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Today’s Lecture

• Images as data
• Sequences as data
• Structures as data
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What is an image?

• A visual representation in the form of a function f(x, y) where f 
describes brightness (or color) at a point (x, y)
• Continuous in amplitude and space
• Most images are defined over a rectangle (but they don’t have to be)

Athanasius Kircher, Dark Chamber with Lenses, 1946 
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What is a digital image?

• Discrete samples f[x, y] representing the continuous image f(x, y)
• Each element in this 2D array f[x, y] is called a pixel (from picture 

element)
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What is a digital image?

• Ultimately a digital image is an array of numbers

Jonas Hartmann, Computational Image Analysis, 2017 
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Useful digital image properties

• Spatial resolution
• Width and height in pixels/length 

(inches, cm, etc.)

• Intensity
• Number of channels
• RGB is 3 channels, grayscale is 1
• Alpha channel is used to indicate 

transparency

• Color spaces
• RGB, CMYK, HSV
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Color components

• The link between array values in single channel images and color 
images are look up tables (LUTs)

Jonas Hartmann, Computational Image Analysis, 2017 
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Color comoponents
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Digital images are multi-dimensional arrays

• Multi-channel images, time series images, and image stacks are just 
multi-dimensional arrays

Jonas Hartmann, Computational Image Analysis, 2017 
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Digital hangover: data types

• Digital images vary in the precision used to store the array values

Jonas Hartmann, Computational Image Analysis, 2017 
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Digital hangover: data types

• A cautionary tale – image subtraction

Jonas Hartmann, Computational Image Analysis, 2017 
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Digital hangover: data types

• A cautionary tale - rescaling
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Digital image processing: Contrast adjustment

• Contrast adjustment is the process of changing pixel intensities to 
take advantage of the full range of values
• The goal is to maximize the intensity differences between different 

objects or parts of the image, making them easier to see

https://www.mathworks.com/help/images/contrast-adjustment.html
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Digital image processing: Contrast adjustment
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Digital image processing: Convolutions

• A convolution is a mathematical operation that produces a new 
version of an existing function using selections of that function and a 
second function
• In digital image processing this second function is called a kernel
• With the right kernel, convolutions can perform tasks and extract 

important features
• Blurring – Gaussian kernel
• Edge finding
• Corner finding
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Digital image processing: Convolutions

Jonas Hartmann, Computational Image Analysis, 2017 
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Digital image processing: Convolutions

Jonas Hartmann, Computational Image Analysis, 2017 
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Digital image processing: Convolutions

Jonas Hartmann, Computational Image Analysis, 2017 
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Digital image processing: Convolutions

• Convolutions are a mathematical operation that “respect” translation

https://chriswolfvision.medium.com/what-is-translation-equivariance-and-why-do-we-use-convolutions-to-get-it-6f18139d4c59
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Digital image processing: Convolutions

• The mathematical term for this 
“respect” is translational 
equivariance
• Equivariant mappings preserve 

the algebraic structure of 
transformations
• The mapping commutes with the 

symmetry operation

https://chriswolfvision.medium.com/what-is-translation-equivariance-and-why-do-we-use-convolutions-to-get-it-6f18139d4c59
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Digital image processing: Affine transforms

• Affine transformations transform  a 
shape while preserving
• Straight lines
• Relative distances of points on 

straight lines

• We use affine transformations for 
image augmentation
• Image augmentation boosts the 

diversity of our training data by 
performing augmentation 
operations that preserve the labels
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Digital image processing: Affine transforms

• When used for augmentation with 
pixel-level predictions, affine 
transformations need to be applied 
to both the image and the labels
• Applying the transformation to just 

one corrupts the learning signal

• Affine transformations typically 
involve interpolation of some kind
• Pay attention to how this happens!
• Image precision also matters!
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Digital image processing: Foreground 
detection

• Foreground detection splits the background 
and foreground of the image
• The end result is a binary True/False array 
• This is also called a mask

• Thresholding is an essential part of 
foreground detection
• Manual vs. automated
• Uniform vs. adaptive

• Morphological operations can improve the 
quality of the final mask
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Digital image processing: Thresholding

• There are many thresholding methods: Otsu’s method is one that you 
should be aware of
• Otsu’s method
• Assume the image contains 2 classes of pixels following a bi-modal histogram
• Search for the threshold that minimizes the intra-class variance

