

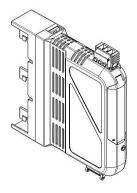
OMUS[®]

Electronic hybrid switch for resistive loads.

Bedienungsanleitung / User manual

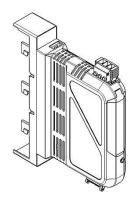
Revision 8, März 2017

Erfahren Sie mehr über OMUS® auf unserer Website.
Learn more about OMUS® at our website.
Apprenez-en davantage sur le OMUS® sur notre site Internet.
Potete trovare ulteriori informazioni su OMUS® alla nostra homepage.
Encontrará más información sobre OMUS® en nuestra página web.


OMUS® Bedienungsanleitung

Inhalt

1	,	Ausführungsvarianten	3
2	(OMUS [®] Überblick	4
	2.1	Applikation	5
	2.2	Einbindung des OMUS [®] in die Anlagensteuerung	6
	2.3	Galvanische Trennung & Kurzschlussschutz	6
	2.4	Leitungsschutz	8
	2.5	Schaltvorgänge in der Hybridstufe	8
	2.6	Einhalten der Grenzwerte bei Schaltvorgängen	8
	2.7	Regelbarkeit der Ausgangsleistung	11
	2.8	Eignung der Anwendung	12
3	9	Sicherheitsbestimmungen / Errichtungshinweise	13
4	F	Produkttabelle	14
5	ı	Inbetriebnahme	15
	5.1	Anschlüsse	15
	5.2	Montage und Anschluss	16
	5.3	Bedeutung der LED Anzeigen	17
	5.4	Demontage, Austausch von Geräten	17
	5.5	Austausch einer Sicherung	18
	5.6	Checkliste	19
6	E	Bedienerschnittstellen	20
	6.1	Frontansicht	20
	6.2	Übersicht Anzeigefunktionen	21
	6.3	Eplan-Symbol	22
	6.4	Schaltungsvarianten	23
7	ŀ	Konfiguration des OMUS [®]	24
	7.1	Menüstruktur	25
	7.2	Dreiphasige Einstellungen	26
	7.3	Einphasige Einstellungen	27
	7.4	Wiederherstellung des Werkszustands	28
	7.5	Standby	28
8	F	Funktionsbeschreibung	29
	8.1	Auto(matik)betrieb	29
	8.2	Einstellungsmenü	29
	8.3	Handbetrieb	29
	8.4	Warnung	30
	8.5	Störung	31
	8.6	Quittieren von Meldungen	32
	8.7	Unterbrechung	32
9	1	Technische Daten	33

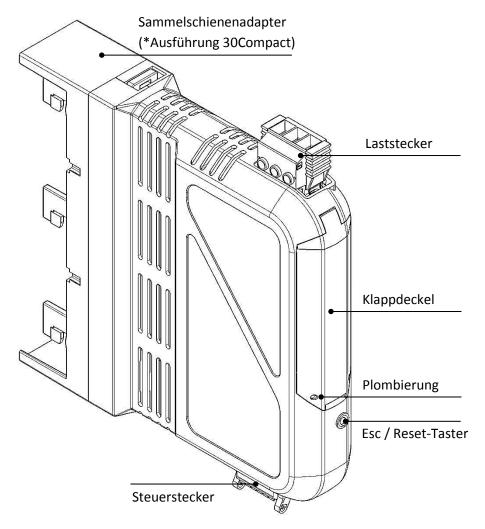

1 Ausführungsvarianten

OMUS®30Compact

Ausführung	VE	Gewicht kg/100	ArtNr.
OMUS®30Compact, IEC	1	45,2	36 152
OMUS®30Compact, UL und IEC	1	45,2	36 157

OMUS®60Classic

Ausführung	VE	Gewicht kg/100	ArtNr.
OMUS®60Classic, IEC	1	45,8	36 153
OMUS®60Classic, UL und IEC	1	45,8	36 158


OMUS®CrossBoard

Ausführung	VE	Gewicht kg/100	ArtNr.
OMUS®Crossboard, IEC	1	35,7	36 154
OMUS®Crossboard, UL und IEC	1	35,7	36 159

2 OMUS® Überblick

OMUS[®] Elektronischer Hybridschalter für ohmsche Lasten.

Der elektronische Hybridschalter OMUS[®] ist ein kompaktes Schaltgerät mit 36mm Baubreite. Der Hybridschalter besteht aus einer Kombination von Relaiskontakten und Leistungshalbleitern, integriertem Kurzschlussschutz sowie elektronischer Strom- und Temperaturüberwachung zum betriebsmäßigen Schalten von ohmschen Verbrauchern (IEC bis 25A / 400V AC; UL bis 20A / 480V AC). Die anschlussseitige universelle *CrossLink*-Schnittstelle ermöglicht eine schnelle elektrische und mechanische Verbindung mit verschiedenen Sammelschienensystemen.

2.1 Applikation

Der Hybridschalter OMUS® wurde für Einsatzbereiche entwickelt, in denen bisher Schütze, Überlastrelais, Solid State Relais und mechanische Schalter eingesetzt wurden.

Das Gerät wurde konzipiert für das häufige Schalten von:

- 1-poligen ohmschen Lasten (Phase-Neutralleiter) sowie
- 3-poligen ohmschen Lasten

Dies ist ein Produkt für Umgebung A (Industrie) bezogen auf EMV. In Umgebung B (Haushalt) kann dieses Gerät unerwünschte Störungen verursachen; in diesem Fall ist der Anwender verpflichtet angemessene Gegenmaßnahmen zur Minderung der EMV-Belastung durchzuführen. Von der Lastseite dürfen keine starken elektrostatischen Ladungen auf den OMUS® übertragen werden. Für eine galvanische Trennung ist ein externes Schaltelement erforderlich. Das können zum Beispiel Schütze oder Leistungsschalter sein. Im nicht betriebsgemäßen Zustand gibt das Störungsrelais vom OMUS® eine Meldung aus. Zur Unterbindung eines ungewollten Dauerstromes im Störungsfall muss ein externes Schaltgerät für die Trennung des Lastkreises sorgen. Der Kurzschlussschutz wird durch integrierte Schmelzsicherungen realisiert.

Die Kombination der Funktionen

- Hybridschalttechnik
- Einspeisung
- Absicherung
- Überwachung

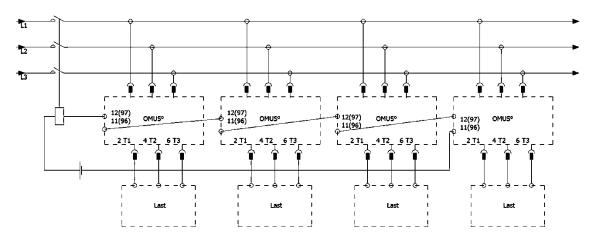
ermöglicht einen maximalen Platzvorteil im Vergleich zu einem Gruppenaufbau von drei diskreten Geräten mit vergleichbaren Eigenschaften.

Seite 6 von 71

2.2 Einbindung des OMUS® in die Anlagensteuerung

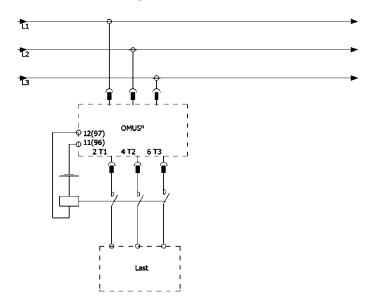
Die Ansteuerung des OMUS® kann z.B. mit Hilfe einer Speicher-programmierbaren Steuerung (SPS) erfolgen. Die genaue Spezifikation der Eingangssignale des OMUS® ist in Kapitel 9 *Technische Daten* sowie 2.5 *Schaltvorgänge in der Hybridstufe* detailliert beschrieben. Die definierten Grenzwerte wie z.B. maximale Schaltfrequenz von 1Hz und minimaler Ein- bzw. Ausschaltdauer von 100ms sind unbedingt einzuhalten, um den bestimmungsgemäßen Betrieb zu gewährleisten.

Der OMUS[®] besitzt zahlreiche Selbstdiagnose- und Sicherheitsüberwachungen. Über die Melderelais werden Warnung und Störung an die Auswerteeinheit übermittelt.


Die Einbindung und aktive Verarbeitung der Meldungen Warnung bzw. Störung in die jeweilige Steuerung der Anlage ist unbedingt vorzunehmen, um die maximale Anlagensicherheit zu erzielen.

Beim Überschreiten der Grenzwerte z.B. der maximalen Schaltfrequenz besitzt der OMUS[®] einen softwarebasierten Selbstschutz und ignoriert unzulässige Befehle der Steuerung. Die unzulässige Ansteuerung wird nicht gemeldet.

2.3 Galvanische Trennung & Kurzschlussschutz


Das Gerät besitzt **keine interne galvanische Trennung**. Im Fall einer Störung schaltet der OMUS[®] betriebsmäßig ab ohne dabei vollständig galvanisch zu trennen. **Für eine galvanische Trennung ist ein externes Schaltelement erforderlich**. Die galvanische Trennung kann zum einen seitens der Einspeisung erfolgen.

Galvanische Trennung seitens der Einspeisung:

Zum anderen kann die galvanische Trennung zwischen OMUS® und entsprechender Last erfolgen.

Galvanische Trennung seitens der Last:

Typische Vertreter für die Umsetzung der galvanischen Trennung sind Schütze oder Leistungsschalter. Im nicht betriebsgemäßen Zustand gibt das Störungsrelais des OMUS[®] Meldung. Zur Unterbindung eines ungewollten Dauerstromes im Störungsfall muss ein externes Schaltgerät für die Trennung des Lastkreises sorgen.

Der Kurzschlussschutz wird durch integrierte Schmelzsicherungen realisiert. Ein vorgeschaltes Kurzschlussschutzorgan wird erst ab einem unbeeinflussten Kurzschlussstrom I_{CP} größer 30kA benötigt. Für die UL-Ausführung (mit interner Absicherung Class CC 30A nach UL) wurde ein SCCR-Wert von 30kA nachgewiesen. Mit dem elektronischen Hybridschalter OMUS[®] wird die Zuordnungsart 1 erreicht.

2.4 Leitungsschutz

Der Leitungsschutz der angeschlossenen Leitung erfolgt über das eingestellte Stromlimit (16A, 20A oder 25A). Um den Leitungsschutz des OMUS® beim eingestellten Strom zu gewährleisten, müssen mindestens folgende Leitungsquerschnitte am Laststecker eingehalten werden. Die aufgeführten Werte entsprechen der OMUS® Einzelaufstellung. Bei angegebenen Querschnitten sind zusätzlich entsprechende den Mehrfachanordnung (vgl. Kapitel 9 Technische Daten) und ggf. Verlegungsart zu beachten!

Angeschlossener Leitungsquerschnitt	Zulässige einstellbare Stromlimits	Zulässiger Laststrom (Laststecker mit Schraubklemme	**Zulässiger Laststrom (Laststecker mit Federzugklemme ArtNr. 36916)
2,5mm²	16A, 20A	ArtNr. 36918) 20A	16A
4mm²	16A, 20A, 25A	25A	20A
*6mm²	16A, 20A, 25A	25A	20A

^{*}höherer Querschnitt ermöglicht verbesserte Wärmeabfuhr

Falls ein Leiterquerschnitt kleiner 2,5mm² verwendet wird, muss der Leitungsschutz entweder durch die Verwendung einer kleineren Sicherung im OMUS® oder einer angepassten Vorsicherung sichergestellt werden.

2.5 Schaltvorgänge in der Hybridstufe

Der OMUS® vereint die Vorteile von Leistungshalbleiter- und Relaistechnik. Das Zusammenspiel beider Technologien wird als Hybridstufe bezeichnet. Im Einschaltmoment trägt der Halbleiter den Strom, sodass das Relais verschleißarm zugeschaltet werden kann. Der Dauerstrom fließt dann über das Relais, welches im Vergleich zum Halbleiter eine deutlich geringere Verlustleistung erzeugt. Im Ausschaltmoment übernimmt wiederrum der Halbleiter den Strom in der Hybridstufe, um den Relaiskontakt lichtbogenarm zu öffnen. Diese Funktionalität ermöglicht, im Vergleich zu einer reinen Relaislösung, eine deutlich höhere Lebensdauer. Gegenüber einer reinen Halbleiterlösung überzeugt die Hybridstufe durch höhere Effizienz. Der hohe Wirkungsgrad ist gleichbedeutend mit geringerer Verlustleistung im Gerät.

