Manual: Power analyzer MF9, 96x96mm, with RS 485- interface

SCHRACK-INFO

- Three-phase system 80... 500 V (phase-phase)
- Power Converter connection
- Transformer ratios programmable
- Active energy class 1
- pulse output
- RS 485 - interface with ModBus RTU/TCP
- Phase sequence-fault detection

Wiring diagrams

Installation guide
This product must be installed in conformity with the installation rules and preferably by a qualified electrician. Incorrect installation and/or incorrect use of this product could lead to risks of electrical shock or fire. Before installing, read the instructions carefully and according to the product identify a suitable place of assembly.

Do not open, disassemble, alter or modify the equipment unless specially indicated in the manual. Any unauthorised opening or repair involves the exclusion of any responsibilities, rights to replacement and guarantees.
Check that the device rating plate data (Measurement voltage, measurement current and frequency) correspond to the effective data of the network to which the instrument is connected.

In the wirings scupulously respect the connection diagram; inexactness in the connections is inevitably a cause of false measurements or damage to the instrument.

When the instrument is connected complete the installation by configuring the device.

Programming

The programming is divided on two levels protected by two different numerical passwords and takes place by means of the front keypad with 4 keys

During installation keep simultaneously pressed 2 keys for:

One page backward P.Q.S E.PFFF ©

Input and output without save

Programmable parameters
Level 1
Password $=1000$

1.1 Customized display page

It is possible to set a customised display page where to select which values should appear in the three display lines.
If the user sets a customised page, this will become the standard display when the device is switched on (As an alternative to the display giving the line voltages). The values which can be selected for the customised page are given in the tables on page 7 .

1.2 Connection

The instrument can be used for single-phase or three-phase 4-wire line.
The connections that can be selected are:

Symbol	Wire	Current load	Number of external converters
1N1E	Single-phase	-	1
3N3E	3 phase 4 wire	Unbalanced	3

1.3 Average power and current integration time

Selectable integration time: $5,8,10,15,20,30,60$ minutes
The selected time is valid for both the current and the average power.

1.4 Hour-meter counting start

Select the value which starts the hour-meter counting: voltage or power.
Voltage: counting starts with phase voltage $>10 \mathrm{~V}$
Power: 3-phase active and rared power programmable value 0...50\% Pn
$\mathrm{Pn}=3$-phase active rated power $=3$-phase rated voltage $U n \times$ rated current $\ln \times \sqrt{3}$
$U n=400 \mathrm{~V}$
$\ln =1 \mathrm{~A}$ or 5 A
$\mathrm{Pn}=400 \mathrm{~V} \times 5 \mathrm{~A} \times \sqrt{3}=3464 \mathrm{~W}$ or $400 \mathrm{~V} \times 1 \mathrm{~A} \times \sqrt{3}=692,8 \mathrm{~W}$

1.5 RS485 communicated (where provided)

Depending on the model, the instrument may not have communication or may have RS485 ModBus RTU/TCP communication

No. Of address: 1... 255
Parity bit: none-even-odd
Waiting time before answer: $3 . . .100 \mathrm{~ms}$
Transmission speed: 4800-9600-19200 bit/s

1.6 Energy pulses (max. 27V 50mA)

Associable Measurement: active or reactive energy
Pulse weight: 1pulse/10Wh(varh) - 100Wh(varh) - $1 \mathrm{kWh}(\mathrm{kvarh})-10 \mathrm{kWh}(\mathrm{kvarh})-100 \mathrm{kWh}(\mathrm{kvarh})-1 \mathrm{MWh}(\mathrm{Mvarh})$

- 10MWh(Mvarh)

Pulse duration: 50-100-200-300-400-500ms

Level 2
Password = 2001

2.1 External CT ratio

$\mathrm{Ct}=$ primary/secondary ratio (e.g. $\mathrm{CT} 800 / 5 \mathrm{~A} \mathrm{Ct}=160$)
External CT ratio (Ct): 1 ... 9999 (maximum primary current 50000/5A - 10000/1A)
On modifying the ratios the power counters are automatically reset

Phase sequence diagnostic

In the sofftware there is a diagnostic and correction algorithm of the voltmetric and amperometric connection sequence. The function can be activated on request and is password protected: it can display and edit the wiring sequence with the following limitations.