• Minimizing the intra-class variance is the same as maximizing the inter-class variance
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Digital image processing: Thresholding

• Masks from thresholded images can be used to operate on other 
arrays/images
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Digital image processing: Morphological 
operations
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Digital image processing: Morphological 
operations
• Very similar in principle to filtering
• “Structuring elements” are used in a similar manner as kernels

• Common operations
• Erosion and dilation
• Opening and closing
• Hole filling
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Digital image processing: Morphological 
operations
• Example: Dilation in 1D

Jonas Hartmann, Computational Image Analysis, 2017 
Copyright 2023 Caltech



Digital image processing: Morphological 
operations
• Multiple operations and fine tuning may be required to get the 

desired result
• This fine-tuning often introduces “brittleness” into the pipeline – it works well 

for data it was finetuned on and poorly for other sets
• Bypassing the need for this kind of fine-tuning is a big advantage of deep 

learning
• Classical methods like morphological operations can still have a role in 

building deep learning-enabled systems
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Digital image processing: Connected 
components

Jonas Hartmann, Computational Image Analysis, 2017 
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Sequences as data

• Typical examples: amino acid sequences (proteins), nucleotide 
sequences
• Nucleotides: A, C, (T/U), G
• Amino acids: A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, V
• Time series: EKG, EEG, etc.

• Sequences often need a numerical encoding to make them amenable 
to machine learning
• Time series sequences are an exception
• Even with a numerical encoding there are additional issues to make 

sequences ML ready (e.g., uneven length, padding, etc.)
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One hot encoding

• Each token of a vocabulary gets labeled with all 0’s and a single 1
• Pros:
• Simple, fast, inexpensive
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One hot encoding

• Cons:
• Sparse, memory inefficient, and high dimensional
• Low information content – no notion of similarity between sequence or structural 

elements
• Dimensionality is fixed
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Learned embeddings

• Learned embeddings seek to map tokens to a 
vector space in a particular way to ensure 
that the embedding has specific properties
• Similar tokens are close together, while dissimilar 

tokens are far apart
• Embeddings have information about the 

sequence context
• There have been a variety of methods 

developed to create useful embeddings
• word2vec, doc2vec
• Unsupervised k-mer sequence embeddings
• ESM Fold, AlphaFold, etc.

Map a token to a vector and
require this mapping to have 

certain properties
𝑋 → 𝑘; 𝑘 ∈ 𝑅!

https://doi.org/10.1093/bioinformatics/bty178
https://www.pnas.org/doi/full/10.1073/pnas.2016239118
https://www.nature.com/articles/s41586-021-03819-2
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Learned embeddings

Masked pre-training is a common technique with 
language models and has been successful on protein 
sequences
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Embeddings learned by ESM clustered amino acids by their side chain properties

Learned embeddings
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Structures as data

• Structural data captures the 
spatial locations of the 
component atoms in a molecule
• This data can be represented in a 

variety of ways so it can be 
presented to deep learning 
models
• Each representation lends itself 

to a different set of deep 
learning methods
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Structures as data

• Voxel representation: Structural information is captured by assigning 
features to a 3D grid
• Features can be occupancy, chemical properties, etc.
• Voxel representations effectively convert structures to 3D images, which makes them 

amenable to vision models

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6375647/Copyright 2023 Caltech



Structures as data

• SMILES
• Simplified molecular input line 

entry system
• ASCII representation for chemical 

structures
• Typically used for small molecules
• Amenable to both language 

models and vision models
• One-hot encoding on top of 

SMILES representations has seen 
some use
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Structures as data

One-hot encoding on top of SMILES representations has seen some use

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-018-2523-5
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Structures as data

• Graph representation
• Atoms are nodes 
• Bonds are edges
• The graph can have node and edge 

features that are captured by their 
respective matrices
• The adjacency matrix captures 

the atom connectivity
• The graph representation is 

amenable to graph neural 
networks
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Structures as data

• Molecular point cloud
• Version of the graph 

representation where the 3D 
coordinates of atoms are captured
• Different variants of this idea exist

• Coordinates as node features
• Encoding location via torsion angles

• Different levels of resolution also 
exist
• e.g., only capture the location of the 

Cα carbon for amino acids
• Amenable to graph neural 

networks

https://www.nature.com/articles/s41587-022-01432-w
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