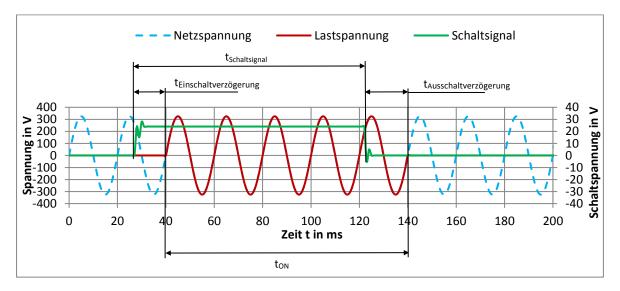
2.6 Einhalten der Grenzwerte bei Schaltvorgängen

Die Elektronik schaltet die Last zum Nulldurchgang der Lastspannung ein und aus. Die Einund Ausschaltbefehle werden verzögert ausgeführt (max. 80ms). Die minimale Dauer des Einschaltimpulses muss 100ms betragen. Die maximale Schaltfrequenz von 1Hz darf nicht überschritten werden. Die minimale Laststromstärke beträgt 2A. Bei Nichtbeachtung der

^{**}Zubehör

Grenzparameter kann die korrekte Funktionalität des Gerätes nicht gewährleistet werden. Die Elektronik überwacht ständig die ordnungsgemäße Ausführung der Steuerbefehle und die Stromaufnahme in allen Phasen. Um hohe Schalthäufigkeit, lange Lebensdauer und geringe Verlustleistung zu erreichen, müssen Schaltvorgänge nach folgenden Regeln erfolgen:

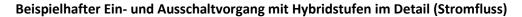
Maximale Schaltfrequenz f 1Hz
 Minimale Einschaltdauer ton 100ms
 Minimale Ausschaltdauer toff 100ms

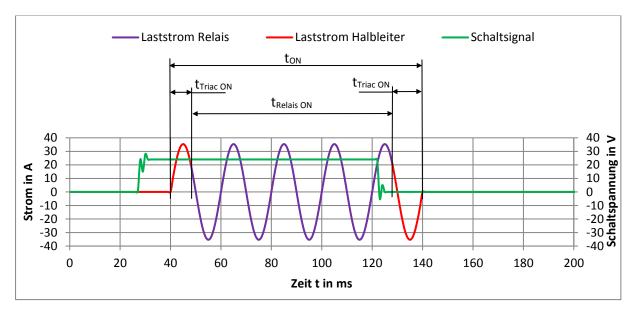


Minimale Laststromstärke I_{nc min} 2A
 Einsatz nur mit angeschlossener Funktion

 Einsatz nur mit angeschlossener Funktionserde PE (Anschluss 2 am Steuerstecker)

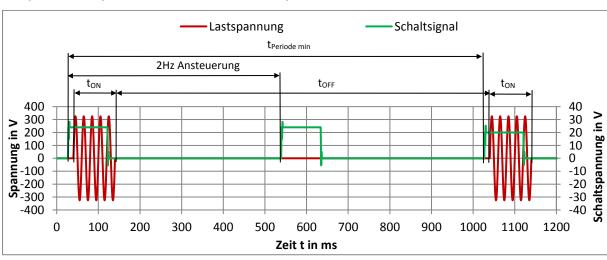
Hinweis: Bitte die Inbetriebnahme mit der Durcharbeitung der Checkliste in Unterpunkt 5.6 abschließen!


Beispiel: Ein- und Ausschaltvorgang mit minimaler Einschaltdauer von 100ms:



Bezeichnung	Grenzwert	Im Beispiel
t _{Einschaltverzögerung}	max. 80ms	ca. 13ms
tAusschaltverzögerung	max. 80ms	ca. 17ms
t _{Schaltsignal} (Dauer des Einschaltimpulses)	min. 100ms	ca. 100ms
ton: (Einschaltdauer der Last)	min. 100ms	ca. 100ms

Maximale Leistungsabgabe 3-phasig bei 25A Laststrom:


- 20W Verlustleistung im Dauerbetrieb (alle Relais dauerhaft ein, t_{Relais ON} >> 1s)
- kurzzeitig 3-fache Verlustleistung im Ein- bzw. Ausschaltmoment (t_{Triac ON})

Bezeichnung	Grenzwert	Im Beispiel
t _{Triac ON} (Einschaltdauer der Triac)	max. 20ms	ca. 8ms Einschalten
		ca. 12ms Ausschalten
t _{Relais ON} (Einschaltdauer der Relais)	min. 80ms	ca. 80ms
t _{ON} (Einschaltdauer der Last)	min. 100ms	ca. 100ms

Beispiel: Schaltzyklus mit maximaler Schaltfrequenz 1Hz und minimaler Einschaltdauer 100ms

Unzulässige Ansteuerungssignale (hier: 2Hz) werden ausgeblendet!

Bezeichnung	Grenzwert	Im Beispiel
t _{Periode min} (Minimale Periodendauer zwischen zwei	min. 1000ms	ca. 1000ms
Impulsen)		
t _{OFF} (Ausschaltdauer der Last)	min. 100ms	ca. 900ms

2.7 Regelbarkeit der Ausgangsleistung

Die Regelbarkeit der Ausgangsleistung des OMUS® geschieht in Abhängigkeit der Ansteuerung. Im Dauerbetrieb wird der Verbraucher durchgehend angesteuert. Um die Ausgangsleistung zu verringern kann der Ausgang getaktet geschaltet werden. Der sogenannte Aussteuergrad D (duty cycle) beschreibt das Verhältnis von der Dauer des Ansteuerimpulses zur Periodendauer der Taktung:

$$D = \frac{t_{ON}}{t_{Periode}}$$

Bei der Taktung des Ausgangs sind die Grenzparameter der Ansteuerung zwingend einzuhalten. Die vorgeschriebene minimale Einschaltdauer der Last von 100ms resultiert bei der maximalen Schaltfrequenz von 1Hz in einem Aussteuergrad von 10%.

$$D = \frac{t_{ON}}{t_{Periode\,min}} = \frac{100ms}{1000ms} = 10\%$$

Der max. Aussteuergrad im Taktbetrieb bei maximaler Schaltfrequenz von 1Hz beträgt 90%:

$$D = \frac{t_{ON}}{t_{Periode\,min}} = \frac{900ms}{1000ms} = 90\%$$

Die max. theoretische Regelgenauigkeit bestimmt sich aus Netz- und Schaltfrequenz. Bei 50Hz-Netzfrequenz und 1Hz-Schaltfrequenz bestimmt sich diese Regelgenauigkeit *Reg* zu:

$$Reg = \frac{50Hz}{1Hz} = \frac{20ms}{1000ms} = 2\%$$

Die Grenzen des Aussteuergrades hängen von fixen min. Ein- und Ausschaltzeiten (100ms) sowie der variablen Schaltfrequenz ab. Bei 1Hz-Schaltfrequenz liegt die untere Grenze bei 10%, die obere Grenze entsprechend bei 90%. Um einen feineren Aussteuergrad zu erzielen, muss die Schaltfrequenz abgesenkt werden. Beispiel für 1% Aussteuergrad: Schaltfrequenz auf 0,1Hz (≙10s Periodendauer)

$$D = \frac{t_{ON}}{t_{Periode}} = \frac{100ms}{10000ms} = 1\%$$

Beispiel für 99% Aussteuergrad: Schaltfrequenz auf 0,1Hz (≙10s Periodendauer)

$$D = \frac{t_{ON}}{t_{Periode}} = \frac{9900ms}{10000ms} = 99\%$$

Der Aussteuergrad ist bei einer Schaltfrequenz von 0,1Hz zwischen 1% und 99% in 0,2% Schritten regelbar.

Aussteuergrad	Schaltfrequenz	t _{ON}	t _{OFF}	Regelgenauigkeit
1%	0,1Hz	100ms	9900ms	0,2%
10%	1Hz	100ms	900ms	2%
54%	1Hz	540ms	460ms	2%
90%	1Hz	900ms	100ms	2%
99%	0,1Hz	9900ms	100ms	0,2%

2.8 Eignung der Anwendung

Grundlage für den Einsatz des OMUS® in der geplanten Applikation ist der Betrieb innerhalb der folgenden Grenzparameter.

Elektrische Parameter OMUS®	Vorgabe	
Art des Verbrauchers	ohmsche Lasten	
Max. Laststromstärke Inc max	25A (IEC)	20A (UL)
Min. Laststromstärke I _{nc min}	2A (IEC)	2A (UL)
Max. Betriebsspannung U_e	400V AC (IEC)	480V AC (UL)
Max. Schaltfrequenz f	1Hz	
Min. Einschaltdauer t _{ON}	100ms	
Min. Ausschaltdauer t _{OFF}	100ms	
Max. Einschaltverzögerung	80ms	
Max. Ausschaltverzögerung	80ms	

Parameter der externen Ansteuerung	Vorgabe
(z.B. SPS)	
Max. Schaltfrequenz Ansteuerimpulse f_{Impuls}	1Hz
Min. Dauer Ansteuerimpuls t _{Einschaltsignal}	100ms
Min. Dauer Auszeit t _{Ausschaltsignal}	100ms

Parameter Peripherie	Vorgabe
Auswertung der Warnmeldung	Ursachen für die Warnmeldung ermitteln und
	abstellen
Auswertung der Störmeldung	Verwendung der Störmeldekontakte zum
	Freischalten der Last
Freischalten der Last bei Störung	Galvanische Trennung durch externes
	Schaltgerät

Die Grenzwerte *der Elektrischen Parameter OMUS®* sind von den *Parametern der externen Ansteuerung* unbedingt einzuhalten, um den bestimmungsgemäßen Betrieb sicherzustellen. Die aufgeführten Parameter bilden lediglich die Grundlage für einen möglichen Einsatz. Für eine erfolgreiche Anwendung sind weitere Parameter zu beachten (siehe Kapitel 9 *Technische Daten* und 2.5 *Schaltvorgänge in der Hybridstufe*).

3 Sicherheitsbestimmungen / Errichtungshinweise

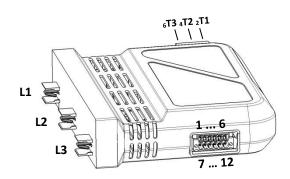
Beachten Sie bei allen Arbeiten am Gerät die nationalen Sicherheits-, Unfallverhütungs- und Arbeitsschutzvorschriften. Werden die Sicherheitsvorschriften nicht beachtet, können hohe Sachschäden, schwere Gesundheitsschäden oder sogar Gefahr für Leib und Leben die Folge sein. Inbetriebnahme, Montage, Änderung und Nachrüstung dürfen nur von einer Elektrofachkraft ausgeführt werden! Schalten Sie das (Sammelschienen-)System vor Beginn der Arbeiten am Gerät oder den Lasten spannungsfrei!

Bei Durchlegieren der Halbleiterelemente oder bei Verkleben der Relais kann die Elektronik selbst die Last nicht abschalten. Im nicht betriebsmäßigen Zustand gibt das Störungsrelais Meldung. Durch die Anordnung der Halbleiterelemente erfolgt keine vollständige galvanische Trennung der Last vom Netz. Zur Unterbindung eines ungewollten Dauerstromes im Störungsfall muss ein externes Schaltgerät für die Trennung des Lastkreises sorgen.

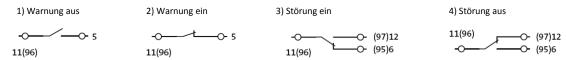
Bei Arbeiten sind die Sicherheitsregeln gemäß DGUV V3 (BGV A3) anzuwenden. Während des Betriebs können Teile der elektrischen Schaltgeräte unter gefährlicher Spannung stehen! Schutzabdeckungen dürfen während des Betriebs von elektrischen Schaltgeräten nicht entfernt werden! Bewahren Sie die Bedienungsanleitung auf! Das Gerät darf nicht in explosionsgefährdeten Bereichen installiert werden. Halten Sie die für das Errichten und Betreiben von zugehörigen Betriebsmitteln geltenden Sicherheitsvorschriften ein. Das Gerät darf nicht mechanischen oder thermischen Beanspruchungen ausgesetzt werden, welche die in der Bedienungsanleitung beschriebenen Grenzen überschreiten. Zum Schutz gegen mechanische oder elektrische Beschädigung ist gegebenenfalls der Einbau in ein entsprechendes Gehäuse mit einer geeigneten Schutzart (z.B. IP54) IEC 60529 / EN 60529 vorzunehmen. In staubbelasteter Umgebung muss das Gerät in ein geeignetes Gehäuse (mindestens IP64) nach EN 61241 eingebaut werden. Ein Zugriff auf die Stromkreise im Inneren des Geräts ist während des Betriebs nicht zugelassen. Das Betriebsmittel kann nicht vom Anwender repariert werden und muss durch ein gleichwertiges Gerät ersetzt werden. Reparaturen sind nur durch den Geräte-Hersteller durchführbar. Das Gerät führt im Betrieb ständig Selbstdiagnosen der Funktionen durch. Je nach Grad der Abweichung des Istwerts vom Sollwert wird eine Warnung oder eine Störung signalisiert. Setzen Sie ausschließlich Netzteile mit sicherer Trennung mit PELV-Spannung nach EN 50178 / VDE 0160 (PELV) ein. In diesen wird ein Kurzschluss zwischen Primär- und Sekundärseite ausgeschlossen.

4 Produkttabelle

Тур	VE	Gewicht kg/100	ArtNr.
OMUS®30Compact			
Elektronischer Hybridschalter IEC, 3-polig, komplett mit			
Sammelschienenadapter, Steuer- und Laststecker sowie	1	45,2	36 152
Sicherungseinsätzen 32A gG, 10 × 38			
Elektronischer Hybridschalter UL und IEC,3-polig, komplett mit			
Sammelschienenadapter, Steuer- und Laststecker sowie	1	45,2	36 157
Sicherungseinsätzen Class CC 30A time delay			
OMUS®60Classic			
Elektronischer Hybridschalter IEC, 3-polig, komplett mit Sammel-		4.5.0	06.450
schienenadapter, Steuer- und Laststecker sowie Sicherungseinsätzen	1	45,8	36 153
32A gG, 10 × 38			
Elektronischer Hybridschalter UL und IEC,3-polig, komplett mit		4.5.0	06.450
Sammelschienenadapter, Steuer- und Laststecker sowie	1	45,8	36 158
Sicherungseinsätzen Class CC 30A time delay			
OMUS®CrossBoard			
Elektronischer Hybridschalter IEC, 3-polig, komplett mit Steuer- und	_		
Laststecker sowie Sicherungseinsätzen 32A gG, 10 × 38	1	35,7	36 154
Elektronischer Hybridschalter UL und IEC,3-polig, komplett mit			
Steuer- und Laststecker sowie Sicherungseinsätzen Class CC 30A	1	35,7	36 159
time delay			
Ersatzkomponenten			
Sammelschienenadapter 30Compact	1	7,2	36 155
Sammelschienenadapter 60Classic	1	7,8	36 156
Laststecker, 3-polig, Federklemmen	1	1,5	36 916
Laststecker, 3-polig, Schraubklemmen	1	1,5	36 918
Steuerstecker, 12-polig, Federklemmen 0,2 – 1,5mm ²	1	0,8	36 917
Sicherung 32A, gG, 10 × 38	10	0,6	31 189
Sicherung Class CC, 30A, UL listed	10	0,8	31 252

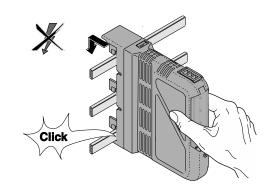

5 Inbetriebnahme

Sicherheitshinweise und Verwendungsbereich sind zu beachten.

