username | status | games |
---|---|---|
aboardgamebarrage | ever_owned | 456 |
aboardgamebarrage | own | 236 |
aboardgamebarrage | rated | 303 |
Predicting Board Game Collections
aboardgamebarrage’s Collection
About
This report details the results of training and evaluating a classification model for predicting games for a user’s boardgame collection.
To view games predicted by the model, go to Section 5.
Collection
The data in this project comes from BoardGameGeek.com. The data used is at the game level, where an individual observation contains features about a game, such as its publisher, categories, and playing time, among many others.
I train a classification model at the user level to learn the relationship between game features and games that a user owns - what predicts a user’s collection?
I evaluate the model’s performance on a training set of historical games via resampling, then validate the model’s performance on a set aside set of newer relases. I then refit the model on the training and validation in order and predict upcoming releases in order to find new games that the user is most likely to add to their collection.
username | years | type | Own | |
---|---|---|---|---|
no | yes | |||
aboardgamebarrage | -3500-2020 | train | 24339 | 179 |
aboardgamebarrage | 2021-2022 | valid | 9867 | 30 |
aboardgamebarrage | 2023-2028 | test | 9072 | 27 |
Types of Games
What types of game does the user own? The following plot displays the most frequent publishers, mechanics, designers, artists, etc that appear in a user’s collection.
Show the code
|>
collection filter(own == 1) |>
collection_by_category(
games = games_raw
|>
) plot_collection_by_category()+
ylab("feature")
The following plot shows the years in which games in the user’s collection were published. This can usually indicate when someone first entered the hobby.
Games in Collection
What games does the user currently have in their collection? The following table can be used to examine games the user owns, along with some helpful information for selecting the right game for a game night!
Use the filters above the table to sort/filter based on information about the game, such as year published, recommended player counts, or playing time.
Show the code
|>
collection filter(own == 1) |>
prep_collection_datatable(
games = games_raw
|>
) filter(!is.na(image)) |>
collection_datatable()
Modeling
I’ll now the examine predictive models trained on the user’s collection.
For an individual user, I train a predictive model on their collection in order to predict whether a user owns a game. The outcome, in this case, is binary: does the user have a game listed in their collection or not? This is the setting for training a classification model, where the model aims to learn the probability that a user will add a game to their collection based on its observable features.
How does a model learn what a user is likely to own? The training process is a matter of examining historical games and finding patterns that exist between game features (designers, mechanics, playing time, etc) and games in the user’s collection.
I make use of many potential features for games, the vast majority of which are dummies indicating the presence or absence of the presence or absence of things such as a publisher/artist/designer. The “standard” BGG features for every game contain information that is typically listed on the box its playing time, player counts, or its recommended minimum age.
I train models to predict whether a user owns a game based only on information that could be observed about the game at its release: playing time, player count, mechanics, categories, genres, and selected designers, artists, and publishers. I do not make use of BGG community information, such as its average rating, weight, or number of user ratings. This is to ensure the model can predict newly released games without relying on information from the BGG community.
What Predicts A Collection?
A predictive model gives us more than just predictions. We can also ask, what did the model learn from the data? What predicts the outcome? In the case of predicting a boardgame collection, what did the model find to be predictive of games a user has in their collection?
To answer this, I examine the coefficients from a model logistic regression with ridge regularization (which I will refer to as a penalized logistic regression).
Positive values indicate that a feature increases a user’s probability of owning/rating a game, while negative values indicate a feature decreases the probability. To be precise, the coefficients indicate the effect of a particular feature on the log-odds of a user owning a game.
The following visualization shows the path of each feature as it enters the model, with highly influential features tending to enter the model early with large positive or negative effects. The dotted line indicates the level of regularization that was selected during tuning.
Show the code
|>
model_glmnet pluck("wflow", 1) |>
trace_plot.glmnet(max.overlaps = 30)+
facet_wrap(~params$username)
Partial Effects
What are the effects of individual features?
Use the buttons below to examine the effects different types of predictors had in predicting the user’s collection.
Assessment
How well did the model do in predicting the user’s collection?
This section contains a variety of visualizations and metrics for assessing the performance of the model(s). If you’re not particularly interested in predictive modeling, skip down further to the predictions from the model.
The following displays the model’s performance in resampling on a training set, a validation set, and a holdout set of upcoming games.
