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Today’s Lecture

* Images as data
e Sequences as data
e Structures as data



What is an image?

* A visual representation in the form of a function f(x, y) where f
describes brightness (or color) at a point (x, y)

e Continuous in amplitude and space
* Most images are defined over a rectangle (but they don’t have to be)

illum 1n tabula per radios Solis, quim in ceelo contin-
git:hoc eft,fi n caelo fuperior pars deliquiil patiatur,in
radus apparebic inferior dehicere,vt ratio exigitoprica.

——

R e R T
Sic nos exaété Anno 1944 . Louani eclipfim Solis
obferuauimus , inuenimuséy deficere pauld plus § dex-
rantem,hoc eft. 1o.vncias iue digitos ve noftri loauun.-
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Athanasius Kircher, Dark Chamber with Lenses, 1946



What is a digital image?

* Discrete samples f[x, y] representing the continuous image f(x, y)

* Each element in this 2D array f[x, y] is called a pixel (from picture
element)

200x200 100x100 50x50 25x25
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What is a digital image?

e Ultimately a digital image is an array of numbers

Jonas Hartmann, Computational Image Analysis, 2017



Useful digital image properties

 Spatial resolution

» Width and height in pixels/length

(inches, cm, etc.)

* Intensity

e Number of channels

* RGB is 3 channels, grayscaleis 1

* Alpha channel is used to indicate

transparency

* Color spaces
* RGB, CMYK, HSV
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Color components

* The link between array values in single channel images and color

images are look up tables (LUTSs)
‘GRAY’ LUT ‘PLASMA’ LUT
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Color comoponents

Monochrome image

R[x,y] = G[x,y] = B[x,y]

Red R[x,y] Green G[x,y] Blue B[x,y]
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Digital images are multi-dimensional arrays

* Multi-channel images, time series images, and image stacks are just
multi-dimensional arrays

Image (y,x) Stack (z,y,x) Channels (c,y,x)

S - & -
-q -. s
Time Series (t,y,x) Copyright 2023 Caltech (t,c,z,y,x)

Jonas Hartmann, Computational Image Analysis, 2017



Digital hangover: data types

* Digital images vary in the precision used to store the array values

Int8

int16
int32
int64

Byte (-128 to 127) Used in image processing
Integer (-32768 to 32767) Produced by microscope
Integer (-2147483648 to 2147483647)

Integer (-9223372036854 775808 to 9223372036854775807)

| uint8

Unsigned integer (0 to 255)

uint16
uint32
uint64
float16

Unsigned integer (0 to 655395)

Unsigned integer (0 to 4294967295)

Unsigned integer (0 to 18446744073709551615)

Half precision float: sign bit, 5 bits exponent, 10 bits mantissa

float32

Single precision float: sign bit, 8 bits exponent, 23 bits mantissa

float64

Double precision float: sign bit, 11 bits exponent, 52 bits mantissa
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Jonas Hartmann, Computational Image Analysis, 2017



Digital hangover: data types

* A cautionary tale — image subtraction

26 5 42 103 45

A (np.uint8) B (np.uint8) A -B = C (np.uint8)

S PR

A25tyPE(nR Jnt16) - B.astype(np.int16) = C (np.int16)

Jonas Hartmann, Computational Image Analysis, 2017



Digital hangover: data types

* A cautionary tale - rescaling

94
102 38

2

34 ' 86 27 79 M2

38 . 80 57 83

A (np.uint16) A.astype(np.uint8) = C (np.uint8)

Rescales an array between 0 and x:

A — min(A) .
max(A) — min(A)

(((A - A.min()) / (A.max() - A.min{)))255).astype(np:uint8) = C (np.uint8)



Digital image processing: Contrast adjustment

* Contrast adjustment is the process of changing pixel intensities to
take advantage of the full range of values

* The goal is to maximize the intensity differences between different
objects or parts of the image, making them easier to see
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Digital image processing: Contrast adjustment

Low contrast image
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Digital image processing: Convolutions

* A convolution is a mathematical operation that produces a new
version of an existing function using selections of that function and a
second function

* In digital image processing this second function is called a kernel

* With the right kernel, convolutions can perform tasks and extract
important features
* Blurring — Gaussian kernel
* Edge finding
e Corner finding



Digital image processing: Convolutions

1D Image (a) 1 0 2 3110 3 2 3 0

kernel (k) 1 4 6 4 1

a[0:5] * k 1 0 |12 |12 | 10

sum(a[0:5] *k) | 35

sum(a[0:5] * k) / sum(k) | 2.2

Convolved 2.2
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Digital image processing: Convolutions

1D Image (a) 1 0 2 3110 3 2 3 0

kernel (k) 1 4 6 4 1

Convolved 2.2 143 |55|45 | 2.9

Note: Behavior at edges is undefined. Default in scipy is ‘reflect’.

jm_————m———— A -----l
(a) i 2 1 o|l1]lol23]10]3|2|3]|0]3 -|_ 2 !
|

05(10|22|43|55|45|129|18|0.9
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Digital image processing: Convolutions