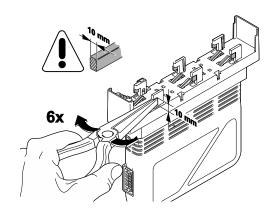

5.1 Anschlüsse

Klemmenbelegung Steuerleitung

Anschluss	Bezeichnung	Funktion
1	U _i +24V DC	+24 V DC Bemessungssteuerspeisespannung
2	PE	Funktionserde
3	E L2	Steuereingang für L2
4	E (L1 + L2 + L3)	Steuereingang für L1 + L2 + L3
5	Warnung	Meldeausgang für Warnung
6	(95) Störung	Meldeausgang Störung ("ein")
7	U _i Masse	Masse Bemessungssteuerspeisespannung
8	E L1	Steuereingang für L1
9	E L3	Steuereingang für L3
10	Masse Eingänge	Masse Steuereingänge L1 + L2 + L3
11	(96) Warnung + Störung	Spannungseingang für Meldeausgänge
12	(97) Störung	Meldeausgang Störung ("aus")

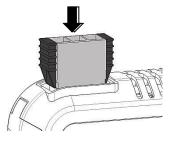

Melderelais:

5.2 Montage und Anschluss

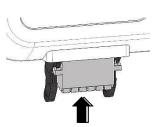

Montage auf das Sammelschienensystem:

Das komplette Modul einschließlich Sammelschienenadapter auf die Schienen aufrasten. Die elektrische Verbindung zum 3-Phasen-Netz erfolgt direkt über den Adapter.

Falls erforderlich, vor dem Aufrasten die Rastfüße des Sammelschienenadapters auf 10mm Sammelschienen anpassen.


VORSICHT: Niemals bei anliegender Spannung arbeiten! Lebensgefahr!

Anschlussstecker:


Laststecker:

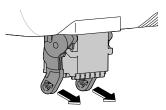
Den Verbraucher am Laststecker anschließen und im Gerät verrasten.

Steuerstecker:

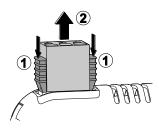
Signal- und Steuerleitungen am Steuerstecker anschließen und im Gerät verrasten.

Anlegen der Betriebsspannungen:

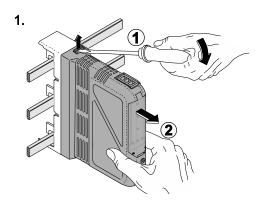
- 24V DC Betriebsspannung am OMUS® anlegen!
- Spannung am Sammelschienensystem anlegen!

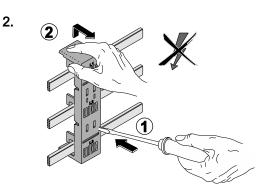

5.3 Bedeutung der LED Anzeigen

- Autobetrieb: LEDs Dauerlicht grün (vgl. Kapitel 6.2 Übersicht Anzeigefunktionen)
- Warnung: LEDs orange
- Störung: LEDs rot + Abschaltung des OMUS®

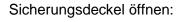

5.4 Demontage, Austausch von Geräten

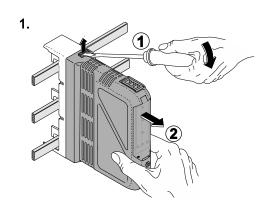
Freischalten des Sammelschienensystems, Sicherheitshinweise beachten!

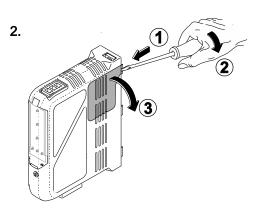

Entfernen des Steuersteckers:


Entfernen des Laststeckers:

OMUS® vom Sammelschienenadapter abnehmen:

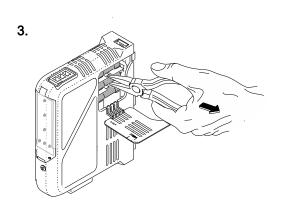

Sammelschienenadapter vom System abnehmen:

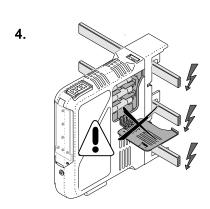



5.5 Austausch einer Sicherung

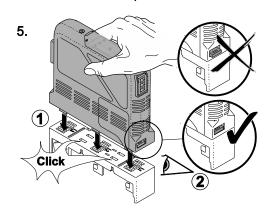
Freischalten des Sammelschienensystems, Sicherheitshinweise beachten!

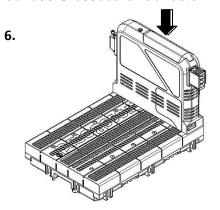
OMUS® vom Adapter abnehmen:





Sicherung tauschen:


Sicherungstausch nur bei demontiertem Gerät!

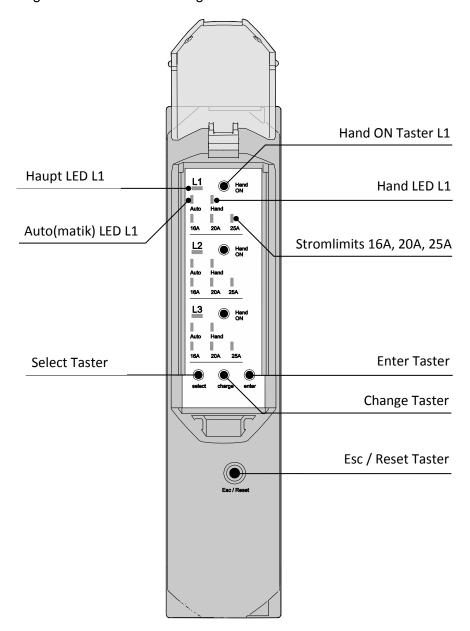


OMUS® auf den Adapter aufrasten:

OMUS® auf das Crossboard® aufrasten:

Auf die korrekte Position des Rastschiebers (vgl. Montageschritt 5) sowie den Verpolschutz ist zu achten!

5.6 Checkliste


Am Ende der Inbetriebnahme folgende Checkliste abarbeiten und zutreffendes ankreuzen, um den sicheren Betrieb des Gerätes zu gewährleisten.

Parameter	Beschreibung	Status
Sicherung	Sicherungen eingelegt und funktionstüchtig	
Einspeiseschnittstelle	Korrekte Verrastung auf dem System	
Laststecker	Korrekte Verrastung und Verkabelung des Laststeckers	
Steuerstecker	Korrekte Verrastung und Verkabelung des Steuersteckers	
Steuerspannung	Betriebsspannung liegt an, Netzteil adäquat ausgelegt	
Funktionserde	PE ist an Anschluss 2 des Steuersteckers angeschlossen	
Lastspannung	Netzspannung liegt an	
Schaltungsvariante	Verbraucher entspricht Vorgaben (vgl. Kapitel 6.4)	
LED Status	Haupt LED und LEDs der Parameter Dauerlicht grün	
Warnung	Melderelais der Warnung verdrahtet und nicht aktiv	
Störung	Melderelais der Störung verdrahtet und nicht aktiv	
Ansteuerung	Ansteuerung innerhalb der vorgegebenen Parameter	
Betriebsart	Auto(matik) für Nutzung der Steuereingänge oder Hand(-betrieb)	
Stromlimit	Stromlimits entsprechend der Abgangsleitung eingestellt	
Min. Laststromstärke	Die Laststromstärke beträgt mindestens 2A im Nennbetrieb	

6 Bedienerschnittstellen

6.1 Frontansicht

- Autobetrieb: LEDs Dauerlicht grün (vgl. Kapitel 6.2 Übersicht Anzeigefunktionen)
- Warnung: LEDs orange
- Störung: LEDs rot + Abschaltung des OMUS®

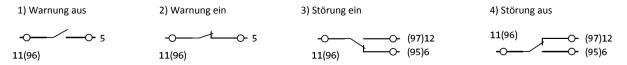
6.2 Übersicht Anzeigefunktionen

Die detaillierte Beschreibung der verschiedenen Betriebszustände ist Kapitel 8 zu entnehmen.

Auto(matik)betrieb (Haupt-LED: grün)

Status	Haupt-LED	Auto-LED	Hand-LED	Stromlimits	Warnung	Störung	Last
Werkseinstellung	grün	grün	aus	grün (16A)	aus 1)	aus 4)	geschaltet
Auto(matik)betrieb 16A	grün	grün	aus	grün (16A)	aus 1)	aus 4)	geschaltet
Auto(matik)betrieb 20A	grün	grün	aus	grün (20A)	aus 1)	aus 4)	geschaltet
Auto(matik)betrieb 25A	grün	grün	aus	grün (25A)	aus 1)	aus 4)	geschaltet

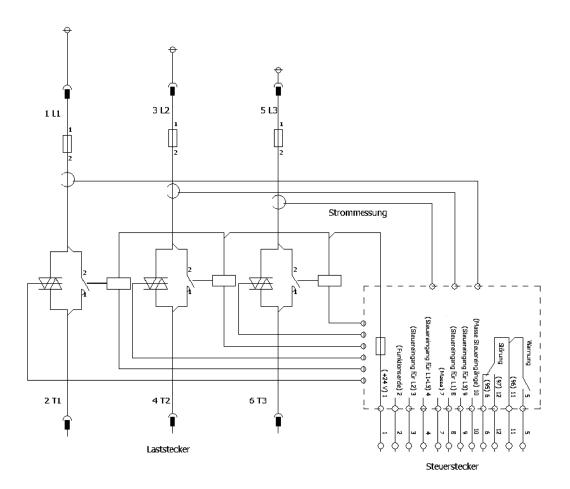
Warnungen (Haupt-LED: orange)

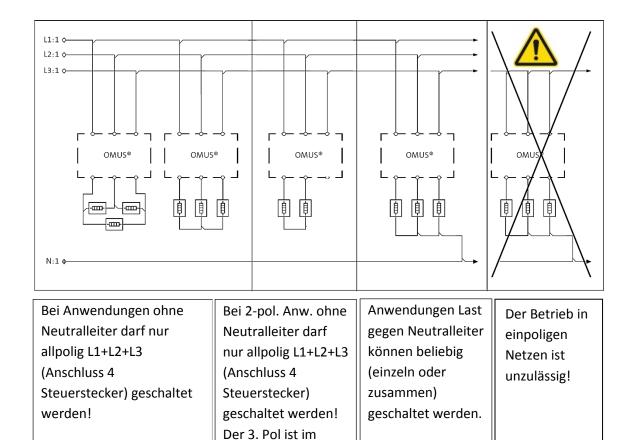

Status	Haupt-LED	Auto-LED	Hand-LED	Stromlimits	Warnung	Störung	Last
Phasenausfall /	betroffene	hotroffe	ene grün	betroffene	ein 2)	aus 4)	geschaltet
Sicherung ausgelöst	orange	betrone	ene grun	blinken grün	EIII 2)	aus 4)	geschaltet
Ausfall Last (Strom <2A)	betroffene blinken	betroffene grün		betroffene	ain.	0110	gasabaltat
Ausfall Last (Strom <2A)	orange	betrone	ene grun	aus	ein ₂₎	aus ₄₎	geschaltet
	betroffene						
Stromlimit erreicht	blinken	betroffene grün	betroffene blinken grün	ein 2)	aus 4)	geschaltet	
	orange			billikeli gruli			
Temperaturlimit	blinken	hotroffe	hatroffana griin		ein 2)	2016 10	geschaltet
(>65°C)	orange	betroffene grün		grün	C111 2)	aus 4)	geschallet

Störungen (Haupt-LED: rot)

Quittierung durch ESC/Reset-Taster

Status	Haupt-LED	Auto-LED	Hand-LED	Stromlimits	Warnung	Störung	Last
Keine 24V Betriebsspannung	aus	aus	aus	aus	aus 1)	ein 3)	aus
Überstrom (>15%)	betroffene blinken rot	betroff	ene grün	betroffene blinken grün	aus 1)	ein 3)	betroffene aus
Übertemperatur (>80°C)	blinken rot	aus	aus	aus	aus 1)	ein 3)	aus
Strom ohne Ansteuerung, Gerät ggf. defekt, externe Freischaltung vorgeschrieben	betroffene blinken rot	grün	rot	betroffene blinken grün	aus 1)	ein 3)	betroffene dauerhaft an


Melderelais:


Handbetrieb (für Inbetriebnahme)

Status	Haupt-LED	Auto-LED	Hand-LED	Stromlimits	Warnung	Störung	Last
Handbetrieb 16A/20A/25A nicht betätigt	grün	aus	grün	betroffene grün	aus 1)	aus 4)	aus
Handbetrieb 16A/20A/25A betätigt	grün	aus	grün	betroffene grün	aus 1)	aus 4)	geschaltet

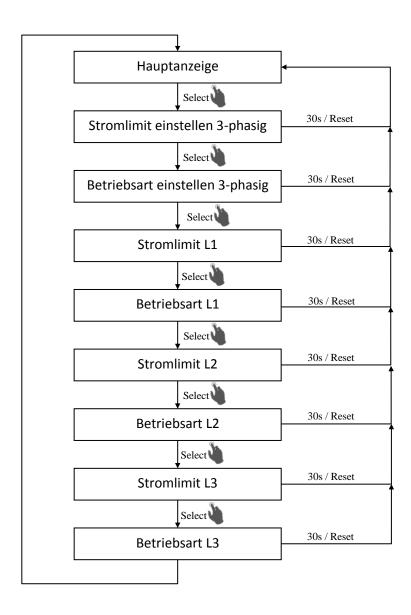
6.3 Eplan-Symbol

6.4 Schaltungsvarianten

Handbetrieb zu betreiben!