1) The neutral conductor /in the 4 -wire wirings) must be correctly positioned (terminal 11)
2) There must not be any crossings between the currents
3) The power factor must be between 0.9 cap and 0.7 ind for each phase

1.0 Password 1000

Keep pressed $\stackrel{\text { P.Q.S }}{\square}$ keys until you display page:

Set password 1000 and confirm

E-PF-F ©

PA55

100

1．1 Customised display page

It is possible to select which values will appear in the three display lines．To customise the page，select the desired valu－ e for line 1：

Select the measurementConfirm

Select the desired measurement for the line 2 （among those indicated in Table 2）

Select the measurement
Confirm

2 ᄂ ハ円レ。
$1-1 \mid$

Select the desired measurement for the line 3 （among those indicated in Table 3）

The customised page will become the standard display when the instrument is switched on．
Note：If you do not want to configure the customised page go directly to point 1．2 Connection pressing \qquad the key several times．

- Table 1 (Line 1)

11015
- 11

L1 Voltage
le

Three phase active power

5-11
Sum of th currents
$\frac{\mathrm{I} 1+\mathrm{I} 2+\mathrm{I} 3}{3}$

4-11
L1 Current
$=L \operatorname{In} \mid A$

Three phase apparent power

L1 active power

L1 reactive power

1 L ¢ ${ }^{\text {¢ }}$ VA
$10-11$

L1 apparent power

Three phase power factor

Three phase reactive power

5-11

- Table 2 (Line 2)

L2 Voltage

Three phase reactive power

Three phase apparent power

L1 current

L2 apparent power

Frequency

- Table 3 (Line 3)

L3 Voltage

Three phase active power

Three phase reactive power

L3 Current
the phase active power

L1 Current

Three phase apparent power

1.2 Connection

Δ Select the connection
\longleftarrow Confirm

Select the type of connection required, scrupulously respecting the connected wiring diagram The connections that can be selected are

Symbol	Wire	Currentlast	Number of external converters
1N1E	Single phase	-	1
3N3E	3 phase 4 wire	Unbalanced	3

1.3 Average power and current integration time

Selectable integration time: 5, 8, 10, 15, 20, 30, 60 Minutes
The selected time is valid for both the current and the average power

A Select the time value
\downarrow Confirm

1.4 Hour meter counting start

Select the value which starts the hour-meter counting: Voltage or power

1.4a Voltage counting start

Voltage: counting start with $>10 \mathrm{~V}$ phase voltage

Select voltage or power
Confirm

1.4b Power counting start

Power: counting start with 3-phase programmable active power

A Select voltage or power
\downarrow Confirm
$0 . . .50 \% \mathrm{Pn}$

Move the cursor
Increase/decrease the set value
Confirm

-1!	\%
URL	
-50.00	

1.5 RS485 ModBus RTU/TCP communication

Depending on the model, the instrument may not have communication or may have RS485 ModBus RTU/ TCP communication

No. Of address: 1... 255

- Move the cursor

A Increase/decrease the set value
\leftrightarrow Confirm

Transmission Speed: 4800-9600-19200 bit/s
[4日5 Fddr 155
Δ Select speed
\downarrow Confirm

Parity bit: none-even-odd

A Parity selection
\downarrow Confirm

Waiting time before the answer: $3 . . .99 \mathrm{~ms}$
Move the Cursor
Increase/Decrease the set value
\leftrightarrow Confirm
[4日5
E IME
020
75

1.6 Energy pulses

Associable Measurements: active or reactive energy

A ∇ Select active/reactive
\downarrow Confirm
$\begin{array}{ll}\text { Pulseweight: } \quad & 1 \text { pulse/10Wh(varh) }-100 \mathrm{~Wh}(\text { varh })-1 \mathrm{kWh}(\mathrm{kvarh})- \\ & 10 \mathrm{kWh}(\mathrm{kvarh})-100 \mathrm{kWh}(\mathrm{kvarh})-1 \mathrm{MWh}(\text { Mvarh })- \\ & 10 \mathrm{MWh}(\text { Mvarh })\end{array}$

PUL5
EYPE
EREL
$1-2$

A Select pulse weight
\downarrow Confirm

PIU 5
 URL
 $0.1{ }^{k}$
 1-7

Pulse duration: 50-100 - 200 - 300 - 400 - 500ms

A Select pulse duration
\downarrow Confirm

PUL5 dUr 50
 1-6

Confirm programmed data

Confirm

2.0 Password 2001

Press key

Set password 2001 and confirm
E.PF•F ©

Move the cursor
A Increase/decrease the set value
\leftrightarrow Confirm

PA55

100

2.1 External CT ratio

$\mathbf{C T}=$ External CT primary/secondary ratio (e.g. $C T 800 / 5 \mathrm{ACt}=160$)
External CT ratio (Ct): 1... 9999 (maximum primary current 50000/5A-10000/1A)

- Move the Cursor

A Increase/decrease the set value
\leftrightarrow Confirm

[t

1-9999

5RUE

Display
The display is divided into four menus which can be accessed with the function keys: the display values and modes vary according to the connection selected (3 phase 4 wire line, single phase, etc.)

All the measurements displayed are indicated in the following pages according to the connection selected.