0 0 10 10 20 30 20 10 10 O O
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Digital image processing: Convolutions

* Convolutions are a mathematical operation that “respect” translation

< Il

/

https://chriswolfvision.medium.com/what-is-translation-equivariance-and-why-do-we-use-convolutions-to-get-it-6f18139d4c59



Digital image processing: Convolutions

* The mathematical term for this

“respect” is translational B, =T(F)
eqU|Va Flance F = Cb(Xl) | Translation T Fy = ¢(X2)
* Equivariant mappings preserve

the algebraic structure of l |

1 eature / \ \  Feature
transformations monme A L\ mappine

* The mapping commutes with the ¢ ’
symmetry operation Translation T ~
Xo =T(X1)

https://chriswolfvision.medium.com/what-is-translation-equivariance-and-why-do-we-use-convolutions-to-get-it-6f18139d4c59



Digital image processing: Affine transforms

* Affine transformations transform a
shape while preserving
e Straight lines

» Relative distances of points on
straight lines

* We use affine transformations for
Image augmentation

* Image augmentation boosts the
diversity of our training data by
performing augmentation
operations that preserve the labels

A Square

.
_____

. .

Shearing

2l

Translaton

Scaling




Digital image processing: Affine transforms

* When used for augmentation with
pixel-level predictions, affine
transformations need to be applied
to both the image and the labels

* Applying the transformation to just
one corrupts the learning signal

» Affine transformations typically
involve interpolation of some kind
e Pay attention to how this happens!
* Image precision also matters!
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Digital image processing: Foreground
detection

RAW

* Foreground detection splits the background
and foreground of the image
* The end result is a binary True/False array
* This is also called a mask

* Thresholding is an essential part of
foreground detection
* Manual vs. automated
* Uniform vs. adaptive

* Morphological operations can improve the
quality of the final mask




Digital image processing: Thresholding

* There are many thresholding methods: Otsu’s method is one that you
should be aware of

Otsu’s method

* Assume the image contains 2 classes of pixels following a bi-modal histogram

e Search for the threshold that minimizes the intra-class variance
* Minimizing the intra-class variance is the same as maximizing the inter-class variance

Algorithm
Gf (t) = @ (t)wl (t) [“0 (t) — (t)]b 1. Compute histogram and probabilities of each intensity level
2. Set up initial w; (0) and ; (0)
Wo pbg + Wi = Mr 3. Step through all possible thresholds £ = 1, . .. maximum intensity
wo +wy =1 1. Update w; and p;

2. Compute o7 (t)
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ing

Thresholdi

image processing

Digital

* Masks from thresholded images can be used to operate on other

arrays/images
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MORPHOLOGICALLY PROCESSED

Morpholog

ing:

THRESHOLDED

Digital image process
operations
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Digital image processing: Morphological
operations

* Very similar in principle to filtering
e “Structuring elements” are used in a similar manner as kernels

 Common operations

0O 0 0 0 0 0 0 O O O O O0 O
 Erosion and dilation 0 o 0 o DISC-SHAPED SE
. . 0 0 0 0
* Opening and closing 5 L =
* Hole filling 0 o 0 0
0 0 0 0
0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0O 0 0 0 0 0O O O O O O 0 o

Copyright 2023 Caltech



Digital image processing: Morphological
operations

* Example: Dilation in 1D

1D binary (b) 0 0 0 1 1 0 0 0 0

1D binary (b) 0 0 0 1 1 0 0 0 0

SE (s) 0 1 1 1 0
SE (s) 0 1 1 1 0

Dilated 1 1 1 1

b[0:5] * s 0 0 0 1 0

:5] * 1
max(b[0:5] * s) 1Dbinary(b) | 0 |l ol o | 12| 1]o0]|lo|lo]o

SE (s) 0 1 1 1 0

Dilated 1

Dilated 1 1 1 1 0
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Digital image processing: Morphological
operations

* Multiple operations and fine tuning may be required to get the
desired result

* This fine-tuning often introduces “brittleness” into the pipeline — it works well
for data it was finetuned on and poorly for other sets

* Bypassing the need for this kind of fine-tuning is a big advantage of deep
learning

 Classical methods like morphological operations can still have a role in
building deep learning-enabled systems



Digital image processing: Connected
components
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Sequences as data

 Typical examples: amino acid sequences (proteins), nucleotide
sequences
* Nucleotides: A, C, (T/U), G
* Amino acids:A,R,N,D,C,Q,E,G,H,I|,L,K, M,F,PS, T, WY,V
* Time series: EKG, EEG, etc.

* Sequences often need a numerical encoding to make them amenable
to machine learning
* Time series sequences are an exception

e Even with a numerical encoding there are additional issues to make
sequences ML ready (e.g., uneven length, padding, etc.)