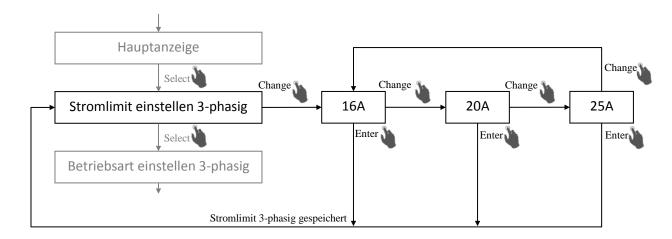
7 Konfiguration des OMUS®

Das Einstellungsmenü ermöglicht dem Anwender den OMUS[®] entsprechend der Applikation zu konfigurieren. Die **Einstellung der Stromlimits** in den Stufen 16A, 20A und 25A ist vom Anwender gemäß den Anforderungen und Grenzen der Anlage vorzunehmen.

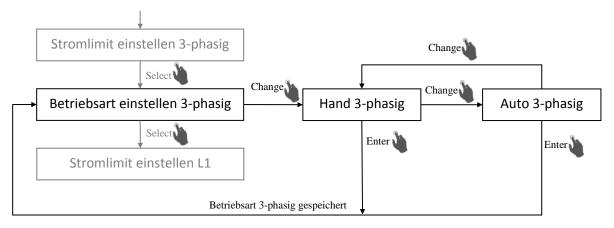

Als Betriebsmodi stehen zum einen der **Auto(matik)betrieb** zur Verfügung, der über 24V DC Eingänge gesteuert wird (z.B. SPS), zum anderen der **Handbetrieb** für die Inbetriebnahme, der mittels *Hand ON*-Taster betätigt wird. Jede Phase kann mit einer individuellen Konfiguration versehen werden.

Das Menü wird durch Betätigung der Select-Taste aufgerufen, durch wiederholte Betätigung gelangt man zum nächsten Menüpunkt. Dauerlicht zeigt den eingestellten Zustand an. Zur Änderung der Einstellungen ist im ausgewählten Menüpunkt die Change-Taste zu verwenden. Durch mehrmalige Betätigung können alle Einstellmöglichkeiten des aktuellen Menüpunkts vorausgewählt werden. Ausgewählte Einstellungen blinken grün. Beim Drücken der Enter-Taster wird die aktuell gewählte Einstellung übernommen und man gelangt ins Menü zurück. Nicht mit Enter gespeicherte Einstellungen gehen verloren.

Das Menü kann mittels **Esc / Reset-Taste** jederzeit verlassen werden. Nach dem letzten Menüpunkt oder einer verstrichenen Zeit von rund 30s ohne Benutzeraktion wird das Menü ebenfalls verlassen. Beim Verlassen des Menüs blinken alle Anzeige-LEDs mehrmals. Die eingestellten Parameter, die mit Enter bestätigt wurden, werden übernommen und die Ausgänge wieder aktiv geschaltet. Auch beim Ausfall der 24V Betriebsspannung bleiben die Einstellungen erhalten.

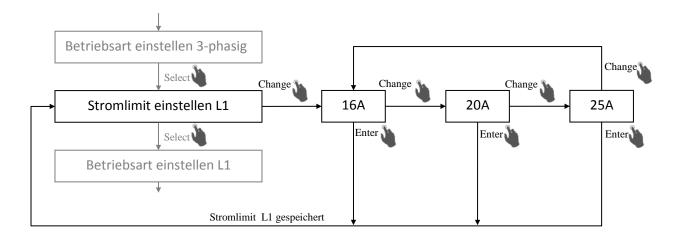

7.1 Menüstruktur

Anhand der nachfolgenden Abbildung wird die Menüstruktur graphisch beschrieben. Die anschließenden Seiten beschreiben die Einstellungen für eine oder alle drei Phasen.

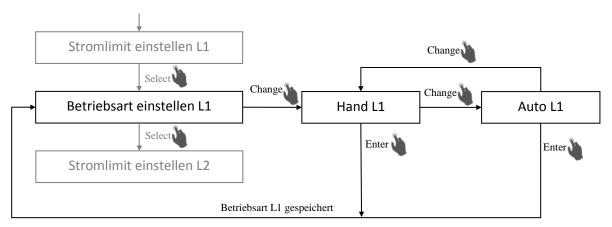


7.2 Dreiphasige Einstellungen

Die dreiphasige Einstellung des Stromlimits ist nachfolgend abgebildet:



Die dreiphasige Einstellung der Betriebsart ist nachfolgend abgebildet:



7.3 Einphasige Einstellungen

Die einphasige Einstellung eines Stromlimits ist nachfolgend abgebildet:

Die einphasige Einstellung eines Betriebsmodus ist nachfolgend abgebildet:

Die weiteren Phaseneinstellungen sind äquivalent durchführbar.

7.4 Wiederherstellung des Werkszustands

Bei Auslieferung sind alle Phasen auf Auto(matik)betrieb und die Stromlimits auf 16A eingestellt. Um den OMUS® in den Auslieferungszustand zurückzusetzen, sind die Selectund Enter-Taste gleichzeitig zu drücken. Alle LEDs leuchten beim gleichzeitigen Tastendruck auf und zeigen durch mehrmaliges Blinken die erfolgreiche Wiederherstellung des Auslieferungszustands an. Hierbei werden alle Einstellungen überschrieben, der Werkszustand konfiguriert den OMUS® dreiphasig in den Auto(matik)betrieb mit einem Stromlimit von 16A.

7.5 Standby

Das Gerät kann in einen Standby-Modus versetzt werden, in welchem die Ausgänge deaktiviert sind. Dazu muss die Esc / Reset-Taste für ungefähr 8s gedrückt werden. Alle Ausgänge werden abgeschaltet. Alle Hand-LEDs blinken orange, alle anderen LEDs sind aus. Das Warnungsrelais gibt Meldung. Im Standby-Modus bleiben alle Einstellungen erhalten, es stehen keine Menüoptionen zur Verfügung. Der Standby-Modus kann durch Drücken der Reset-Taste für rund 4s wieder verlassen werden. Der Standby-Modus kann nicht eingeleitet werden, wenn eine Störung anliegt.

8 Funktionsbeschreibung

Das Gerät verfügt über verschiedene Betriebszustände:

- Auto(matik)betrieb
- Handbetrieb
- Einstellungsmenü
- Warnungs- und Störungszustände
- Standby-Modus

Warnungen werden bei laufendem Betrieb ausgegeben. Störungen schalten die Last ab. Durch gleichzeitiges Drücken der "Select-Taste" + "Enter-Taste" kann der Hybridschalter auf den ursprünglichen Auslieferzustand zurückgesetzt werden.

8.1 Auto(matik)betrieb

Das Gerät befindet sich im Auto(matik)betrieb, wenn es ordnungsgemäß verwendet wird und keine Warnungen bzw. Störungen vorliegen. Alle Haupt-LEDs leuchten dauerhaft grün sowie die ausgewählten Einstellungen. Im Auto(matik)betrieb erfolgt die Ansteuerung der Ausgänge in Abhängigkeit der Eingangssignale. **Der aktuelle Schaltzustand wird nicht angezeigt!** Die verschiedenen Betriebsparameter werden kontinuierlich überwacht. Ausgehend vom Auto(matik)betrieb kann jederzeit in das Einstellungsmenü gewechselt werden.

Auto(matik)betrieb (Haupt-LED: grün)

Status	Haupt-LED	Auto-LED	Hand-LED	Stromlimits	Warnung	Störung	Last
Werkseinstellung	grün	grün	aus	grün (16A)	aus 1)	aus 4)	geschaltet
Auto(matik)betrieb 16A	grün	grün	aus	grün (16A)	aus 1)	aus 4)	geschaltet
Auto(matik)betrieb 20A	grün	grün	aus	grün (20A)	aus 1)	aus 4)	geschaltet
Auto(matik)betrieb 25A	grün	grün	aus	grün (25A)	aus 1)	aus 4)	geschaltet

8.2 Einstellungsmenü

Im Einstellungsmenü sind die normalen Arbeitsfunktionen deaktiviert. Die Last ist abgeschaltet.

8.3 Handbetrieb

Ist über das Einstellungsmenü der Handbetrieb aktiviert, schalten die Tasten "Hand ON" die betreffende Phase ein. Die Tasten "Hand ON" können gleichzeitig betätigt werden. Beim Handbetrieb werden Warnungen und Störungen wie im Auto(matik)betrieb behandelt. Ausgehend vom Handbetrieb kann jederzeit in das Einstellungsmenü gewechselt werden.

8.4 Warnung

Folgende Zustände führen zu Warnmeldungen:

- Phasenausfall / Sicherung ausgelöst
- Ausfall Last
- Geringer Überstrom Stromlimit erreicht
- **Geringe Übertemperatur** Temperaturwarnung ab 65°C

Einbindung von Warnungen in die SPS und Vermeidung von Fehlalarmen:

Warnungen sollten erst nach 500ms Dauermeldung ausgewertet werden.

Signalmeldungen unterhalb sind zu verwerfen!

Warnungen (Haupt-LED: orange)

Status	Haupt-LED	Auto-LED	Hand-LED	Stromlimits	Warnung	Störung	Last
Phasenausfall / Sicherung ausgelöst	betroffene orange	betroffene grün		betroffene blinken grün	ein ₂₎	aus 4)	geschaltet
Ausfall Last (Strom <2A)	betroffene blinken orange	betroffene grün		betroffene aus	ein ₂₎	aus 4)	geschaltet
Geringer Überstrom (<15%)	betroffene blinken orange	betroffene grün		betroffene blinken grün	ein ₂₎	aus 4)	geschaltet
Geringe Übertemperatur (ca. 65°C)	blinken orange	betroffe	betroffene grün		ein ₂₎	aus 4)	geschaltet

Phasenausfall / Sicherung ausgelöst

Im Betrieb wird vom OMUS® die anliegende Spannung sammelschienenseitig überwacht. Fällt die gemessene Spannung auf unter 42V AC wird ein Phasenausfall detektiert. Die betroffene Haupt-LED blinkt orange und die eingestellte Stromlimit-LED blinkt grün. Das Warnungsrelais gibt Meldung. Nach Beseitigung der Ursache für den Phasenausfall quittiert sich die Warnung selbst.

Ausfall Last

Fällt der gemessene Laststrom auf unter 2A wird dies als Ausfall der Last detektiert. Die Haupt-LED der betroffenen Phase blinkt orange und die LED des eingestellten Stromlimits erlischt. Das Warnungsrelais gibt Meldung. Nach Beseitigung der Ursache für den Unterstrom quittiert sich die Warnung selbst. Der laufende Betrieb wird nicht unterbrochen.

Geringer Überstrom

Erreicht der gemessene Laststrom das eingestellte Stromlimit wird dies als Warnung ausgegeben. Die Haupt-LED der betroffenen Phase blinkt orange und die eingestellte Stromlimit-LED blinkt grün. Das Warnungsrelais gibt Meldung. Nach Beseitigung der Ursache für den Überstrom quittiert sich die Warnung selbst. Der laufende Betrieb wird nicht unterbrochen.

Geringe Übertemperatur

Übersteigt die Temperatur innerhalb des Hybridschalters 65°C, wird dies als Warnung ausgegeben. Die Haupt-LEDs blinken orange. Das Warnungsrelais gibt Meldung. Nach Abkühlung des OMUS® quittiert sich die Warnung selbst. Der laufende Betrieb wird nicht unterbrochen.

8.5 Störung

Folgende überwachte Parameter können beim OMUS® zu Störungen führen. Diese sind:

- Fehlende 24V Steuerspannung
- Starker Überstrom Stromlimit um mehr als 15% überschritten
- Starke Übertemperatur Temperaturstörung ab 80°C
- Stromfluss ohne Ansteuerung

Einbindung von Störmeldungen in die SPS und Vermeidung von Fehlalarmen:

Störungen sollten erst nach 500ms Dauermeldung ausgewertet werden.

Signalmeldungen unterhalb sind zu verwerfen!

Störungen (Haupt-LED: rot)

Quittierung durch ESC/Reset-Taster

Status	Haupt-LED	Auto-LED	Hand-LED	Stromlimits	Warnung	Störung	Last
Fehlende 24V Steuerspannung	aus	aus	aus	aus	aus 1)	ein 3)	aus
Starker Überstrom (>15%)	betroffene	betroffene grün		betroffene	200.0	ein 3)	betroffene
Starker Oberstrolli (>13%)	blinken rot	Detroit	ene grun	blinken grün	aus 1)	eiii 3)	aus
Starke Übertemperatur (ca. 80°C)	blinken rot	aus	aus	aus	aus 1)	ein 3)	aus
Stromfluss ohne Ansteuerung, Gerät ggf. defekt, externe Freischaltung vorgeschrieben	betroffene blinken rot	grün	rot	betroffene blinken grün	aus 1)	ein 3)	betroffene geschaltet

Fehlende 24V Steuerspannung

Liegt keine Bemessungssteuerspeisespannung am OMUS® (Anschluss 1 bzw. 7 am Steuerstecker) an, wird dies über eine entsprechende Meldung am Störungsrelais signalisiert.

Starker Überstrom

Übersteigt der gemessene Laststrom das eingestellte Stromlimit um mehr als 15%, wird die betroffene Last abgeschaltet. In der betroffenen Phase wird die Haupt-LED rot und die eingestellte Stromlimit-LED blinkt grün. Das Störungsrelais gibt dauerhaft Meldung. Nach Beseitigung der Ursache für den Überstrom, ist die Quittierung der Störmeldung notwendig (Esc/Reset-Taster) um den Betrieb wieder aufzunehmen.

