Cancer vaccines: from concept to reality

Jo A. Van Ginderachter

Brussels Center for Immunology, Vrije Universiteit Brussel

Myeloid Cell Immunology Lab, VIB Center for Inflammation Research

At the basis of it all: the cancer-immunity cycle

How to present tumor antigens to T cells?

Which tumor antigens?

Which tumor antigens?

Thierry Boon

Pierre van der Bruggen

Tumor characterizing antigens

• 1977 - Thierry Boon (Belgium - Ludwig Institute): 'Boon T, Kellermann O.,

Rejection by syngeneic mice of cell variants obtained by mutagenesis of a malignant teratocarcinoma cell line, Proc Natl Acad Sci U S A. 1977 Jan;74(1):272-5.'

• van der Bruggen P., Traversari C., Chomez P., Lurquin C., De Plaen E., Van den Eynde B., Knuth A., Boon T. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991 Dec 13;254(5038):1643–1647

Which tumor antigens?

Tumor-associated antigens

- Not unique to tumors
- Overexpressed proteins (e.g. survivin, MUC-1/2), cancer germline proteins (oncofetal, cancer-testis: e.g. MAGE, GAGE, BAGE, NY-ESO-1), tissue-differentiation proteins (e.g. tyrosinase, Melan-A/MART-1, gp100, TRP-1/2)

Tumor-specific antigens

- Unique to tumors
- Neo-epitopes (e.g. EGFRvIII, KRAS^{G12C}, BRAF^{V600E} vs patient-specific)
- Viral antigens (e.g. HPV E6/E7 => responsible for nearly all cervical cancers, but also throat, anus, penis,...)

Which tumor antigens: neo-epitopes

Which tumor antigens: the cancer antigenome

Which tumor antigens: neo-epitopes derived from the dark genome

COMMENT 24 January 2013

The dark matter of genome

It has three billion base pairs but only about two per cent of the human genome codes for proteins. In a two part series, Pawan Dhar tries to understand what the remaining bulk of the human genome is doing? Is it a genetic graveyard or a cryptic instruction manual that ensures survival of the species?

The recent ENCODE (Encyclopedia of DNA Elements) project has thrown new light on the dark matter of genome – traditionally labelled junk. It turns out that more than 80% of the human 'non-protein coding' genome is biologically active and impacts the expression of genes in the neighbourhood.

Which tumor antigens: neo-epitopes derived from the dark genome

nature genetics

Volume 56 | September 2024 | 1770-1771 |

Glioblastoma therapy

https://doi.org/10.1038/s41588-024-01850-3

Activating the dark genome to illuminate cancer vaccine targets

Which tumor antigens: neo-epitopes derived from the dark genome

At the basis of it all: the cancer-immunity cycle

How to present tumor antigens to T cells?

Which tumor antigens?

How to present tumor antigen to T cells: current knowledge on human DCs

Function

Antigen cross- presentation to CD8 ⁺ T cells	Antigen presentation to CD4 ⁺ T cells	Antigen presentation to CD4 ⁺ T cells	Production of high levels of type I IFN
IL-12, CXCL9/11	IL-12, IL-23, CCL5	IL-12, IL-23, IL-1b, TNF	Antiviral defense
Intracellular pathogens	Extracellular pathogens	Extracellular pathogens?	

How to present tumor antigen to T cells: human DCs in cancer

ICAM1

CCR7

Migration

DCs present tumor antigens in tertiary lymphoid organs or lymph nodes

Immunogenic cell death inducers ⇒ Chemo ⇒ Radiation

SCIENCE MEETS LIFE

Immunogenic cell death inducers ⇒Chemo

⇒ Radiation

Article

RNA neoantigen vaccines prime long-lived CD8⁺ T cells in pancreatic cancer

https://doi.org/10.1038/s41586-024-08508-4
Received: 5 April 2024
Accepted: 10 December 2024
Published online: 19 February 2025
Open access

Check for updates

Zachary Sethna^{1,2,3,4,4}, Pablo Guasp^{1,2,4}, Charlotte Reiche^{1,2}, Martina Milighetti^{1,2,4}, Nicholas Ceglia⁴, Erin Patterson⁵, Jayon Lihm^{3,4}, George Payne^{1,2}, Olga Lyudovyk⁴, Luis A. Rojas^{1,2}, Nan Pang², Aklhiro Ohmoto^{1,2}, Mastaka Amisaki^{1,2}, Abderezak Zebboudj^{1,2}, Zagaa Odgerel^{1,2}, Emmanuel M. Bruno^{1,2}, Siqi Linsey Zhang^{1,2}, Charlotte Cheng^{1,2}, Yuval Elhanati⁴, Evelyna Derhovanessian⁵, Luisa Manning⁵, Felicitas Müller⁶, Ina Rhee⁶, Mahesh Yadav⁶, Taha Merghoub⁷, Jedd D. Wolchok⁷, Olca Basturk⁸, Mithat Gönen⁹, Andrew S. Epstein¹⁰, Parisa Momtaz¹⁰, Wungki Park^{10,1}, Ryan Sugarman¹⁰, Anna M. Varghese¹⁰, Elizabeth Won¹⁰, Avni Desaii⁰, Alice C. Wej^{2,11}, Michael I. D'Angelica^{2,11}, T. Peter Kingham^{2,11}, Kevin C. Soares^{2,11}, William R. Jarnagin^{2,11}, Jeffrey Drebin^{2,11}, Eileen M. O'Reilly^{10,11}, Ira Mellman⁶, Ugur Sahin^{10,21}, Özlem Türeci^{10,7}, Benjamin D. Greenbaum^{2,4,338} & Vinod P. Balachandran^{12,3,11,32}6, V

