Cancer vaccines: from concept to reality Jo A. Van Ginderachter Brussels Center for Immunology, Vrije Universiteit Brussel Myeloid Cell Immunology Lab, VIB Center for Inflammation Research ### At the basis of it all: the cancer-immunity cycle How to present tumor antigens to T cells? Which tumor antigens? ### Which tumor antigens? **Thierry Boon** Pierre van der Bruggen ### Tumor characterizing antigens • 1977 - Thierry Boon (Belgium - Ludwig Institute): 'Boon T, Kellermann O., Rejection by syngeneic mice of cell variants obtained by mutagenesis of a malignant teratocarcinoma cell line, Proc Natl Acad Sci U S A. 1977 Jan;74(1):272-5.' • van der Bruggen P., Traversari C., Chomez P., Lurquin C., De Plaen E., Van den Eynde B., Knuth A., Boon T. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991 Dec 13;254(5038):1643–1647 ### Which tumor antigens? ### Tumor-associated antigens - Not unique to tumors - Overexpressed proteins (e.g. survivin, MUC-1/2), cancer germline proteins (oncofetal, cancer-testis: e.g. MAGE, GAGE, BAGE, NY-ESO-1), tissue-differentiation proteins (e.g. tyrosinase, Melan-A/MART-1, gp100, TRP-1/2) ### Tumor-specific antigens - Unique to tumors - Neo-epitopes (e.g. EGFRvIII, KRAS^{G12C}, BRAF^{V600E} vs patient-specific) - Viral antigens (e.g. HPV E6/E7 => responsible for nearly all cervical cancers, but also throat, anus, penis,...) ### Which tumor antigens: neo-epitopes ### Which tumor antigens: the cancer antigenome ### Which tumor antigens: neo-epitopes derived from the dark genome **COMMENT** 24 January 2013 ### The dark matter of genome It has three billion base pairs but only about two per cent of the human genome codes for proteins. In a two part series, Pawan Dhar tries to understand what the remaining bulk of the human genome is doing? Is it a genetic graveyard or a cryptic instruction manual that ensures survival of the species? The recent ENCODE (Encyclopedia of DNA Elements) project has thrown new light on the dark matter of genome – traditionally labelled junk. It turns out that more than 80% of the human 'non-protein coding' genome is biologically active and impacts the expression of genes in the neighbourhood. ### Which tumor antigens: neo-epitopes derived from the dark genome ### nature genetics Volume 56 | September 2024 | 1770-1771 | Glioblastoma therapy https://doi.org/10.1038/s41588-024-01850-3 # Activating the dark genome to illuminate cancer vaccine targets ### Which tumor antigens: neo-epitopes derived from the dark genome ### At the basis of it all: the cancer-immunity cycle How to present tumor antigens to T cells? Which tumor antigens? ### How to present tumor antigen to T cells: current knowledge on human DCs #### **Function** | Antigen cross-
presentation
to CD8 ⁺ T cells | Antigen
presentation to
CD4 ⁺ T cells | Antigen
presentation to
CD4 ⁺ T cells | Production of high
levels of type I IFN | |---|--|--|--| | IL-12, CXCL9/11 | IL-12, IL-23, CCL5 | IL-12, IL-23, IL-1b, TNF | Antiviral defense | | Intracellular
pathogens | Extracellular pathogens | Extracellular pathogens? | | ### How to present tumor antigen to T cells: human DCs in cancer ICAM1 CCR7 Migration ### DCs present tumor antigens in tertiary lymphoid organs or lymph nodes Immunogenic cell death inducers ⇒ Chemo ⇒ Radiation ### **SCIENCE MEETS LIFE** Immunogenic cell death inducers ⇒Chemo ⇒ Radiation #### Article ### RNA neoantigen vaccines prime long-lived CD8⁺ T cells in pancreatic cancer https://doi.org/10.1038/s41586-024-08508-4 Received: 5 April 2024 Accepted: 10 December 2024 Published online: 19 February 2025 Open access Check for updates Zachary Sethna^{1,2,3,4,4}, Pablo Guasp^{1,2,4}, Charlotte Reiche^{1,2}, Martina Milighetti^{1,2,4}, Nicholas Ceglia⁴, Erin Patterson⁵, Jayon Lihm^{3,4}, George Payne^{1,2}, Olga Lyudovyk⁴, Luis A. Rojas^{1,2}, Nan Pang², Aklhiro Ohmoto^{1,2}, Mastaka Amisaki^{1,2}, Abderezak Zebboudj^{1,2}, Zagaa Odgerel^{1,2}, Emmanuel M. Bruno^{1,2}, Siqi Linsey Zhang^{1,2}, Charlotte Cheng^{1,2}, Yuval Elhanati⁴, Evelyna