Show the code
|>
metrics mutate_if(is.numeric, round, 3) |>
pivot_wider(
names_from = c(".metric"),
values_from = c(".estimate")) |>
::gt() |>
gt::sub_missing() |>
gtgt_options()
username | wflow_id | type | .estimator | mn_log_loss | roc_auc | pr_auc |
---|---|---|---|---|---|---|
aboardgamebarrage | glmnet | resamples | binary | 0.035 | 0.887 | 0.091 |
aboardgamebarrage | glmnet | test | binary | 0.020 | 0.857 | 0.019 |
aboardgamebarrage | glmnet | valid | binary | 0.020 | 0.771 | 0.016 |
An easy way to visually examine the performance of classification model is to view a separation plot.
I plot the predicted probabilities from the model for every game (during resampling) from lowest to highest. I then overlay a blue line for any game that the user does own. A good classifier is one that is able to separate the blue (games owned by the user) from the white (games not owned by the user), with most of the blue occurring at the highest probabilities (left side of the chart).
Show the code
|>
preds filter(type %in% c('resamples', 'valid')) |>
plot_separation(outcome = params$outcome)
I can more formally assess how well each model did in resampling by looking at the area under the ROC curve (roc_auc). A perfect model would receive a score of 1, while a model that cannot predict the outcome will default to a score of 0.5. The extent to which something is a good score depends on the setting, but generally anything in the .8 to .9 range is very good while the .7 to .8 range is perfectly acceptable.
Show the code
|>
preds nest(data = -c(username, wflow_id, type)) |>
mutate(roc_curve = map(data, safely( ~ .x |> safe_roc_curve(truth = params$outcome)))) |>
mutate(result = map(roc_curve, ~ .x |> pluck("result"))) |>
select(username, wflow_id, type, result) |>
unnest(result) |>
plot_roc_curve()
Top Games in Training
What were the model’s top games in the training set?
Show the code
|>
preds filter(type == 'resamples') |>
prep_predictions_datatable(
games = games,
outcome = params$outcome
|>
) predictions_datatable(outcome = params$outcome,
remove_description = T,
remove_image = T,
pagelength = 15)
Top Games in Validation
What were the model’s top games in the validation set?
Show the code
|>
preds filter(type %in% c("valid")) |>
prep_predictions_datatable(
games = games,
outcome = params$outcome
|>
) predictions_datatable(
outcome = params$outcome,
remove_description = T,
remove_image = T,
pagelength = 15)
Top Games by Year
Displaying the model’s top games for individual years in recent years.
Show the code
|>
preds filter(type %in% c('resamples', 'valid')) |>
top_n_preds(
games = games,
outcome = params$outcome,
top_n = 15,
n_years = 15
|>
) gt_top_n(collection = collection |> prep_collection())
Rank | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Byzanz | Jaipur | Innovation | Discworld: Ankh-Morpork | The Resistance: Avalon | Hemloch: Vault of Darkness | Spyfall | GEM | Omen: Edge of the Aegean | Dungeon of Mandom VIII | Cosmic Encounter: 42nd Anniversary Edition | Dune | Nidavellir | For Sale Autorama | SPYBAM |
2 | Modern Art Card Game | Hansa Teutonica | Politico: The Fall of Caesar | Omen: A Reign of War | Archipelago | Kobayakawa | Maskmen | 7 Wonders Duel | Honshū | Azul | Mr. Face | Omen: Fires in the East | Cat in the box | Oath | Cat in the Box: Deluxe Edition |
3 | Ultimate Werewolf: Ultimate Edition | Samurai: The Card Game | Dominion: Big Box | A Fake Artist Goes to New York | Fleet | Barrel Dice | Chimera | The Game + The Game on Fire | Insider | Merchants of Muziris | Brass: Birmingham | Detective: City of Angels | Omen: Heir to the Dunes | Kingdom Come | Kongkang: The Wild Party |
4 | Seii Taishogun | Greed Incorporated | Earth Reborn | Vanuatu | Terra Mystica | NFL Game Day | Tricks & Deserts | Keep | Neolithic | Breaking Bad: The Board Game | Pax Emancipation | One Night Ultimate Super Heroes | Insider Black | Import / Export: Definitive Edition | Harry Potter: Kampf gegen die dunklen Mächte |