Starke Übertemperatur

Steigt die Temperatur innerhalb des Hybridschalters auf über 80°C an, wird eine Störung signalisiert. Alle Haupt-LEDs blinken rot. Das Störungsrelais gibt dauerhaft Meldung. Zum Selbstschutz werden alle Ausgänge abgeschaltet. Nach Abkühlung ist die Quittierung der Störmeldung notwendig (Esc/Reset Taster) um den Betrieb wieder aufzunehmen.

Stromfluss ohne Ansteuerung

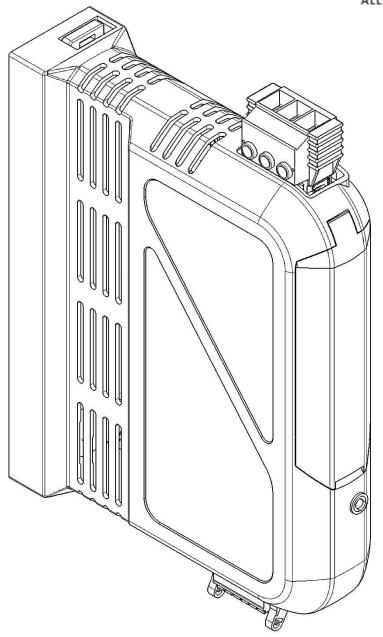
Erkennt die Elektronik einen nicht betriebsmäßigen Stromfluss zur Last, wird ein Defekt der Hybridstufe detektiert. In der betroffenen Phase leuchtet die Haupt-LED rot und die eingestellte Stromlimit-LED blinkt grün. Das Störungsrelais gibt Meldung. Um den Stromfluss zu unterbrechen, ist das Freischalten der Last durch ein externes Schaltgerät vorzunehmen. Bleibt nach Quittierung die Störung (Esc/Reset Taster) weiter bestehen, ist ein Austausch des Hybridschalters erforderlich.

8.6 Quittieren von Meldungen

Falls die Ursache einer Warnung beseitigt ist, quittiert sich die Warnung selbst. Störmeldungen müssen durch Betätigen von Esc/Reset quittiert werden. Dafür muss zunächst die Ursache einer Störung beseitigt werden. Das Quittieren einer Störung durch Unterbrechung der 24V Betriebsspannung darf erst 500ms nach Abschaltung aller Phasen erfolgen.

8.7 Unterbrechung

Wird die 24V Betriebsspannung unterbrochen, werden die Lasten abgeschaltet. Alle LEDs sind aus und das Störungsrelais gibt Meldung. Das betriebsmäßige Schalten durch Trennung der 24V Betriebsspannung ist nicht erlaubt! Nichtbeachtung führt zu erhöhtem Verschleiß der Hybridstufe.


9 Technische Daten

Umgebungsbedingungen	
Umgebungstemperatur	-5°C bis 35°C im Schaltschrank
	bei Temperaturen bis 55°C bzw.
	Verbundanordnung siehe Derating
Verschmutzungsgrad	2, im Gehäuse
Überspannungskategorie	II, Lastebene
Hauptstromkreise	
Schaltungsprinzip	3 getrennte Schaltstufen mit Bypass L1, L2, L3
Anzahl der Hauptstromkreise	3 unabhängige Stromkreise L1, L2 und L3 für
	ohmsche Lasten
Bemessungsbetriebsspannung U _e nach	400V AC, 50Hz
IEC60947-1	
Verlustleistung (Relais dauerhaft an)	20W
Einstellbare Stromlimits	16A, 20A, 25A, Warnung beim Erreichen der Limits
Überlastschutz	Abschaltung bei Überschreitung >15%
Bemessungsbetriebsstrom I _e	25A 3× einphasig, 25A 1× dreiphasig 400V AC
Gebrauchskategorie AC-51 nach IEC 60947-4-3	
Minimale Laststromstärke I _{nc min}	2A
Bedingter Bemessungskurzschlussstrom I _q	30kA, 400V
(Zuordnungsart 1, Anlagenschutz)	
Schutzart	IP20
Isolation zwischen Steuer- und	U _{imp} 2,5kV
Hauptstromkreis	
Keine Trennfunktion nach EN60947-1 2.1.19	keine Stellungsanzeige der Hauptkontakte, Gerät
	ohne Trennfunktion
Leckstrom (Eingang, Ausgang) getrennt	kleiner 2mA (keine galvanische Trennung)
Restspannung beim Schalten	1,2V max. 10ms
Übertemperatur im Gerät	65°C Warnung, 80°C Abschaltung
Eingangsschutzbeschaltung	Schmelzsicherungen
	IEC: 3× 10×38, 32A gG, 400V
	UL: 3× Class CC 30A, 600V
	Varistoren 510V
Zulassung UL	
File E483362 Vol.1 Sec. 1	Typ No. OM25-H cULus listed
Current / Voltage ratings	20A 3× single-pole, 20A 1× three-pole 480V AC
Minimum load current I _{nc min}	2A
Short Circuit Current Rating SCCR according to	30kA, 480V with fuses Class CC 30A
UL 508a	
Maximum surrounding air temperature	40°C
Maximum surface temperature	55°C
Pollution degree	2
Maximum busbar temperature	110°C

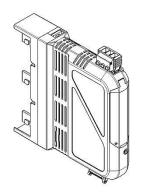
Zeiten					
Max. Schaltfrequenz	1Hz				
Min. Dauer des Ansteuerimpulses	100ms				
Min. Einschaltdauer der Last	100ms				
Min. Ausschaltdauer der Last	100ms				
Max. Einschaltverzögerung	80ms				
Max. Ausschaltverzögerung	80ms				
Steuerstromkreise					
Bemessungssteuerspeisespannung U _s nach					
IEC 60947-1	24V DC				
UL 508	26,5V DC				
Steuerspeisespannung, Schaltpegel "Sicher aus"	< 5V DC				
Bemessungssteuerspeisestrom nach IEC 60947-1	≤ 150mA				
Steuereingang L1, L2, L3, L1+L2+L3					
Schaltpegel "Low"	– 3V bis 9,6V	DC			
Schaltpegel "Sicher aus"	< 5V DC				
Schaltpegel "High"	19,2V – 30V DC				
Eingangsstrom ≤ 3mA					
Rückmeldeausgang					
Meldung Warnung	lung Warnung potentialfreier Kontakt, 1 Schließer				
Max. Schaltspannung	24V AC/DC				
Max. Dauerlaststrom I _o	0,5A				
Meldung Störung	potentialfrei	er Kontakt, 1 We	echsler		
Max. Schaltspannung	48V AC/DC				
Max. Dauerlaststrom I₀	1A				
Bedienelemente Front					
Taster Select, Change, Enter	Parameterei	nstellung			
Taster Hand ON	Zuschalten d	er Ausgänge im	Handbetrieb		
Haupt und Auto LED	Grün = O.K.;	Orange = Warnu	ıng; Rot = Störung		
Stromlimit LED	Grenzwert D	auerstrom 16A,	20A, 25A		
Esc / Reset Taster	Quittieren vo	n Störungen			
Gelochter Klappdeckel	ermöglicht P	lombierung			
Anschlussquerschnitte					
Anschluss	Leiterart	IEC	UL		
3 pol. Steckverbinder mit Federzugklemmen	Cu rm, f	1,5 – 6mm²	AWG16 – AWG8		
3 pol. Steckverbinder mit Schraubklemmen	Cu rm, f	1,5 – 6mm²,	AWG16 – AWG8		
		0,5–0,8Nm	7lb-in		
12 pol. Steuerstecker, mit Federzugklemmen	Cu f	0,2 – 1,5mm ²	AWG24 – AWG16		

Derating bezogen auf 25A Dauerstron	n auf Samme	lschienensyst	:em
nach IEC 61439-2			
Aufstellung in Umgebung bis	35°C	45°C	55°C
Einzelaufstellung / Abstand ≥ 36mm	RDF = 1,0	RDF = 0,9	RDF = 0,8
Anordnung mit Abstand ≥ 9mm	RDF = 0,9	RDF = 0,8	RDF = 0,7
Verbundanordnung, Abstand 0mm (4 Geräte)	RDF = 0,8	RDF = 0,7	RDF = 0,6
Messung mit Sicherungen 32A gG, Laststecker m	it Schraubklemm	en,	
Sammelschienentemperatur 70°C			
Derating bezogen auf 25A Dauerstron	n auf CrossBo	oard nach IEC	61439-2
Aufstellung in Umgebung bis	35°C	45°C	55°C
Einzelaufstellung / Abstand ≥ 36mm	RDF = 1,0	RDF = 0,9	RDF = 0,8
Verbundanordnung, Abstand 0mm	RDF = 0,6	RDF = 0,54	RDF = 0,48
Messung mit CrossBoard® CB405, Sicherungen 3	2A gG, Laststecke	er mit Schraubkle	mmen

OMUS[®]

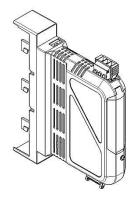
Electronic hybrid switch for resistive loads.

User manual

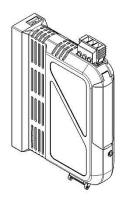

Revision 8, March 2017

Contents

1	l	Design variants	38
2	(OMUS® Overview	39
	2.1	1 Application	40
	2.2	2 Incorporation of OMUS® into process control	41
	2.3	Galvanic isolation & short-circuit protection	41
	2.4	4 Line protection	43
	2.5	Switching processes in the hybrid switch	43
	2.6	Adhering to limit values in switching processes	43
	2.7	7 Adjustability of the power output	46
	2.8	Suitability of the application	47
3	:	Safety instructions / Installation instructions	48
4	ı	Product table	49
5	(Commissioning	50
	5.1	1 Connections	50
	5.2	2 Installing and connecting the main circuits	51
	5.3	3 Meaning of the LED indicators	52
	5.4	Disassembly and replacing devices	52
	5.5	5 Replacing a fuse	53
	5.6	6 Checklist	54
6	ı	User interface	55
	6.1	1 Front view	55
	6.2	2 Overview of display functions	56
	6.3	3 Eplan symbol	57
	6.4	4 Switching variants	58
7	(Configuration of OMUS [®]	59
	7.1	1 Menu structure	60
	7.2	2 Three-phase settings	61
	7.3	3 Single-phase settings	62
	7.4	4 Restoring to factory settings	63
	7.5	5 Standby	63
8	ı	Function description	64
	8.1	1 Auto(matic) mode	64
	8.2	2 Settings menu	64
	8.3	3 Manual mode	64
	8.4	4 Warning	65
	8.5	5 Error	66
	8.6	6 Acknowledgement of messages	67
	8.7	7 Interruption	67
9		Technical data	68


1 Design variants

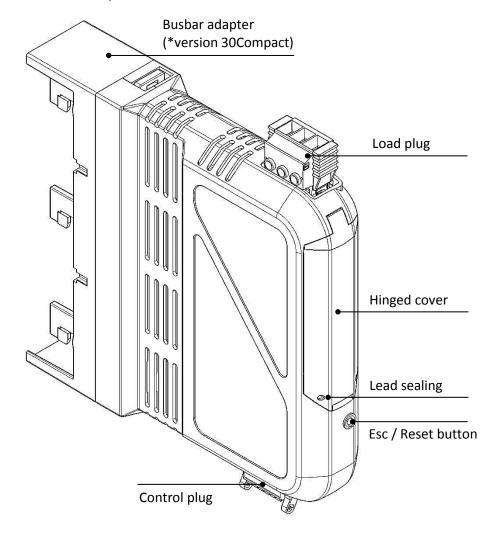
OMUS®30Compact


Type	Pack Size	Weight kg/100	Part No.
OMUS®30Compact, IEC	1	45.2	36 152
OMUS®30Compact, UL and IEC	1	45.2	36 157

OMUS®60Classic

Type	Pack Size	Weight kg/100	Part No.
OMUS®60Classic, IEC	1	45.8	36 153
OMUS®60Classic, UL and IEC	1	45.8	36 158

OMUS®CrossBoard



Type	Pack Size	Weight kg/100	Part No.
OMUS®Crossboard, IEC	1	35.7	36 154
OMUS®Crossboard, UL and IEC	1	35.7	36 159

2 OMUS® Overview

OMUS®

Electronic hybrid switch for resistive loads.

The OMUS® electronic hybrid switch is a compact switching device with a width of 36 mm. The hybrid switch is composed of a combination of relay contacts and power semi-conductors, integrated short-circuit protection as well as electronic current and temperature monitoring for operational switching of resistive loads (IEC up to 25 A / 400V AC; UL up to 20A / 480V AC). The universal *CrossLink*-interface at the connection side enables fast electrical and mechanical connection with various busbar systems.

2.1 Application

The OMUS® hybrid switch has been developed for areas of application in which contactors, overload relays, solid state relays and mechanical switches have previously been used. This device was designed for the frequent switching of:

- single-pole resistive loads (phase-neutral) and
- three-pole resistive loads

This is a product for environment A (industry) regarding EMC. In environment B (household) this device may cause undesirable interference; in this case the user has to find appropriate counteraction to reduce electromagnetic interference. No powerful electrostatic charges may be transferred to the OMUS® from the load side. An external switching element is required for galvanic isolation. This could be a contactor or circuit breaker, for example. In a non-operational status, the OMUS® error relay will issue a signal. In order to interrupt an unintentional continuous current flow in case of an error, an external switchgear must ensure the interruption of the load circuit. The short-circuit protection is implemented via integrated fuses.

The combination of the functions

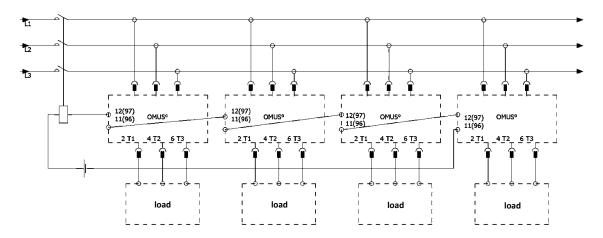
- Hybrid switch
- Feed
- Fuse
- Monitoring

enables a maximum space advantage in comparison to a group composition of three discrete devices with comparable properties.

