
SANSHO Development Pipeline

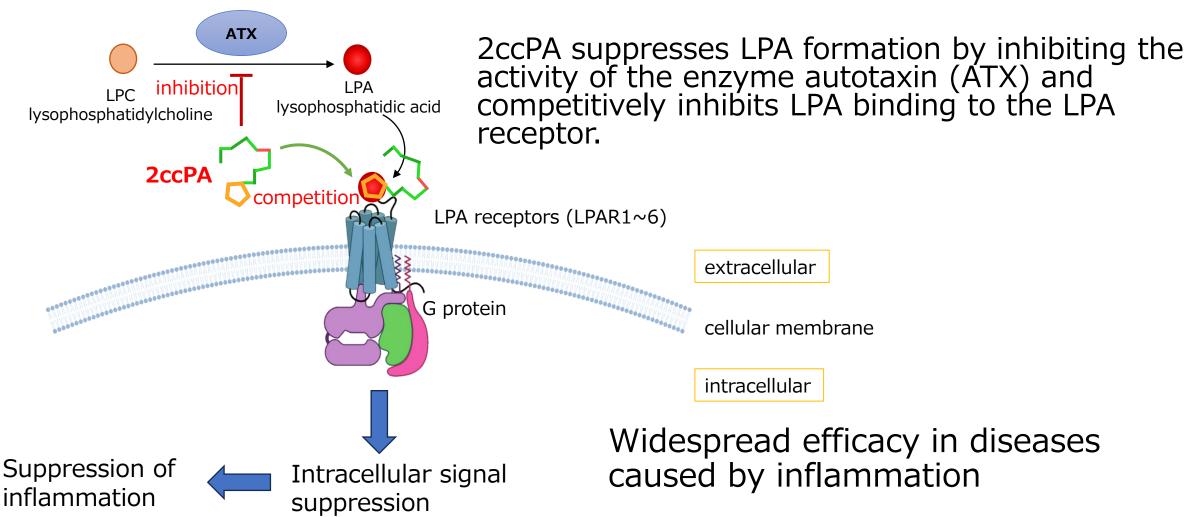
	Non-clinical to Pre-clinical	Phase I	Phase II
Orthopedics			O-001 OA*)
Respiratory Medicine	SSI-002 (IPF**)		
Ophthalmology	SSG-003 (Glaucoma)		
Dermatology	SSD-004 (Scleroderma) SSH-005 (Hypotrichosis)		*Osteo **Idio

Conversion of cPA to chemically stable derivatives

Various fatty acids such as linoleic acid, palmitic acid, and oleic acid

cyclic Phosphatidic Acid (cPA, R=C:16~22)

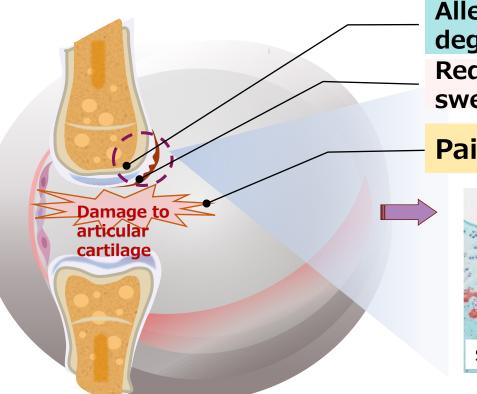
Improved in vivo stability by converting oxygen (O) to methylene (CH₂)


Conversion to chemically stable derivative

ccPA)

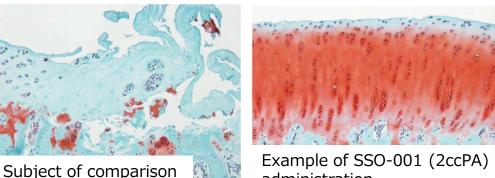
Oleic acid is selected as the fatty acid

2-carba-cyclic phosphatidic acid (2ccPA)


Unique mechanism of action of 2ccPA

Development of a treatment for osteoarthritis (OA) (SSO-001)

What is osteoarthritis?


A disease in which the cartilage that cushions the joints wears away due to aging or loss of muscle mass, resulting in pain.

Alleviates cartilage degeneration **Reduces joint** swelling

Pain relief

Pharmacological effects of SSO-001 (2ccPA)

Example of SSO-001 (2ccPA) administration

Rabbit animal model experimental results

© 2025 SANSHO Co., Ltd.

Inhibits destruction of cartilage tissue

SSO-001: Status of clinical studies

Area	Study#	Period	Phase	Target Patients	Number of subjects (Dosage)	Administrati on	Primary endpoint s	Status
Taiwan	OEP- 2PM102 -101	FRB18 (FSFV) ~ MAY21 (DBL)	Ib	Knee osteo- arthritis patients	6 (50 μg) 12 (200 μg) 6 (800 μg) 6 (2,400 μg) 10 (Placebo)	Single intra- articular injection	Safety	Completed
Taiwan	OEP- 2PM102 -201	NOV22 (FSFV) ~ OCT24 (DBL)	Ib (additional)	Knee osteo- arthritis patients	6 (4,800 μg) 6 (7,200 μg) 4 (Placebo)	Single intra- articular injection	Safety	Completed
			IIa	Knee osteo- arthritis patients	32 (2,400 µg) 30 (4,800 µg) 31 (7,200 µg) 30 (Placebo)	Intra- articular injection every 2 weeks (x3)	Efficacy and safety	Completed

SSO-001: New Disease-Modifying OA Drugs (DMOADs)

- LPA signaling has been shown to be closely involved in joint inflammation, cartilage degeneration, subchondral bone remodeling, and especially in the development of neuropathic pain.
- Preclinical studies have strongly indicated that modulation of LPA receptors is a promising therapeutic strategy, suggesting its potential as new disease-modifying OA drugs (DMOADs).

SSO-001: Potential for "First in Class"