U

Phase voltage
Interlinked voltage
Minimum voltage value
Maximum voltage value
Voltage harmonic distortion
Configuration data*

Phase current
Neutral current
Average current
Average current peak
Average 3 currents
Current harmonic distortion
Configuration data*

E-PF-F ©

Active energy
Reactive energy
Apparent energy
Frequency
Hour meter
Configuration data*

[^0]Reset

It is possible to reset the display pages, when the following function keys are pressed simultaneously:

12	KイXX	Interlinked voltage L1－L2
23	KXXX	Interlinked voltage L2－L3
31	人久XX	Interlinked voltage L3－L
	ХХКХХХХ久久 kver	Positive reactive energy

Reset

1		
2	Kイソイ	Harmonic content
3	KNKK ${ }^{\text {THD }}$	Phase voltage
		Positive active energy

1	XXXX a	Phase current L1
2	KYKN a	Phase current L2
3	KXXX a	Phase current L3
		Positive active energy

	KXXX	Average current of phase L1
${ }^{2 \Sigma}$	KXXX	Average current of phase L2
3	KXXX a	Average current of phase L3
		Positive reactive energy

	KXXX	Max. average current L1
2	$X X X X$	Max. average current L2
	KXXX a	Max. average current L3
		Positive active energy

1	KXXX	
a	XXXX	Harmonic content
3	XXXX ${ }_{\text {a }}{ }^{\text {thD }}$	Phase current
		Positive active energy

$$
\overbrace{\text { Reset }}^{\stackrel{U}{\text { E.PFFP }}}
$$

P.Q-S

¿ XXXX ${ }^{\text {k }}$	Active power－3－phase
KXXX vár	Reactive power－3－phase
XXX vá	Apparent power－3－phase
XKXK d＊${ }_{\text {ve }}$	Unbalanced power－3－phase

Kイソイ ${ }^{\text {k }}$ w	Active energy of phase L1
XXXX ${ }^{\text {k }}$ ，	Active power of phase L2
Kイソ久＊w	Active power of phase L3
$\triangle Х Х Х Х Х Х Х \chi_{\text {karn }}$	Positive reactive energy

1 KイKイ ${ }^{k}$ VAr k Reactive power of phase L1
${ }^{2}$ KXXX VAr ${ }^{\mathrm{k}}$ Reactive power of phase L2
3 KXXX var Reactive power of phase L3 XXXXXXXXX kwn

1	Kイソイ va	Apparent power of phase L1
2	XXXX va ${ }^{k}$	Apparent power of phase L2
3	KXKK va	Apparent power of phase L3
	ХХХХХХККХ kvan	Positive reactive energy

XXXX ${ }^{\mathrm{k}}{ }^{\text {w }}$	Max．average active power－3－ph．
KイKイX var	Max．average reactive power－3－ph．
$\wedge ~ X X X X v^{k}$	Max．average apparent power－3－ph．
ХХХХХХХХХ ${ }_{\text {ksem }}$	Positive reactive energy

Reset

Network type
Version

コロゴ	Network type
X．XXX	Version

E-T

1	XXXX	PF	Power factor of phase L1
2	KXXX		Power factor of phase L2
3	KXXX		Power factor of phase L3
	XXXXXXXX		Positive reactive energy

ErER	
חEG	
	Number of counter resets
XXXXXXXX ${ }_{\text {krash }}$	Positive reactive energy

ErER	
P95	
壮-딘든	Number of counter resets
$x^{\prime} \times x \times x \times x x_{\text {kmm }}$	Positive reactive energy

${ }^{1} \quad \text { XXXX }$	Voltage
KXXX	Min. voltage u E.PF-F ©
^ KXYX v	Max. voltage $\quad \square+\square$
XXXXXXXX ${ }^{\text {KWh }}$	Positive active energy

P．Q．S

＝KイKX ${ }_{\text {k }}$	Active energy
XXXX ${ }^{\text {var }}$	Reactive energy
Kイソイ VAk	Apparent pow
XXXX d ma	Unbalanced Power

KXXX ${ }^{\text {k }}$	Average active energy
¿ KXXX var	Average reactive energy
XXXX vas	Average apparent power
XXXXXXXX ${ }^{\text {wh }}$	Positive active energy

Reset

In IE vVYY	Network type Version

E•T

Reset

EREL	
P15	
니댄	Number of counter resets
XXXXXXXX wn	Positive active energy

EREL	
OEG	Number of counter resets
$X X X X X X X X{ }^{\text {w }}$	Positive reactive energy

EREL nEg	
Ur	Number of counter resets
XXXXXXXXX	Positive active energy

ErER nEg	
Ur ${ }^{1}$	Number of counter resets
$X X X X X X X X$ man	Positive reactive energy

E.T

Customised Page

Factory Settings

Password 1000

Customised page
Lin 1 v Voltage L 1
${ }^{2}$ Lin2v Voltage L2
${ }^{3}$ Lin3v Voltage L3
Connection: 3 n 3 E 3 line 4 wires system
Average time: 5m 5 Minutes
Hour meter counting: U Voltage Start

RS485

Adress: 255
Speed: 9.600
Parity bit: keine
Data transfer delay: 20 ms

Pulse output

Energy: active
Pulse weight: 0,01kWh
Pulse duration: 50ms

Password 2001

CT ratio: 0001 direct connection

[^0]: *See Configuration data display, page 16

