Author: FI

Date: 11 2023

Reference:

Uptime for rail systems

We make technology reliable

Content

Introduction to Uptime Engineering

Methodology & Process

Use Cases: Retro-fit CBM for a Metro Fleet

The System-Reliability Partner

We offer Consulting and Software

to make products reliable, to keep fleets running.

We optimize

product development, and fleet maintenance.

We save warranty costs of products. We raise the Rol from fleets.

Founded in **2010**

by Franz Langmayr et al.

employees located at Graz, Austria

More than 100 projects

for technology leaders across Europe

Uptime Engineering - Rail Portfolio

Product Development programs

- Duty cycles, failure risks, test methodology
- Development program planning and supervision
- DoE for influence analysis

CBM/PDM process

- Indicator modelling and calibration for critical sub-systems
- Implementation of the data process
- Implementation of the HARVEST solution for the CBM process

Product Validation

- Failure potential analysis and usage space
- Validation contribution from suppliers
- System validation

published in ZEVrail, 145 (2021)

Reliability of infrastructure

- Status: Information flow, data, potential for analytics
- Requirements analysis and coverage of failure risks
- Action plan, instrumentation, automatization with HARVEST

Analytics for Preventive Maintenance

The Uptime Engineering Approach to CBM/PDM

DETECTION Is there anything remarkable?

System Supervision

and

Pattern Recognition

and

System Response Models

- → Indicators
- → Alarm & Warning

DIAGNOSIS How did it come?

Domain Failure Knowledge

and

Model based Reasoning

and

On-line and on-site Observation

- → Problem Solving Guidance
- → Failure Modes

PROGNOSIS Is it an urgent issue?

Physics of Failure Models

and

Lifetime References

and

Load History

- → Risk Propagation
- → Recommendation

The Software for Preventive Maintenance

Web-based Software-as-a-Service

asset management / knowledge base & model library / expert system

The Data Process & Software Implementation

Use Case: CBM retro-fit for a Metro System

metro trains, ~ 30 years in operation

Status

- overall high reliability with some exceptions
- operation data available but just a few sensors on train
- no permanent data transfer to landside, no analytics

Project

- > identify and solve reliability issues
- > pilot for data process, methodology & software
- > CBM process implementation with the service staff

to predictive maintenance

Use case example: Compressor

Train ordered

Analytic modelling for automatic detection & recommendation

- Modelling and observation of compressor efficiency (dPr/dt)
 - used as indicator of system load response
- Observation of concurrent operation (both compressors on a train are active)
 - as indicator of the system control strategy

- Detection of deviation of both indicators for a train
 - > not (yet) severe enough for a controller alarm
 - point to an incipient failure, resulting in leakage
- > Train ordered to the workshop for inspection
 - > corrosion due to assembly issue in drying cartridge identified
 - > cartridge change avoids unplanned downtime
 - avoids consequential compressor damage

Rol = 1,33; Source: Vienna Lines, ZEV rail 146 (2022)

Compressor 5: Efficiency deviating

Use case example: Braking System

Cross-correlation of equivalent systems

Detection, solution and feedback

- Brake forces have to be equal (on each bogey).
- Deviations are safety relevant and the origin of large consecutive costs.
- Inspection confirmed the root-cause diagnosis, sustainable repair

Benefit

- Highly sensitive supervision of a dynamic system.
- No additional sensor required.
- Fault detection and root-cause diagnosis avoid severe failure cases and costs.

Uptime HARVEST Benefits

Quick Wins

- Value from available data
- Focus on elimination of weak-points
- Re-usable, understandable algorithms

Life Cycle Solution: Software & Consulting

- Leverage on product development knowledge
- Model calibration, no cumbersome training
- Information merging

Corporate Development

- Technical & process learning
- Dissemination of expert knowledge
- Service staff involvement

Analytics & Process

- Focus on efficiency and improvement
- Analytics triggers the maintenance process and vice versa
- Corporate learning process

www.uptime-engineering.com f.langmayr@uptime-engineering.com

m: +43 664 73 878 497