Derhovanessian⁵, Luisa Manning⁵, Felicitas Müller⁶, Ina Rhee⁶, Mahesh Yadav⁶, Taha Merghoub⁷, Jedd D. Wolchok⁷, Olca Basturk⁸, Mithat Gönen⁹, Andrew S. Epstein¹⁰, Parisa Momtaz¹⁰, Wungki Park^{10,1}, Ryan Sugarman¹⁰, Anna M. Varghese¹⁰, Elizabeth Won¹⁰, Avni Desaii⁰, Alice C. Wej^{2,11}, Michael I. D'Angelica^{2,11}, T. Peter Kingham^{2,11}, Kevin C. Soares^{2,11}, William R. Jarnagin^{2,11}, Jeffrey Drebin^{2,11}, Eileen M. O'Reilly^{10,11}, Ira Mellman⁶, Ugur Sahin^{10,21}, Özlem Türeci^{10,7}, Benjamin D. Greenbaum^{2,4,338} & Vinod P. Balachandran^{12,3,11,32}6, V ### LETTER doi:10.1038/nature23003 ### Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer Ugur Sahin^{1,2,3}, Evelyna Derhovanessian¹, Matthias Miller¹, Björn-Philipp Kloke¹, Petra Simon¹, Martin Löwer², Valesca Bukur^{1,2}, Arbel D. Tadmor², Ulrich Luxemburger¹, Barbara Schrörs², Tana Omokoko¹, Mathias Vormehr^{1,3}, Christian Albrecht², Anna Paruzynski¹, Andreas N. Kuhn¹, Janina Buck¹, Sandra Heesch¹, Katharina H. Schreeb¹, Felicitas Müller¹, Inga Ortseifer¹, Isabel Vogler¹, Eva Godehardt¹, Sebastian Attig^{2,3}, Richard Rae², Andrea Breitkreuz¹, Claudia Tolliver¹, Martin Suchan², Goran Martic², Alexandra Hohberger³, Patrick Sorn², Jan Diekmann¹, Janko Ciesla⁴, Olga Waksmann⁴, Alexandra-Kemmer Brück¹, Meike Witt¹, Martina Zillgen¹, Andree Rothermel², Barbara Kasemann², David Langer¹, Stefanie Bolte¹, Mustafa Diken^{1,2}, Sebastian Kreiter^{1,2}, Romina Nemecek⁵, Christoffer Gebhardt^{6,7}, Stephan Grabbe³, Christoph Höller⁵, Jochen Utikal^{6,7}, Christoph Huber^{1,2,3}, Carmen Loquai³* & Özlem Türeci⁸* Katalin Karikó, Nobel Laureate, Consultant, BioNTech Prof. Ugur Sahin, MD, CEO BioNTech Prof. Özlem Türeci, MD, Chief Medical Officer of BioNTech Immunogenic cell death inducers ⇒ Chemo ⇒ Radiation Immunogenic cell death inducers ⇒ Chemo ⇒ Radiation **SCIENCE MEETS LIFE** ### Employment of tumor-infiltrating DCs as cancer vaccines Damya Laoui ### Employment of tumor-infiltrating DCs as cancer vaccines ### Employment of tumor-infiltrating DCs as cancer vaccines ### **Combination therapies** ### Combination therapies: DC vaccination + Immune checkpoint blockade ## Combination therapies: Removal of immune suppressive tumor microenvironment conserved tumor-specific Treg genes: CCR8, MAGEH1, IL1R2, TFRC, FCRL3 **SCIENCE MEETS LIFE** ## Combination therapies: Removal of immune suppressive tumor microenvironment **SCIENCE MEETS LIFE** ### Acknowledgements ### How to present tumor antigen to T cells? LC Monocyte derived DC | Ontogeny | HSC + Flt3-L,
BATF3, BATF3,
ZFP366,
NFIL3 and Id2 | HSC + Flt3-L, RelB,
NOTCH2, RBP-J,
IRF2 and IRF4
T-bet OR RORyt | HSC + Flt3-L and E2-
2 | Blood residing
monocytes +
inflammation | Fetal liver monocytes +
CSF1R | |--|--|--|---------------------------------------|---|---| | Mouse | CD8α ⁺ /CD103 ⁺ cDC | CD4+ CD11b+ cDC | SiglecH+BST2+pDC | Langerin⁺ LC | CD11b⁺ moDCs | | Other markers | DEC205+ | | B220+ | | CD64, FcγRε, Ly6c | | Human | CD141+ (BDCA-3)
cDC | CD1c+(BDCA-1)
cDC | CD123 ⁺ pDC | Langerin ⁺ LC | CD11b+CD1a+ moDCs | | Other markers | CD162 ^{hi} DEC205 ^{hi} | CD11blo/+ | BDCA-2+, BDCA-4+ | DEC205, CD1a ^{hi} | CD24 ⁺ , CD206 ⁺ , CD16 ⁺
and DC-SIGN | | Conserved
(besides CD11c
and MHC class II) | TLR3+ CADM1+
XCR1+
CLEC9A+ | MHCII ^{hi} SIRPα ⁺
(CD172a) | TLR7 ^{hi} TLR9 ^{hi} | E-cadherin ⁺ , EpCAM ⁺ ,
and Langerin ⁺ | CD11b⁺ | | Functions | T _H 1
Cross-presentation | T _H 2 and T _H 17
Cross-presentation | IFN-α/β and IFNλ
Humoral | Adaptable MOUSE: Treg or T _H 17 HUMAN: IL-15 promoting CTLs + Cross-presentation | Highly adaptable
(IL-12, IL-23, TNFα,
iNOS) | ### How to present tumor antigen to T cells? #### a Genomic alterations Missense point mutation Insertion or deletion #### **b** Altered transcription Tumour-specific alternative splicing (exon or intron retention) #### **c** Altered proteome Altered translation (novel ORFs and reading through stop codons) Expression of oncoviruses and ERVs Altered post-translational modifications (e.g. glycosylation) • •