2.2 Incorporation of OMUS® into process control

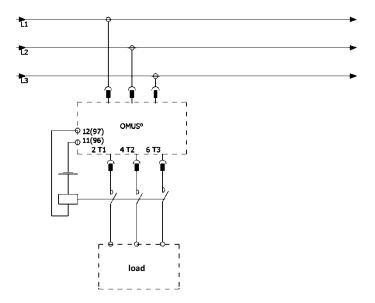
OMUS® can be actuated with the help of a programmable logic controller (PLC). The precise specification for the input signals of OMUS® is described in detail, in chapter 9 *Technical data*, as well as in 2.5 *Switching processes in the hybrid switch*. The defined limit values such as a maximum switching frequency of 1Hz and minimum on and off duration of 100ms must be strictly adhered to in order to guarantee proper operation.

OMUS® possesses numerous self-diagnostic and safety monitoring mechanisms. Warnings and errors are routed to the analysis unit via the signal relays.


The incorporation and active processing of the *warning* or *error* messages into the corresponding control of the system is necessary in order to achieve the maximum system dependability.

If the limit values are exceeded, e.g. the minimum switch on time, OMUS® has a software-based self-diagnostic system, and will ignore unreliable control commands. The incorrect actuation will not be issued by a signal.

2.3 Galvanic isolation & short-circuit protection


The device does **not have an internal galvanic isolation**. In the event of an error, OMUS® switches off as normal without being fully galvanically isolated. **An external switching element is required for galvanic isolation**. The galvanic isolation can be realized on the part of the feed.

Galvanic isolation on the part of the feed:

The galvanic isolation can also be realized between OMUS® and corresponding load.

Galvanic isolation on the part of the load:

Common devices for the implementation of a galvanic isolation are contactors or circuit breakers. In a non-operational status, the OMUS® error relay will issue a signal. In order to interrupt an unintentional continuous current flow in case of an error, an external switchgear must ensure the interruption of the load circuit.

The short-circuit protection is implemented via integrated fuses. An upstream short-circuit protection module is only required from an uninfluenced short-circuit current I_{CP} above 30kA. For the UL design (with internal fuse Class CC 30A according to UL), an SCCR value of 30kA was verified. The electronic hybrid switch OMUS® complies with coordination type 1.

2.4 Line protection

The line protection of the connected line is realized by setting the correct current limit (16A, 20A or 25A). In order to ensure line protection with OMUS® depending on the configured current, at least the following wire cross-sections at the load plug have to be adhered to. The following values comply with the single installation of OMUS®. The specified wire cross-sections are additionally depending on the deratings for side-by-side installation (see chapter 9 Technical data) and if necessary installation type!

Connected wire cross-section	Permitted adjustable current limits	Permitted load current (load plug with screw terminals ArtNr. 36918)	**Permitted load current (load plug with spring terminals ArtNr. 36916)
2,5mm²	16A, 20A	20A	16A
4mm²	16A, 20A, 25A	25A	20A
*6mm²	16A, 20A, 25A	25A	20A

^{*}higher wire cross-section enables better heat dissipation

If a wire cross-section below 2,5mm² is used, the line protection has to be realized either by using smaller fuses within OMUS[®] or adapting the pre-fuse.

2.5 Switching processes in the hybrid switch

OMUS® combines the advantages of power semi-conductor and relay technology. The interplay of both technologies is referred as hybrid switch. When OMUS switches on, the semi-conductor carries the current so that the relay can be switched on with low wear. The continuous current then flows through the relay, which generates significantly lower power loss in comparison to the semi-conductor. When OMUS switches off, the semi-conductor once again carries the current in the hybrid switch in order to open the relay contact with minimal current arcing. In comparison to a purely relay solution, this functionality allows for a significantly longer lifetime. Compared to a pure semi-conductor solution, the hybrid switch operates with much greater efficiency. The high degree of efficiency translates to lower power loss in the device.

2.6 Adhering to limit values in switching processes

The electronics switch the load on and off at the zero crossing of the load voltage. The switch on and off commands are carried out after a delay (max. 80ms). The minimum duration of the switch on impulse has to be 100ms. The maximum switching frequency may not exceed 1Hz. The minimum load current is 2A. The proper functionality of the device cannot be guaranteed if the limit parameters are not adhered to. The electronics continuously monitor the correct

Page **43** of **71** 94 799 000 A Revision 8, March 2017

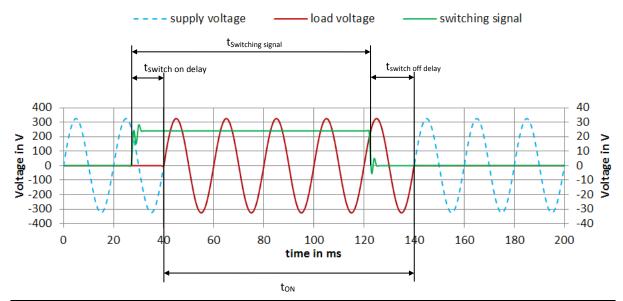
^{**}spare component

performance of the control commands and the power consumption in all phases. Switching processes must be conducted in line with the following rules in order to achieve a high switch rate, long lifetime and low power loss:

Maximum switching frequency f
 1 Hz

• Minimum switch on duration t_{ON} 100ms

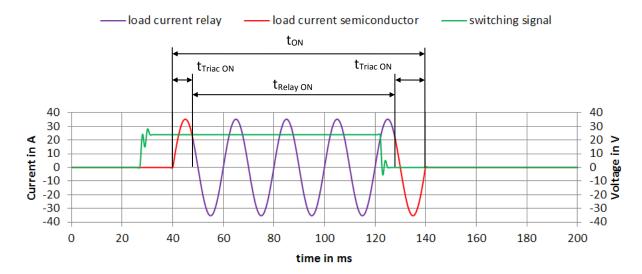
• Minimum switch off duration t_{OFF} 100ms


Minimum load current I_{nc min}
 2A

 Usage only with connected functional ground PE (Input 2 control plug)

Note: Please complete commissioning in conjunction with working through the checklist in subsection 5.6!

Example: Switch on and off process with minimum switching duration of 100ms:



Designation	Limit value	In example
t _{switch} on delay	max. 80ms	approx. 13ms
tswitch off delay	max. 80ms	approx. 17ms
t _{switching signal} (duration of the switch on impulse)	min. 100ms	approx. 100ms
ton: (Switch on duration of load)	min. 100ms	approx. 100ms

Power output 3-phase at 25A load current:


- 20W power loss in continuous operation (all relays permanently on, t_{Relay ON} >> 1s)
- temporary 3-fold power loss during switch on or switch off (t_{Triac ON})

Exemplary switch on and off process with hybrid switches in detail (current flow)

Designation	Limit value	In example
t _{Triac ON} (Switch on duration of Triac)	max. 20ms	approx. 8ms switch on
		approx. 12ms switch off
t _{Relay ON} (Switch on duration of relay)	min. 80ms	approx. 80ms
ton (Switch on duration of load)	min. 100ms	approx. 100ms

Example: Switching cycle with max. switching frequency 1Hz and min. switch on duration 100ms

Incorrect actuation (in this case: 2Hz) is ignored!

Designation	Limit value	In example
t _{Period min} (Minimal period duration between	min. 1000ms	approx. 1000ms
impulses)		
toff (Switch on duration of load)	min. 100ms	approx. 900ms

2.7 Adjustability of the power output

The adjustability of the power output of OMUS® occurs depending on the actuation. In continuous operation, the consumer is continuously actuated. The output can be switched in a timed manner to reduce the power output. The duty cycle *D* is characterized by the relationship between duration of the actuation impulse and period duration of the timing:

$$D = \frac{t_{ON}}{t_{Period}}$$

The actuation limit parameters must be adhered to for the timing of the output. The prescribed minimum switching duration for the load of 100 ms results in a duty cycle of 10% for the maximum switching frequency of 1 Hz.

$$D = \frac{t_{ON}}{t_{Period\ min}} = \frac{100ms}{1000ms} = 10\%$$

The max. duty cycle in timed operation at a maximum switching frequency of 1 Hz is 90%:

$$D = \frac{t_{ON}}{t_{Period\ min}} = \frac{900ms}{1000ms} = 90\%$$

The max. control accuracy is determined by supply frequency and switching frequency. At 50Hz-supply frequency and 1Hz-switching frequency the max. control accuracy *Acc* is:

$$Acc = \frac{50Hz}{1Hz} = \frac{20ms}{1000ms} = 2\%$$

The limits of the duty cycle are depending on determined min. switch on and off times (100ms) and the variable switching frequency. At 1Hz-switching frequency the lower limit is 10%, the upper limit is 90%. In order to achieve a finer duty cycle, the switching frequency must be reduced. Example for 1% duty cycle:

Switching frequency to 0.1 Hz (≙10s period duration)

$$D = \frac{t_{ON}}{t_{Period}} = \frac{100ms}{10000ms} = 1\%$$

Example for 99% duty cycle: Switching frequency to 0.1 Hz (≙10s period duration)

$$D = \frac{t_{ON}}{t_{Period}} = \frac{9900ms}{10000ms} = 99\%$$

The duty cycle at a switching frequency of 0.1 Hz is adjustable between 1% and 99% in 0.2% steps.

Duty cycle	Switching frequency	t_{ON}	t _{OFF}	Control accuracy
1%	0,1Hz	100ms	9900ms	0,2%
10%	1Hz	100ms	900ms	2%
54%	1Hz	540ms	460ms	2%
90%	1Hz	900ms	100ms	2%
99%	0,1Hz	9900ms	100ms	0,2%

2.8 Suitability of the application

The basis for the use of OMUS® in the planned application is operation within the following limit parameters.

Electrical parameters OMUS®	Specification	
Type of load	resistive loads	
Max. load current Inc max	25A (IEC)	20A (UL)
Min. load current Inc min	2A (IEC)	2A (UL)
Max. operating voltage U_e	400V AC (IEC)	480V AC (UL)
Max. switching frequency f	1Hz	
Min. switch on duration t_{ON}	100ms	
Min. switch off duration t_{OFF}	100ms	
Max. switch on delay	80ms	
Max. switch off delay	80ms	

Actuation parameters (e.g. PLC)	Specification
Max. actuation impulse switching frequency $f_{Impulse}$	1Hz
Min. duration of actuation impulse t _{Switch on signal}	100ms
Min. timeout duration t _{Switch off signal}	100ms

Parameter periphery	Specification
Evaluating the warning message	Detection and rectification of the
	warning's cause
Evaluating the error message	Using the error message contacts to
	switch off the load
Switch off the load during an error	galvanic isolation via external
	switchgear

The limit values of *Electrical parameters OMUS®* must be adhered to by the *Actuation Parameters* in order to guarantee orderly operation. The parameters listed only constitute the basis for possible use. Additional parameters must be observed for a successful application (see chapter 9 *Technical Data* and 2.5 *Switching processes in the hybrid switch*).

3 Safety instructions / Installation instructions

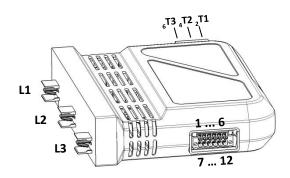
Obey all national safety, accident prevention and industrial safety regulations when carrying out work on the device. Failure to obey safety instructions may result in a good deal of property damage, severe health damage or even danger to life and limb. The device may only be commissioned, installed, modified and retrofitted by a trained electrician. Disconnect the (busbar) system from the power supply before starting work on the device or the loads.

If the semi-conductor elements break down or the relays are stuck, the electronics alone cannot turn off the load. In an irregular state, the error relay issues a signal. The layout of the semi-conductor elements means that there is no complete electrical isolation of the load from the main supply. In order to interrupt an unintentional continuous current flow in case of an error, an external switchgear must ensure the interruption of the load circuit.

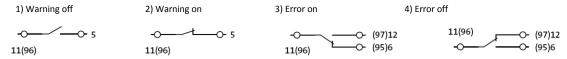
The safety regulations set out in DGUV V3 (BGV A3) are to be used for work. During operation, parts of the electrical switchgear can carry dangerous voltage! Safety covers must not be removed from electrical switchgear during operation. Keep the user manual in a safe place! The device must not be installed in potentially explosive atmospheres. Obey the safety regulations which apply to the installation and operation of related equipment. The device must not be exposed to mechanical or thermal stresses which exceed the limits described in the user manual. If necessary, the device may be installed in an appropriate housing with a suitable protection type (for example IP54) to IEC 60529 / EN 60529 to protect it from mechanical or electrical damage. If the device is used in dusty environment, it must be installed in a suitable housing (at least IP64) to EN 61241. Access to the circuits inside the device is not permitted during operation. The equipment cannot be repaired by the user and must be replaced by an equivalent device. Repair work may only be carried out by the device manufacturer. The device conducts function self-diagnostics continuously during operation. A warning or error may be signaled depending on the level of discrepancy between actual and nominal value. Only use power supplies with safe isolation using PELV voltage to EN 50178 / VDE 0160 (PELV). This prevents a short-circuit between the primary and secondary sides.

