Product and functional description

The switching actuator submodule $N 562 / 21$ is a DIN-rail mounted device with N -system dimensions. It can switch three groups of electrical consumers, independent of each other, via its three relay contact outputs. A submodule cannot be operated stand-alone or be directly connected to the bus. But it can be connected via a special 6 -pole bridging connector either with a switching actuator main module $\mathrm{N} 562 / 11$ or with another submodule $N 562 / 21$ or $N 512 / 21$ which is connected to a main module $\mathrm{N} 562 / 11$ (see figure 1). The submodule electronics are supplied by bus voltage via the 6-pole bridging connector.

In total up to 4 switching actuator submodules can be connected in series to a switching actuator main module, so that a main module, if need be, can be extended simply from a 3 -fold to a 6 -, 9 -, 12 - or 15 -fold switching actuator and thus be matched flexibly to the number of loads to be switched.

It is indicated by flashing of the corresponding green LED A to E on the top of the main module if more submodules are set than are actually connected or if the set submodule type does not correspond with the submodule type actually connected or if a submodule is detected as faulty.

Behavior in case of mains failure / recovery

Because the electronics of a submodule are fed from the bus (via the 6 -pole interface to the main module), a mains failure then leads solely to a failure of the submodule if the bus voltage also fails as the result of a mains failure. However, it can be set for each submodule output individually which switching state it is to assume on a bus voltage failure and after the bus voltage recovery: as before bus voltage failure, ON or OFF.

Application program

The $\mathrm{N} 562 / 11$ switching actuator needs the application program "07B0 A15 Switching Actuator 982001". This controls the outputs of the main module as well as the outputs of all connected submodules via their 6-pole interfaces.
In bus mode, a communication object can be available for each actuator output - for switching, for manual override, for a forced control, for a logical combination and for status query. Furthermore, if required, timelimited switching instead of permanent switching on can be enabled for each channel via an optional "Night mode" object (e.g. for lighting while cleaning), if need be with a warning before switching off by multiple switching the output on and off (flashing). It can also be selected whether all a module's outputs are to be set jointly and thus identically or whether each output is to be set separately and individually.
Besides other functions, the $\mathrm{N} 562 / 11$'s comprehensive application program includes measuring and monitoring the load current for each output on load failure and overload, simultaneous switching of all 3 outputs (3-phase switching), converting a speed preset as a percentage into 1 - to 3 -stage switching commands (fan speed control), conversion of a valve setting preset as a percentage into a pulse width modulated switching command (thermal drive control), a switching cycle and runtime count with threshold monitoring for each output and an integrated 8-bit scene control, in which each output can be incorporated into up to 8 scenes.
To load the application program, the Engineering Tool Software (ETS) is required as version 3.0 f or higher.

Connection example

Figure 1. Connection example

Installation notes

- The device can be used for permanent installation in dry interior rooms and for insertion in distribution boards or miniature housings.

Δ DANGER

- The device must be mounted and commissioned by an authorised electrician.
- When connecting the device, it should be ensured that the device can be isolated.
- The device must not be opened.
- For planning and construction of electric installations, the relevant guidelines, regulations and standards of the respective country are to be considered.
- With the last submodule no bridging connector must be plugged into the jack for a further submodule on the right submodule side.

Technical data

Power supply

- Bus voltage: via the 6-pole bridging connector
- Bus current per submodule: typically 1 mA
- Power dissipation: if all outputs = OFF: 0.03 W , at max. load and all outputs = ON: approx. 3.5 W.