LETTER

doi:10.1038/nature23003

Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer

Ugur Sahin^{1,2,3}, Evelyna Derhovanessian¹, Matthias Miller¹, Björn-Philipp Kloke¹, Petra Simon¹, Martin Löwer², Valesca Bukur^{1,2}, Arbel D. Tadmor², Ulrich Luxemburger¹, Barbara Schrörs², Tana Omokoko¹, Mathias Vormehr^{1,3}, Christian Albrecht², Anna Paruzynski¹, Andreas N. Kuhn¹, Janina Buck¹, Sandra Heesch¹, Katharina H. Schreeb¹, Felicitas Müller¹, Inga Ortseifer¹, Isabel Vogler¹, Eva Godehardt¹, Sebastian Attig^{2,3}, Richard Rae², Andrea Breitkreuz¹, Claudia Tolliver¹, Martin Suchan², Goran Martic², Alexandra Hohberger³, Patrick Sorn², Jan Diekmann¹, Janko Ciesla⁴, Olga Waksmann⁴, Alexandra-Kemmer Brück¹, Meike Witt¹, Martina Zillgen¹, Andree Rothermel², Barbara Kasemann², David Langer¹, Stefanie Bolte¹, Mustafa Diken^{1,2}, Sebastian Kreiter^{1,2}, Romina Nemecek⁵, Christoffer Gebhardt^{6,7}, Stephan Grabbe³, Christoph Höller⁵, Jochen Utikal^{6,7}, Christoph Huber^{1,2,3}, Carmen Loquai³* & Özlem Türeci⁸*

Katalin Karikó, Nobel Laureate, Consultant, BioNTech Prof. Ugur Sahin, MD, CEO BioNTech Prof. Özlem Türeci, MD, Chief Medical Officer of BioNTech

Immunogenic cell death inducers ⇒ Chemo ⇒ Radiation

Immunogenic cell death inducers ⇒ Chemo ⇒ Radiation

SCIENCE MEETS LIFE

Employment of tumor-infiltrating DCs as cancer vaccines

Damya Laoui

Employment of tumor-infiltrating DCs as cancer vaccines

Employment of tumor-infiltrating DCs as cancer vaccines

Combination therapies

Combination therapies: DC vaccination + Immune checkpoint blockade

Combination therapies: Removal of immune suppressive tumor microenvironment

conserved tumor-specific Treg genes: CCR8, MAGEH1, IL1R2, TFRC, FCRL3 **SCIENCE MEETS LIFE**

Combination therapies: Removal of immune suppressive tumor microenvironment

SCIENCE MEETS LIFE

Acknowledgements

How to present tumor antigen to T cells?

LC

Monocyte derived DC

Ontogeny	HSC + Flt3-L, BATF3, BATF3, ZFP366, NFIL3 and Id2	HSC + Flt3-L, RelB, NOTCH2, RBP-J, IRF2 and IRF4 T-bet OR RORyt	HSC + Flt3-L and E2- 2	Blood residing monocytes + inflammation	Fetal liver monocytes + CSF1R
Mouse	CD8α ⁺ /CD103 ⁺ cDC	CD4+ CD11b+ cDC	SiglecH+BST2+pDC	Langerin⁺ LC	CD11b⁺ moDCs
Other markers	DEC205+		B220+		CD64, FcγRε, Ly6c
Human	CD141+ (BDCA-3) cDC	CD1c+(BDCA-1) cDC	CD123 ⁺ pDC	Langerin ⁺ LC	CD11b+CD1a+ moDCs
Other markers	CD162 ^{hi} DEC205 ^{hi}	CD11blo/+	BDCA-2+, BDCA-4+	DEC205, CD1a ^{hi}	CD24 ⁺ , CD206 ⁺ , CD16 ⁺ and DC-SIGN
Conserved (besides CD11c and MHC class II)	TLR3+ CADM1+ XCR1+ CLEC9A+	MHCII ^{hi} SIRPα ⁺ (CD172a)	TLR7 ^{hi} TLR9 ^{hi}	E-cadherin ⁺ , EpCAM ⁺ , and Langerin ⁺	CD11b⁺
Functions	T _H 1 Cross-presentation	T _H 2 and T _H 17 Cross-presentation	IFN-α/β and IFNλ Humoral	Adaptable MOUSE: Treg or T _H 17 HUMAN: IL-15 promoting CTLs + Cross-presentation	Highly adaptable (IL-12, IL-23, TNFα, iNOS)

How to present tumor antigen to T cells?

a Genomic alterations

Missense point mutation

Insertion or deletion

b Altered transcription

Tumour-specific alternative splicing (exon or intron retention)

c Altered proteome

Altered translation (novel ORFs and reading through stop codons)

Expression of oncoviruses and ERVs

Altered post-translational modifications (e.g. glycosylation) • •