4 Product table

Туре	Pack Size	Weight kg/100	Part No.
OMUS®30Compact			
Electronic hybrid switch IEC, 3-pole, complete with busbar adapter, control and load plug and fuse links 32A gG, 10 x 38	1	45.2	36 152
Electronic hybrid switch UL and IEC, 3-pole, complete with busbar adapter, control and load plug and fuse links Class CC 30A time delay	1	45.2	36 157
OMUS®60Classic			
Electronic hybrid switch IEC, 3-pole, complete with busbar adapter, control and load plug and fuse links 32A gG, 10 x 38	1	45.8	36 153
Electronic hybrid switch UL and IEC, 3-pole, complete with busbar adapter, control and load plug and fuse links Class CC 30A time delay	1	45.8	36 158
OMUS®CrossBoard			
Electronic hybrid switch IEC, 3-pole, complete with control and load plug and fuse links 32A gG, 10 x 38	1	35.7	36 154
Electronic hybrid switch UL and IEC, 3-pole, control and load plug and fuse links Class CC 30A time delay	1	35.7	36 159
Spare components			
Busbar adapter 30Compact	1	7.2	36 155
Busbar adapter 60Classic	1	7.8	36 156
Load plug, 3-pole, spring terminals	1	1.5	36 916
Load plug, 3-pole, screw terminals	1	1.5	36 918
Control plug, 12-pole, spring terminals 0.2 – 1.5mm ²	1	0.8	36 917
Fuse 32A gG, 10 x 38	10	0.6	31 189
Fuse Class CC, 30A, UL listed	10	0.8	31 252

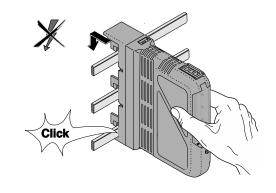

5 Commissioning

Refer to the safety instructions and area of use.

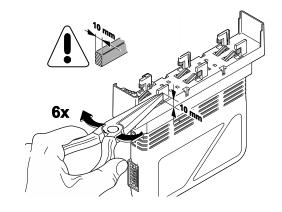

5.1 Connections

Terminal assignment control cable

Connection	Designation	Function
1	U _i +24V DC	+24 V DC design control supply voltage
2	PE	Functional ground
3	E L2	Control input for L2
4	E (L1 + L2 + L3)	Control input for L1 + L2 + L3
5	Warning	Warning message output
6	(95) error	Error message output ("on")
7	U _i mass	Ground control supply voltage
8	E L1	Control input for L1
9	E L3	Control input for L3
10	Mass inputs	Ground control inputs L1 + L2 + L3
11	(96) Warning + Error	Voltage input for message outputs
12	(97) error	Error message output ("off")

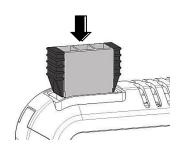

Signal relay:

5.2 Installing and connecting the main circuits

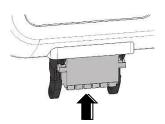

Mounting on the busbar system:

Lock the complete module including the busbar adapter to the rails. The electrical connection to the three-phase conductors is made through the adapter.

If necessary, adjust the busbar adapter's feet for 10mm busbars beforehand.


CAUTION: Never carry out work when the voltage is connected! Danger to life!

Connection plug:


Load plug:

Connect the load side conductors to the load plug and lock it into the device.

Control plug:

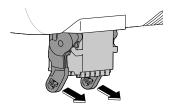
Connect signal and control cables to the control plug and lock it into the device.

Applying the operating voltage:

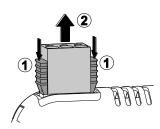
- Apply 24V DC operating voltage to the OMUS[®]!
- Apply voltage to the busbar system!

5.3 Meaning of the LED indicators

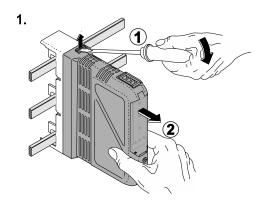
 Auto(matic) mode: LEDs permanently green (compare chapter 6.2 Overview of display functions)

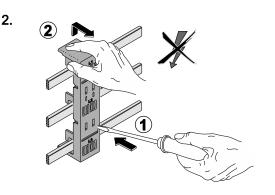

• Warning: LEDs orange

• Error: LEDs red + OMUS® switched off

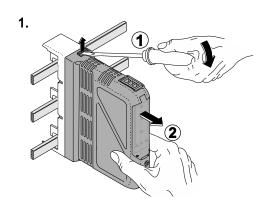

5.4 Disassembly and replacing devices

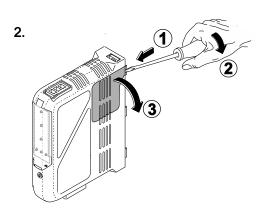
Disconnect power to the busbar system, obey safety instructions!


Remove the control plug:


Remove the load plug

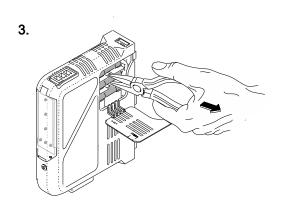
Remove the OMUS® from the adapter

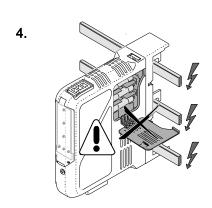

Remove the busbar adapter from the system:

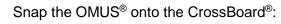


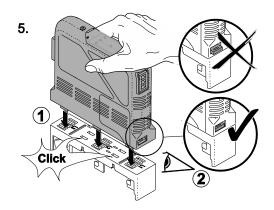
5.5 Replacing a fuse

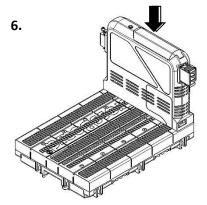
Disconnect power to the busbar system, obey safety instructions!


Remove the OMUS® from the adapter: Open fuse cover:




Exchange fuse:

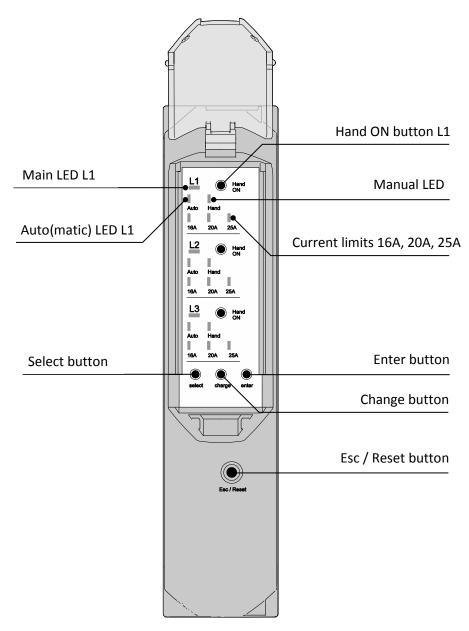

Do not exchange the fuse before dismantling!



Snap the OMUS® onto the adapter:

Pay attention to the right position of the lock slide (compare assembly stage 5) and the reverse polarity protection!

5.6 Checklist


Work through the following checklist at the end of commissioning and check all corresponding points to guarantee the safe operation of the device.

Parameter	Description	Status
Fuse	Fuses in place and functional	
Busbar adapter	Correct locking with the system	
Load plug	Correct locking and cabling of the load plug	
Control plug	Correct locking and cabling of the control plug	
Control voltage	Operating voltage applied, power supply adequately designed	
Functional ground	PE is connected to input 2 of the control plug	
Voltage load	Supply voltage is applied	
Switching variant	Suitable application (compare chapter 6.4)	
LED status	Main LED and parameter LEDs show permanent green light	
Warning	Warning signal relay wired and inactive	
Error	Error signal relay wired and inactive	
Actuation	Actuation within the prescribed parameters	
Operating mode	Auto(matic) for using the control inputs or Hand (manual mode)	
Current limit	Current limits set according to outlet cable	
Min. load current	The load current is at least 2A in rated operation	

6 User interface

6.1 Front view

- Normal operation: LEDs permanently green (compare chapter 6.2 *Overview of display functions*)
- Warning: LEDs orange
- Error: LEDs red + OMUS[®] switched off

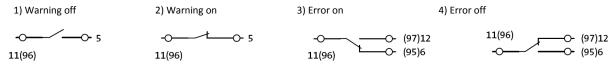
6.2 Overview of display functions

The detailed description of the different operation modes is shown in chapter 8.

Auto(matic) mode (main LED: green)

Status	Main LED	Auto LED	Manual LED	Current limits	Warning	Error	Load
Factory setting	Green	Green	Off	Green (16A)	Off 1)	Off 4)	Switched
Auto(matic) mode 16A	Green	Green	Off	Green (16A)	Off 1)	Off 4)	Switched
Auto(matic) mode 20A	Green	Green	Off	Green (20A)	Off 1)	Off 4)	Switched
Auto(matic) mode 25A	Green	Green	Off	Green (25A)	Off 1)	Off 4)	Switched

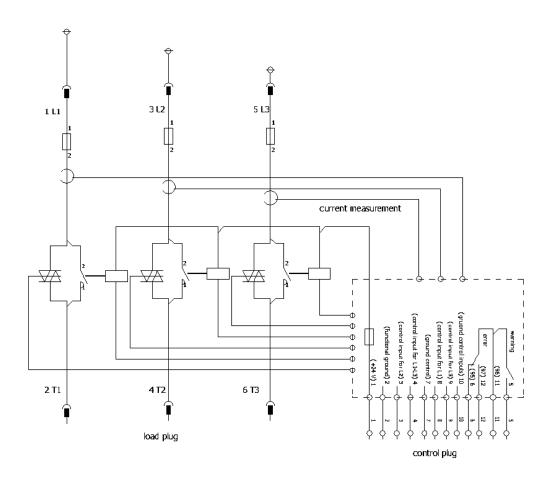
Warnings (main LED: orange)

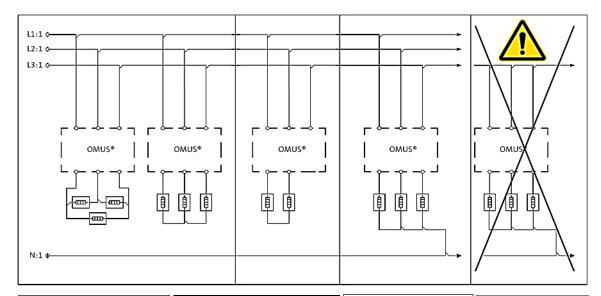

Status	Main LED	Auto LED	Manual LED	Current limits	Warning	Error	Load
Phase failure / fuse blown	affected orange	affected green		affected flash green	On ₂₎	Off 4)	Switched
Load failure (current <2A)	affected flash orange	affected green		affected off	On ₂₎	Off ₄₎	Switched
Current limit reached	affected flash orange	affected green		affected flash green	On ₂₎	Off 4)	Switched
Temperature limit (approx. 65 °C)	flash orange	affected	affected green		On ₂₎	Off ₄₎	Switched

Errors (main LED: red)

Acknowledge by pressing ESC/Reset button or disconnecting the 24 V supply

Status	Main LED	Auto LED	Manual LED	Current limits	Warning	Error	Load	
No 24V operating voltage	Off	Off	Off	Off	Off 1)	On 3)	Off	
Overcurrent (approx. 15%)	affected flash red	affect	ed green	affected flash green	Off 1)	On 3)	affected Off	
Overtemperature (approx. 80 °C)	flash red	Off	Off	Off	Off 1)	On 3)	Off	
Current without actuation, device potentially defective, external switch off required	affected flash red	Green	Red	affected flash green	Off 1)	On 3)	affected permanent on	


Signal relay:


Manual mode (for commissioning)

Status	Main LED	Auto LED	Manual LED	Current limits	Warning	Error	Load
Manual mode 16A/20A/25A inactive	Green	Off	Green	Affected green	Off 1)	Off ₄₎	Off
Manual mode 16A/20A/25A active	Green	Off	Green	Affected green	Off 1)	Off 4)	Switched

6.3 Eplan symbol

6.4 Switching variants

For applications without a neutral conductor, the usage of the 3-phase input L1+L2+L3 (input 4 control plug) is mandatory!

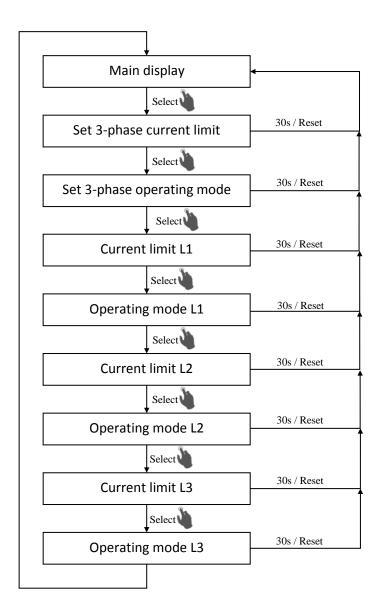
For 2-pole usage without neutral conductor, the usage of the 3-phase input L1+L2+L3 (input 4 control plug) is mandatory! The third pole has to be in manual mode!

Usage of load against neutral conductor offers switching as required (individually or together).

Not suitable for operating in single-phase networks

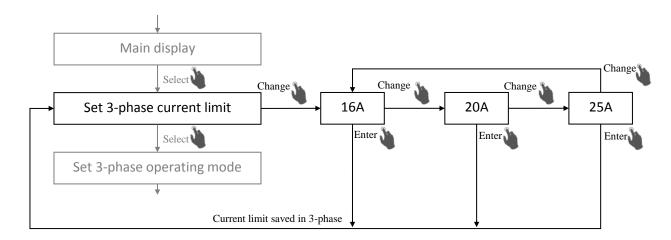
7 Configuration of OMUS®

The settings menu allows the user to configure OMUS[®] in line with the application. The **setting of the current limits** at the levels 16A, 20A and 25A must be done by the user in accordance with the requirements and limits of the installation.

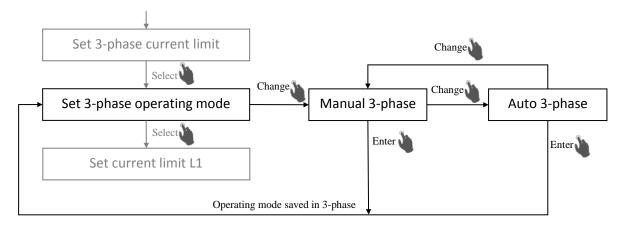

The first operating mode available is **auto(matic) mode**, which is controlled via 24V DC inputs (e.g. PLC). The second mode available is **manual mode** for commissioning, which is activated by the *Hand ON*-button. Each phase can be set to an individual configuration.