5 | Steel Driver | Kuhhandel Master | London | Artus | Libertalia | Stone & Relic | The Nile Ran Red | Elysium | Vampire Queen | Cartouche Dynasties | The Quacks of Quedlinburg | One Night Ultimate Super Villains | Mezo | Kemet: Blood and Sand – Kickstarter Edition | White Elephant: A Gift Exchange |
6 | Red November | A Brief History of the World | Time's Up! Family | A Game of Thrones: The Board Game (Second Edition) | Tooth & Nail: Factions | A Study in Emerald | Port Royal | Hemloch: Midnight Edition | Junk Art | Jump Drive | TOKYO METRO | Marco Polo II: In the Service of the Khan | Florenza: X Anniversary Edition | The Diamond Swap | Make the Difference |
7 | Time's Up! Edición Amarilla | Telestrations | Bhazum | Takenoko | Uchronia | Skull King | La Isla | Watson & Holmes | Hit Z Road | Hemloch: Dark Promenade | Decrypto | SCOUT | Hello Neighbor: The Secret Neighbor Party Game | Moon Adventure | A Game of Thrones: B'Twixt |
8 | Le Havre | Steam | De Vulgari Eloquentia | Village | Yedo | Blueprints | Power Grid Deluxe: Europe/North America | Hordes of Grimoor | Scythe | Startups | Coimbra | Obscurio | Guild Master | Kemet: Blood and Sand | 1877: Stockholm Tramways |
9 | Cosmic Encounter | The Resistance | Age of Industry | Tournay | Rex: Final Days of an Empire | Habe fertig | Irish Gauge | Het Koninkrijk Dominion | Welcome Back to the Dungeon | The Game: Face to Face | Rising Sun | Century: A New World | Sacred Rites | Rome: Rising Empires | Desamparados: Stalingrado |
10 | Kheops | Imperial 2030 | The Hobbit | Mundus Novus | The Great Zimbabwe | Glass Road | Pandemic: Contagion | Soulfall | One Night Ultimate Vampire | Custom Heroes | Underwater Cities | Subtext | The Cost | Mint Bid | Blood on the Clocktower |
11 | Strozzi | Endeavor | In a Grove | The Castles of Burgundy | Urbania | Cinque Terre | Deception: Murder in Hong Kong | T.I.M.E Stories | SYNOD | Werewords | Century: Eastern Wonders | TOKYO COIN LAUNDRY | Hues and Cues | Facility 07 | GridL |
12 | Córdoba | Warhammer: Invasion | Irondale | Hemloch | Keyflower | Carcassonne: South Seas | Orongo | Grand Austria Hotel | GearSeed | One Night Ultimate Alien | The Mind | Ohanami | The Red Cathedral | Quest: Avalon Big Box Edition | Hunch! |
13 | Toledo | American Rails | Hotel Samoa | Friday | Kemet | Relic | Imperial Settlers | TROLL | Codenames: Deep Undercover | Sidereal Confluence | Yellow & Yangtze | Rurik: Dawn of Kiev | Enigma: Beyond Code | Ankh: Gods of Egypt | Revive |
14 | Giants | Pocket Rockets | Mystery Express | Dungeon Petz | The Palaces of Carrara | Bora Bora | Onirim (Second Edition) | One Night Ultimate Werewolf: Daybreak | Game of Thrones: The Iron Throne | A Game of Thrones: Catan – Brotherhood of the Watch | Newton | TOKYO GAME SHOW | Ninja Catfoot and the Covert Action | Bad Company | The Middle Ages |
15 | Nefertiti | Dominion: Intrigue | Asara | The City | 卑怯なコウモリ (Cowardly Bat) | Tash-Kalar: Arena of Legends | Sons of Anarchy: Men of Mayhem | Stockpile | Mino Dice | Claim | The Binding of Isaac: Four Souls | KOMBIO | 13 Monsters | Vitamors Conspiro | Ultimate Werewolf: Extreme – Super Collector's Edition |
Predictions
New and Upcoming Games
What were the model’s top predictions for new and upcoming board game releases?
Show the code
|>
new_preds filter(type == 'upcoming') |>
# imposing a minimum threshold to filter out games with no info
filter(usersrated >= 1) |>
# removing this goddamn boxing game that has every mechanic listed
filter(game_id != 420629) |>
prep_predictions_datatable(
games = games_new,
outcome = params$outcome
|>
) predictions_datatable(outcome = params$outcome)
Older Games
What were the model’s top predictions for older games?