Outputs

- 3 switching outputs, potential-free relay contacts:
- rated voltage: AC $230 / 400 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$
- rated current: 10 AX ($140 \mu \mathrm{~F})$ as to DIN EN 60669-1, 16 A in AC1 mode ($\cos \varphi=0.8$) and 10 A in AC3 mode ($\cos \varphi=0.45$) as to DIN EN 60947-4-1
- DC switching capacity: 10A at 24 V DC
- Min. switching capacity: 100 mA at 12 V AC
- Incandescent lamp load: max. 2,300 W
- LV halogen lamps, inductive transformer: 1,200 W
- LV halogen lamps, electronic transformer: 1,500 W
- Number of OSRAM ballasts for T5/T8:

QTI 1x28/54W: 37, QTP 1x36W: 16, QT-M 1x26-42W:11, QTP $2 \times 58 \mathrm{~W}: 5$, QT-FQ 1x80W: 5

- Mech. lifetime: > 1,000,000 switching cycles
- Electr. lifetime: $>100,000$ at AC1, $>30,000$ at AC3
- Load current measuring range: $0.1 \ldots 16 \mathrm{~A}$, sinusoidal
- Load current frequency range: $50 / 60 \mathrm{~Hz},+/-5 \mathrm{~Hz}$,
- Measuring accuracy: +/-9 \% of the current measured value and $+1-100 \mathrm{~mA}$,
- Max. relay position changes per output and evenly distributed per minute with simultaneous switching of all relays: 20 with 3 outputs, 10 with 6 outputs, 7 with 9 outputs, 5 with 12 outputs, 4 with 15 outputs

Operating elements

- none

Display elements

- none

Connections

- Output circuits: screw-type terminals, insulation strip length $7 . . .9 \mathrm{~mm}$.
The following conductor cross-sections are permitted:
- 0.5... $4.0 \mathrm{~mm}^{2}$ single-core,
$-0.5 \ldots 2.5 \mathrm{~mm}^{2}$ finely stranded without / with connector sleeve.
- Each L-conductor connection to the N562/21 must be fused, depending on the type of load connected, with a circuit-breaker of characteristic B or C for a max. rated current of 10 A resp. 16 A!
- 2×6-pole jack: for bridging connector.

Mechanical data

- Housing: plastic
- Dimensions: DIN rail mounted device with N dimensions, width 3 module units (1 module unit $=18 \mathrm{~mm}$)
- Weight: approx. 225 g (inclusive of bridging connector)
- Fire load: approx. 2800 kJ
- Installation: Snap-on mounting on DIN rail EN 60715-TH35-7.50

Electrical safety

- Degree of pollution (according to IEC 60664-1): 2
- Type of protection (according to EN 60529): IP 20
- Overvoltage category (according to IEC 60664-1): III
- Device complies with: EN 50090-2-2 and EN 60669-2-1

EMC requirements

- Complies with EN 50090-2-2, EN 50428 and EN 60669-2-1

Environmental conditions

- Climatic withstand capability: EN 50090-2-2
- Ambient operating temperature: - $5 \ldots+45^{\circ} \mathrm{C}$
- Storage temperature: $-25 \ldots+70^{\circ} \mathrm{C}$
- Relative humidity (not condensing): 5% to 93 \%

Reliability

- Failure rate: 735 fit at $40^{\circ} \mathrm{C}$

Markings

- none (no device with bus interface)

CE mark

- In accordance with the EMC guideline (residential and functional buildings), low voltage guideline

Location and function of connectors

Figure 2. Connectors
A1 Jack for connection of a switching actuator submodule to a switching actuator main module or to a preceding submodule
A2 Jack for connection of a further switching actuator submodule
A3 Screw-type terminals of outputs 1... 3

Installation and wiring

Mounting / dismounting the device: see figure 3 and 4

Figure 3. Mounting the device

Technical product information

December 2009

Space for notes

Figure 4. Dismounting the device
Connecting a switching actuator submodule: see figure 5 Snap the switching actuator submodule on to the rail and push it to the left against the switching actuator main module or against the switching actuator submodule. Connect both devices using the bridging connector supplied.

Figure 5. Connecting a switching actuator submodule

General notes

- The operating instructions must be handed over to the client.
- Any faulty device is to be sent together with a return delivery note of the local Siemens office to:
Siemens AG, Siemensstr. 10, D-93055 Regensburg
- For any technical questions, please consult:
 landline network, deviating mobile communications prices are possible)
且 +49 (0) 18050 50-223
E-Mail: support.automation@siemens.com Internet: www.siemens.com/automation/service\&support

