SANSHO Development Pipeline | | Non-clinical to
Pre-clinical | Phase I | Phase II | |-------------------------|--|---------|------------------| | Orthopedics | | | O-001
OA*) | | Respiratory
Medicine | SSI-002
(IPF**) | | | | Ophthalmology | SSG-003
(Glaucoma) | | | | Dermatology | SSD-004
(Scleroderma)
SSH-005
(Hypotrichosis) | | *Osteo
Idio | ## Conversion of cPA to chemically stable derivatives Various fatty acids such as linoleic acid, palmitic acid, and oleic acid cyclic Phosphatidic Acid (cPA, R=C:16~22) Improved in vivo stability by converting oxygen (O) to methylene (CH₂) Conversion to chemically stable derivative ccPA) Oleic acid is selected as the fatty acid 2-carba-cyclic phosphatidic acid (2ccPA) #### Unique mechanism of action of 2ccPA #### Development of a treatment for osteoarthritis (OA) (SSO-001) What is osteoarthritis? A disease in which the cartilage that cushions the joints wears away due to aging or loss of muscle mass, resulting in pain. Alleviates cartilage degeneration **Reduces joint swelling Pain relief Pharmacological effects of SSO-001 (2ccPA) Example of SSO-001 (2ccPA) administration Rabbit animal model experimental results © 2025 SANSHO Co., Ltd. Inhibits destruction of cartilage tissue #### SSO-001: Status of clinical studies | Area | Study# | Period | Phase | Target
Patients | Number of
subjects
(Dosage) | Administrati
on | Primary
endpoint
s | Status | |--------|------------------------|--|--------------------|---|--|---|---------------------------|-----------| | Taiwan | OEP-
2PM102
-101 | FRB18
(FSFV)
~
MAY21
(DBL) | Ib | Knee
osteo-
arthritis
patients | 6 (50 μg)
12 (200 μg)
6 (800 μg)
6 (2,400 μg)
10 (Placebo) | Single intra-
articular
injection | Safety | Completed | | Taiwan | OEP-
2PM102
-201 | NOV22
(FSFV)
~
OCT24
(DBL) | Ib
(additional) | Knee
osteo-
arthritis
patients | 6 (4,800 μg)
6 (7,200 μg)
4 (Placebo) | Single intra-
articular
injection | Safety | Completed | | | | | IIa | Knee
osteo-
arthritis
patients | 32 (2,400 µg)
30 (4,800 µg)
31 (7,200 µg)
30 (Placebo) | Intra-
articular
injection
every 2
weeks (x3) | Efficacy
and
safety | Completed | # SSO-001: New Disease-Modifying OA Drugs (DMOADs) - LPA signaling has been shown to be closely involved in joint inflammation, cartilage degeneration, subchondral bone remodeling, and especially in the development of neuropathic pain. - Preclinical studies have strongly indicated that modulation of LPA receptors is a promising therapeutic strategy, suggesting its potential as new disease-modifying OA drugs (DMOADs). SSO-001: Potential for "First in Class"