One hot encoding

cor o M
orr oo ()
OCoor I
_ O 0O O | = |
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OCoor P
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ocoor o O
o~ oo (|
coor P>
m oo o =— |
cCoork D>

- 0O O >

* Each token of a vocabulary gets labeled with all 0’s and a single 1

* Pros:
* Simple, fast, inexpensive
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One hot encoding

C GA TAACCGAT AT
A O 0 1 0 1 1 0 0 0 1 0 1 0
c 1 o O 0 o o 1 1 0 0O 0 o0 O
G O 1 0 0 0 O 0 0 1 0 0 0 0
T 0 0o O 1 o0 0 O 0 0 0 1 0o 1
* Cons:

e Sparse, memory inefficient, and high dimensional

* Low information content — no notion of similarity between sequence or structural
elements

* Dimensionality is fixed
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Learned embeddings

Map a token to a vector and
require this mapping to have
certain properties

X > k:k € R"

* Learned embeddings seek to map tokens to a
vector space in a particular way to ensure
that the embedding has specific properties

e Similar tokens are close together, while dissimilar
tokens are far apart

* Embeddings have information about the
sequence context

* There have been a variety of methods
developed to create useful embeddings
 word2vec, doc2vec
* Unsupervised k-mer sequence embeddings
* ESM Fold, AlphaFold, etc.

https://doi.org/10.1093/bioinformatics/bty178
https://www.pnas.org/doi/full/10.1073/pnas.2016239118
https://www.nature.com/articles/s41586-021-03819-2



https://doi.org/10.1093/bioinformatics/bty178
https://www.pnas.org/doi/full/10.1073/pnas.2016239118
https://www.nature.com/articles/s41586-021-03819-2

Learned embeddings

Unsupervised learning

Step 1:Break sequences into k-mers

1
ADT,IVA,VET

ADTIVAVET 2DTI, VAV
hiAd 3TIV,AVE
/Step 2:Train embedding model

1

ADT, IVA,VET
2DTI, VAV
371V, AVE

trained
embedding

.
doc2vec: B IVA

ADT,IVA,VET, T predict
W W [ ] average

RN

N

/

| | i

ADTIVAVET ADT VET

you has the highest probability you,they, your..

=

OUtpUt [CLS) how are ’ doing | today @[SEP]

I

BERT masked language model

IR R

Input [CLS] | how are doing | today @ [SEP]

Masked pre-training is a common technique with
language models and has been successful on protein
sequences
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Learned embeddings

C
G A °P
¢S
oT
xD oN
x E
gH
eQ
BR
mK

Biological property
® Negatively charged
M Positively charged

@® Hydrophobic
== Aromatic

® Polar

Unique

Size
® Small (<120 Da)
® Medium (120-150 Da)

@ Large (>150 Da)

Embeddings learned by ESM clustered amino acids by their side chain properties
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Structures as data

e Structural data captures the
spatial locations of the
component atoms in a molecule

* This data can be represented in a
variety of ways so it can be
presented to deep learning
models

* Each representation lends itself
to a different set of deep
learning methods

Copyright 2023 Caltech



Structures as data

* Voxel representation: Structural information is captured by assigning
features to a 3D grid
e Features can be occupancy, chemical properties, etc.

* Voxel representations effectively convert structures to 3D images, which makes them
amenable to vision models

Copyright 2023 Caltech https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6375647/




Structures as data

A <LN N * SMILES
) \O b * Simplified molecular input line
F entry system
B § * ASCII representation for chemical
~ \\\\_< stru.ctures
bt * Typically used for small molecules
3  Amenable to both language
c §3N ) models and vision models
'S4 \44 * One-hot encoding on top of
A SMILES representations has seen

some use

N1CCN(CC1)C(C(F)=C2)=CC(=C2C4=0)N(C3CC3)C=C4C(=0)O
[}



Structures as data

chemical One-hotcoding C C 1
compound %
CHy SMILES representation
1:C:C:C:C:C: i B -6
E:> cc E> ojo|o ‘

Learned filter

chemical
motif

One-hot encoding on top of SMILES representations has seen some use
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Structures as data

* Graph representation
 Atoms are nodes

Q(\ﬁ * Bonds are edges
rilsh™ e The graph can have node and edge

Linear Representation Graph Representation

Ascaney Mt features that are captured by their

CN1C=NC2=C1C(=0)N(C(=0)N2C)C ‘

Caffeine Molecule

Nod

- respective matrices

* The adjacency matrix captures

8 Attribute
8 Matrix

- the atom connectivity

v i

Molecular Fingerprint

_ The graph representation is
Word Embediing amenable to graph neural

OO0 O0O0O0O0O0O0O0~0O0=0
OO0 O0O0O0O0O0O0O0O~,0O0-_00
00000~ 0~,r0000

-
°

networks
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Structures as data

* Molecular point cloud

* Version of the graph
7\ AN }\ representation where the 3D
\ coordinates of atoms are captured
otatic Different variants of this idea exist
* Coordinates as node features

= L ~ JE . . : . .

i GEOMETRY [N Cecat TR | Encoding location via tor5|.on angles
,1 . o' » Different levels of resolution also
4P exist
i e e.g., only capture the location of the
T 2 ( Internal State [ Ca carbon for amino acids
- . |
L-Enm | COMPUTE  COMPUTE | * Amenable to graph neural
Protein Sequence n etWO rks
A M
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