The **menu** is called up by **pressing** the **Select button** and pressing again switches to the next menu item. A continuous light displays the status set. The **Change button** in the selected menu item should be used to change the settings. Pressing it multiple times allows you to preselect all settings options for the present menu item. Selected settings flash green. Pressing the **Enter button applies the selected setting** and returns you to the menu. Settings not saved by pressing Enter will be lost.

You can leave the menu at any time by pressing the **Esc / Reset button**. The menu will also be closed after the last menu item or once approximately 30s pass with no action by the user. When leaving the menu all display LEDs will flash several times. The set parameters, confirmed with Enter, will be applied and the outputs will be switched back to active. All settings are saved on the device permanently. The settings are retained even if the 24 V operating voltage is switched off.

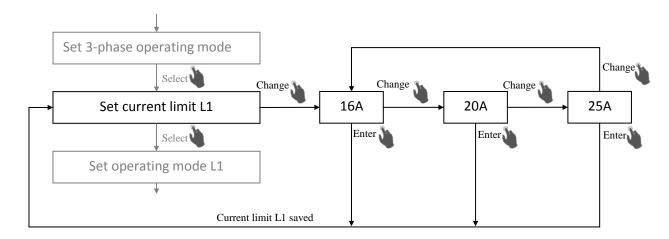

7.1 Menu structure

The menu structure is visualized in the following diagram. The following pages visually describe the settings for single phase or all three phases.

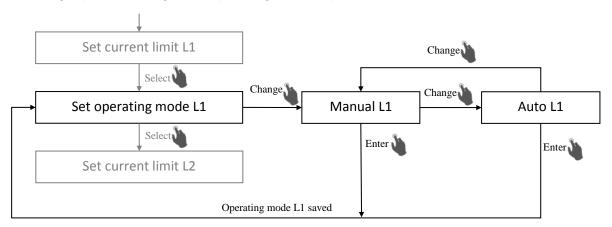


7.2 Three-phase settings

The three-phase setting of the current limits is pictured as follows:



The three-phase setting of the operating mode is pictured as follows:



7.3 Single-phase settings

The single-phase setting of a current limit is pictured as follows:

The single-phase setting of an operating mode is pictured as follows:

The additional phase settings are carried out in the same way.

7.4 Restoring to factory settings

On delivery all phases are set to auto(matic) mode and the current limits to 16A. If you want OMUS® to be **reset to the delivery status**, press **Select and Enter button simultaneously**. This simultaneous pressing of the buttons will cause all LEDs to be illuminated and display the successful restoration of the delivery status by flashing multiple times. All settings will be overwritten and the **factory status will configure OMUS® to three-phase in auto(matic) mode with a current limit of 16A**.

7.5 Standby

The device can be **put in a Standby mode** which will **deactivate the outputs**. To do this, **press and hold the Esc/Reset button for approx. 8s**. **All the outputs will be shut down.**All manual LEDs will flash orange, all other LEDs are off. The warning relay will issue a signal. All settings are retained in Standby mode and no menu options are available. You can **leave** the **Standby mode** again by pressing the **Reset button for approx. 4s**. The device cannot be put in Standby mode, if there is an error.

8 Function description

The device has various operating states:

- auto(matic) mode
- manual mode
- settings menu
- warning and error states
- standby mode

Warnings are issued during running operation. Errors turn the load off. The factory settings can be restored by pressing the "select" + "enter" buttons simultaneously.

8.1 Auto(matic) mode

The device is in auto(matic) mode when it is used properly and there are no warnings or errors. All main LEDs are permanently illuminated green as are the selected settings. In auto(matic) mode, the outputs are actuated according to the input signals. **The present switching status is not displayed!** The various operating parameters are continuously monitored. You can switch to the settings menu from auto(matic) mode anytime.

Auto(matic) mode (main LED: green)

Status	Main LED	Auto LED	Manual LED	Current limits	Warning	Error	Load
Factory setting	Green	Green	Off	green (16A)	Off 1)	Off ₄₎	Switched
Auto(matic) mode 16A	Green	Green	Off	green (16A)	Off 1)	Off 4)	Switched
Auto(matic) mode 20A	Green	Green	Off	green (20A)	Off 1)	Off 4)	Switched
Auto(matic) mode 25A	Green	Green	Off	green (25A)	Off 1)	Off 4)	Switched

8.2 Settings menu

The normal working functions are deactivated in the settings menu. The load is turned off.

8.3 Manual mode

If manual mode is activated via the settings menu, the "Hand ON" buttons switch on the relevant phase. The "Hand ON" keys can be pressed simultaneously. In manual mode, warnings and errors are treated in the same way as in auto(matic) mode. You can switch to the settings menu from manual mode anytime.

8.4 Warning

The following statuses will lead to a warning:

- Phase failure / Blown fuse
- Load failure
- Minor overcurrent current limit reached
- Minor overtemperature temperature warning above 65 °C

PLC integration of warnings and avoidance of false alarms:

Warnings below 500ms should not be evaluated.

Signals below should be rejected.

Warnings (main LED: orange)

Status	Main LED	Auto LED	Manual LED	Current limits	Warning	Error	Load
Phase failure / blown fuse	affected orange	affecte	d green	affected flash green	On ₂₎	Off 4)	Switched
Load failure (current <2A)	affected flash orange	affected green		affected off	On ₂₎	Off ₄₎	Switched
Minor overcurrent (<15%)	affected flash orange	affected green		affected flash green	On ₂₎	Off 4)	Switched
Minor overtemperature (approx. 65°C)	Flash orange	affecte	affected green		On ₂₎	Off ₄₎	Switched

Phase failure / blown fuse

During operation OMUS® monitors the voltage on the busbar. If the measured voltage drops below 42V AC, a phase failure is detected. The affected main LED will flash orange and the set current limit LED will flash green. The warning relay issues a signal. The warning itself will be cleared once the cause of the phase failure has been resolved.

Load failure

If the measured load current drops below 2 A, this is detected as a load failure. The main LEDs for the affected phase will flash orange and the set current limit LED will turn off. The warning relay will issue a signal. The warning itself will be cleared once the cause of the undercurrent has been resolved. Ongoing operation will not be stopped.

Minor overcurrent

If the measured load current reaches the set current limit, this is detected as a warning. The main LED for the affected phase will flash orange and the set current limit LED will flash green. The warning relay will issue a signal. The warning itself will be cleared once the cause of the overcurrent has been resolved. Ongoing operation will not be stopped.

Minor overtemperature

If the temperature inside the hybrid switch exceeds 65°C, a warning is indicated. Main LEDs will flash orange. The warning relay will issue a signal. The warning itself will be cleared once OMUS® cools down. Ongoing operation will not be stopped.

8.5 Error

The Following parameters, monitored by OMUS® during operation, can lead to errors:

- No 24V control voltage
- Major Overcurrent- current limit exceeded by approx. 15%
- Major Overtemperature temperature error above 80 °C
- Irregular current flow

PLC integration of errors and avoidance of false alarms:

Errors below 500ms should not be evaluated.

Signals below should be rejected.

Errors (main LED: red)

Acknowledge by pressing ESC/Reset button or disconnecting the 24 V supply

Status	Main LED	Auto LED	Manual LED	Current limits	Warning	Error	Load
No 24V control supply voltage	Off	Off	Off	Off	Off 1)	On ₃₎	Off
Major Overcurrent (>15%)	affected flash red	Affected Green		affected flash green	Off 1)	On 3)	affected Off
Major Overtemperature (approx. 80°C)	flash red	Off	Off	Off	Off 1)	On 3)	Off
Current without actuation, device potentially defective, external switch off required	affected flash red	Green	Red	affected flash green	Off 1)	On ₃₎	affected switched

No 24V control voltage

If there is no 24V control supply voltage at OMUS[®] (input 1 or 7 at control plug), the error relay will issue a signal.

Major Overcurrent

If the measured load current exceeds the set current limit by more than 15%, the affected load is shut down. In the affected phase, the main LED turns red and the set current limit LED will flash green. The error relay continuously issues a signal. After the cause of the overcurrent has been resolved, the error message must be acknowledged (press Esc/Reset) to resume operation again.

Major Overtemperature

If the internal temperature of the hybrid switch exceeds 80°C, an error is indicated. All main LEDs will flash red. The error relay continuously issues signal. All outputs are shut down for self-protection. After cooldown, the error message must be acknowledged (press Esc/Reset button) to resume operation again.

Irregular current flow

If the electronics detect an irregular current flow to the load, it assumes a defect in the hybrid switch. In the affected phase, the main LED turns red and the set current limit LED will flash green. The error relay will continuously issue a signal. The load must be switched off by an external switchgear in order to interrupt the current flow. If the error continues after acknowledgement (press Esc/Reset), the hybrid switch must be replaced.

8.6 Acknowledgement of messages

If the cause of a warning has been resolved, the warning itself will be cleared. Error messages have to be acknowledged by pressing Esc/Reset. The cause of an error must be resolved first in this instance. The acknowledgement of an error by interrupting the 24 V operating voltage may only take place 500ms after switching off the load.

8.7 Interruption

If the 24V operating voltage is interrupted, the loads are shut down. All LEDs are off and the error relay will issue a signal. The operational switching by disconnecting the 24 V operating voltage is not allowed! Non-observance will lead to higher wear of the hybrid switch.

9 Technical data

A malai and a andidia ma	
Ambient conditions	
Ambient temperature	-5°C to 35°C in control cabinet;
	for temperatures up to 55°C or group layout see
	derating
Pollution degree	2, in the housing
Overvoltage category	II, Load level
Main circuits	
Switching principle	3 separate switches with bypass L1, L2, L3
Number of main circuits	3 independent circuits L1, L2 and L3 for resistive
	loads
Design operating voltage U _e to IEC60947-1	400V AC, 50Hz
Maximum power loss (relays permanently on)	20W
Setting continuous current limits	16A, 20A, 25A, warning when limits are reached
Overload protection	shutdown if exceeded by more than 15%
Design operating current I _e	25A 3× single-phase, 25A 1× three-phase
Utilisation category AC-51 to IEC 60947-4-3	
Minimum load current I _{nc min}	2A
Coordination type 1, system protection	30kA, 400V
IP protection type	IP20
Control circuit and main circuits isolation	U _{imp} 2.5kV
Isolation function EN60947-1 2.1.19	no position indicator for main contacts, device
	has no isolation function
Leakage current (input, output) separate	Less than 2mA (no electrical isolation)
Residual voltage during switching	1,2V max. 10ms
Temperature protection in the device	65°C warning, 80°C shutdown
Input protection circuits	Fuses
	IEC: 3× 10×38, 32A gG, 400V
	UL: 3× Class CC 30A, 600V
	varistors 510V
UL approval	
File E483362 Vol.1 Sec. 1	Type No. OM25-H cULus listed
Current / Voltage ratings	20A 3x single-phase, 20A 1x 3-phase 480VAC
Minimum load current I _{nc min}	2A
Short Circuit Current Rating SCCR to UL 508a	30kA, 480V with Class CC 30A
Maximum surrounding air temperature	40°C
Maximum surface temperature	55°C
Pollution degree	2
Maximum busbar temperature	110°C

Timing					
Max. switching frequency	1Hz				
Min. duration of actuation ports	100 ms	.00 ms			
Min. switch on duration of load	100 ms				
Min. switch off duration of load	100 ms				
Max. switch on delay	80ms				
Max. switch off delay	80ms				
Control circuits	1				
Design control supply voltage U _s to					
IEC 60947-1	24V DC				
UL 508	26.5V DC				
Control supply voltage, noise level "Safe off"	< 5V DC				
Design control supply current to IEC 60947-1	≤ 150mA				
Control input L1, L2, L3, L1+L2+L3					
Switching level "Low"	- 3 to 9.6 V [OC .			
Switching level "Safe off"	< 5V DC				
Switching level "High"	19.2V – 30V	DC			
Input current ≤ 3mA					
Check-back output					
Warning message	Floating contact, 1 normally open contact				
Max. switching voltage	24V AC/DC				
Max. continuous load current I _o	0.5A				
Error signal	Floating con	tact, 1 changeov	ver contact		
Max. switching voltage	48V AC/DC				
Max. continuous load current I _o	1A				
Front controls					
Buttons Select, Change, Enter	Parameter se	etting			
Manual button ON	Outputs swit	ched on in man	ual mode		
Main and Auto LED	Green = OK;	Orange = Warni	ing; Red = Error		
Current limit LED	Continuous	current limit val	ue 16A, 20A, 25A		
Esc / Reset button outside the hinged control panel	Acknowledge	ement of errors			
Drilled hinged cover	enables seali	ing			
Connection cross-sections					
Connection	Conductor IEC: UL type				
3-pin plug connector with spring terminals	Cu rm, f	1.5 – 6mm²	AWG16 – AWG8		
3-pin plug connector with screw terminals	Cu rm, f	1.5 – 6mm²,	AWG16 – AWG8		
		0.5-0.8Nm	7lb-in		
12-pin control plug with spring terminals	Cu f	0.2 –	AWG24 – AWG16		
		1.5mm²			

Derating relative to 25A continuous current through busbar system according to IEC 61439-2			
Single installation/Gap ≥ 36mm	RDF = 1.0	RDF = 0.9	RDF = 0.8
Layout with gap ≥ 9mm	RDF = 0.9	RDF = 0.8	RDF = 0.7
Side-by-side layout, gap 0mm (4 devices)	RDF = 0.8	RDF = 0.7	RDF = 0.6
Measurement with fuses 32A gG, load plug with screw terminals, busbar temperature 70°C			
Derating relative to 25A continuous current through CrossBoard® according			
to IEC 61439-2			
Installation ambient temperature up to	35°C	45°C	55°C
Single installation/Gap ≥ 36mm	RDF = 1.0	RDF = 0.9	RDF = 0.8
Side-by-side layout, gap 0mm	RDF = 0.6	RDF = 0.54	RDF = 0.48
Measurement with CrossBoard® CB405, fuses 32A gG, load plug with screw terminals			

