10,2	6,6	10,4	6,9
Lipids (%)	3,9	0,6	3,1	1,5
Carbohydrate (%)	0,6	1,0	10,4	4,8

CONCLUSIONS

- Enzymatic and ultrasound-assisted extraction techniques significantly enhanced nutrient recovery compared to conventional method.
- Enzymatic extraction proved to be the most efficient in releasing nutrients from okara oat.
- Extracted liquids fractions obtained demonstrated potential for application in plant-based fermented food products, enhancing their nutritional value.

REFERENCES

- Immonen, M., Myllyviita, J., Sontag-Strohm, T., & Myllärinen, P. (2021).
 Oat protein concentrates with improved solubility produced by an enzyme-aided ultrafiltration extraction method. Foods, 10(12), 3050.
 https://doi.org/10.3390/foods10123050.
- Korsa, V. V. (2023). Ultrasound-assisted and enzymatic-based method for isolation of β-glucans from oat bran. Biotechnologia Acta. https://doi.org/10.15407/biotech16.01.051.

ACKNOWLEDGMENTS

Public-Private Collaboration 2022 of the Ministry of Science and Innovation. The publication is part of project CPP2022-009547, funded by MCIN/AEI/10.13039/501100011033 and by the European Union "NextGenerationEU"/PRTR.

