INDTECH2018
Innovative industries for smart growth

29-31 October, 2018
Vienna, Austria

www.indtech2018.eu
@IndTech2018
#IndTech2018

PILLAR 1
Session 1.5

Advances in flexible continuous plants – novel online sensing equipment and closed-loop control of the key product parameters

Manuel Pereira Remelhe
Bayer AG
Coordinator CONSENS

31 October 2018

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 767162.
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 767162.

H2020-Project: “Integrated Control and Sensing for Sustainable Operation of Flexible Intensified Processes”

Duration: Jan 2015 - Dec 2017
EU funding: 6 million €
Coordinator: Bayer AG
Website: www.consens-spire.eu

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement N° 636942.
Conventional Plants vs. Modular Intensified Continuous Plants

Batch plants
- Discrete flow through plant
- **Flexible** production of **many products** on same equipment
- **Small to medium amounts**
- Pharmaceuticals, specialties, fine chemicals, ...

Continuous plants
- Dedicated to specific products
- Continuous flow through plant
- **Very efficient** processes
- Petrochemicals, basic chemicals, ...
 (large scale, low margins)

Modular Intensified Continuous Plants

Flexible + Sustainable + Efficient + Short time to market

Characteristics
- Miniaturized equipment
- Intensified heat & mass transfer
- Plug-&-play modular setup

Benefits
- Product uniformity
- Sustainability
- Fast adaption to market demand
- Innovative products

Containerized modular plant from F³ Factory project

© INVITE GmbH, Leverkusen

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 767162.
Promising Results of F³ Factory Project (2009 – 2013) for Modular Intensified Plants
The research leading to these results has received funding from the European Community’s 7th Framework Programme under grant agreement n° 228867.

<table>
<thead>
<tr>
<th>Category</th>
<th>Up to*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processing steps</td>
<td>-30 %</td>
</tr>
<tr>
<td>Footprint</td>
<td>-50 %</td>
</tr>
<tr>
<td>Solvent reduction</td>
<td>-100%</td>
</tr>
<tr>
<td>Design effort</td>
<td>-25 %</td>
</tr>
<tr>
<td>Space-Time-Yield</td>
<td>100-fold</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>Up to*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time-to-market</td>
<td>-50 %</td>
</tr>
<tr>
<td>OpEx</td>
<td>-20 %</td>
</tr>
<tr>
<td>CapEx</td>
<td>-40%</td>
</tr>
<tr>
<td>Logistics</td>
<td>-30 %</td>
</tr>
<tr>
<td>Energy consumption</td>
<td>-30 %</td>
</tr>
</tbody>
</table>

*) Best values out of all case studies
General Business Opportunities of the new Plant Concept

<table>
<thead>
<tr>
<th>Centralized (on site)</th>
<th>Decentralized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed</td>
<td></td>
</tr>
<tr>
<td>Replacement of less efficient batch processes</td>
<td>Production on demand at customer site (e.g. tailored grades, recycling of industrial waste)</td>
</tr>
<tr>
<td>Adaptation of capacity by numbering up</td>
<td></td>
</tr>
<tr>
<td>Less engineering by purchasing & duplicating complete modules</td>
<td></td>
</tr>
<tr>
<td>Mobile</td>
<td></td>
</tr>
<tr>
<td>Shared utility on integrated site (e.g., solvent recovery, pretreatment of waste water, ...)</td>
<td>Relocatable production (seasonal business, avoid transportation of hazardous media)</td>
</tr>
<tr>
<td></td>
<td>Offshore production (e.g. gas to liquid)</td>
</tr>
</tbody>
</table>
Challenges of the new Plant Concept regarding Process Control – and the State of the Art

General requirements of continuous processes
- Closed-loop quality control
- Online sensors for chemical compositions
- Model-based optimal control for sustainability & efficiency

Specific challenges of Flexible Intensified Plants
 Variety of products
- Flexible sensing & control
- Fast design of integrated control solutions

Frequent new products
- Fast & compact sensors
- Fast model-based control

Short time to market

Small dimensions

Fast process dynamics

Complex phenomena

Online NIR, Raman, or UV/Vis spectroscopy sensors
- High effort for calibration, need for reference analytics
 → Very time consuming, prohibitive effort for many products
- Quickly decomposing substances cannot be calibrated, turbid media are difficult
 → Limited applicability

Conventional control methods
- Optimal control requires very precise rigorous models
 → High modeling effort = very time consuming

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 767162.
Flexible Automation for Continuous Production of Pharmaceuticals
(manuscript submitted to the journal Science, validation runs performed at INVITE GmbH in Leverkusen)

Online Nuclear Magnetic Resonance (NMR) Spectroscopy
- **Low calibration effort** (spectra of pure components suffice)
- **Compact** sensor for chemical compositions
- **Fully automated** data acquisition and evaluation unit, flow control, as well as data communication
- **Fast measurement** (every 15 s)
- **High accuracy**
- **Can measure intermediates**
- **Modular** design
- Can be used as reference method for other spectroscopic sensors!
- **Explosion-proof** (ATEX 1)

Iterative optimal control using inexact process models
- Model-based control that learns from system response
- **Fast control design** (mechanistic models with less detail)
- **Safety limits** and **quality constraints** are kept
- **Economic optimum (!)** in spite of model-plant mismatch

Unmeasured change of feed composition
Start of the controller

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 767162.
Achievements regarding Sustainability and Efficiency

Original Batch Process
- Highly exothermic reaction at -70°C → very high cooling power required
- High amount of hazardous reaction medium in the reactor (many liters) → potential high safety risk
- Dosing is done very slowly
- Low concentrations are used
- High amount of solvent is used

Continuous Intensified Process
- Due to intensification, reaction runs at 15°C - 50°C without deep cooling! → much less cooling power required
- Low amount of hazardous medium in the reactor (few ml) → low hazard potential
- Use of solvent radically reduced → high raw material efficiency

Optimally Controlled Process
- Tight quality control in spite of disturbances & process variation → improved quality
 → increased capacity
- Reaction can be run safely near the boiling point of solvent (66°C) → further 36% less solvent
 → 37 kg less CO₂ eq. / kg product
 → 7% cost reduction

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 767162.
Outlook: How to foster the implementation of this approach in industry?

Examples of current activities
- “Reel”: Lanxess and INVITE built a container-based plant for recycling waste on the site of a leather producer
- “MoBiDiK”: Modular continuous bio production at Bayer
- R&D and standardization: Modular automation devices

Why aren’t there more such plants being built?
- Product development is still focused on batch processes
- It is easier to transfer lab procedures to batch processes
- Continuous processes require additional experimental effort in product and process development
- Time to market is the driving force in many sectors

Full “in silico” design of new products and processes
→ Today still not possible!
- Computer-simulation drives development
- Experiments are only used for model validation
- Systematic exploration of design space using simulation (batch / conti, new process technology, solvent-free, …)
- Best possible process is selected

Quantum mechanics → Molecular dynamics → Thermo-dynamics → Chemical route → Plant scenarios

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 767162.
Many thanks for your attention!

Manuel Pereira Remelhe
manuel.remelhe@bayer.com

CONSENS website
www.consens-spire.eu

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 767162.