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Abstract—The growing use of drones and other Unmanned
Aircraft Systems (UAS) is expected to make airspace resources
more congested, necessitating the use of UAS Traffic Management
(UTM) initiatives to ensure safe and efficient operations. The core
functions of UTM are to prevent the loss of airborne separation
and to mitigate congestion at departure or arrival points. These
functions can be achieved through revising the schedule by
assigning airborne delays (speed changes or path stretches) or
ground delays (delayed takeoff times) to aircraft.

Our work evaluates the fairness aspects of delay assignment
while attempting to achieve more efficient UTM. Dynamic and
high traffic demand, variability in UAS operators’ preferences,
and differences in vehicle capabilities can adversely impact the
fairness of the revised schedule. We show through computa-
tional experiments that, for certain fairness metrics, significant
improvements in fairness can be attained with very little decrease
in system efficiency. We also quantify the tradeoff between
efficiency and fairness under dynamic demand, when trajectories
are incorporated in a rolling horizon framework.

Keywords: Fairness; Equity; Efficiency; Air Traffic Flow Man-
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I. INTRODUCTION

The increasing demand for Unmanned Aircraft Systems
(UAS) and Urban Air Mobility (UAM) applications, such as
package delivery, aerial sensing, and air taxis, is expected to
dramatically transform air traffic. Recent studies estimate that
there will be demand for over 170,000 package-delivery drone
flights/hour over Paris by the year 2035, with some urban areas
projected to see a 200× increase in the number of flights due
to UAS operations, and a 30× increase from UAM operations
[1, 2]. These projections illustrate the critical need for UAS
Traffic Management (UTM) approaches to mitigate congestion
and ensure safety. Due to the dynamic and unscheduled nature
of UAS/UAM demand, any UTM system will need to employ
both tactical (i.e., near real-time) and strategic (i.e., minutes
or hours in advance) techniques to ensure the safe separation
of aircraft, to avoid congestion in the airspace and at take-
off/landing zones (vertiports), and to improve system efficiency.

This work was supported in part by A3 by Airbus under contract number
40008574, and NASA under grant number 80NSSC19K1607.

This paper considers the strategic aspects of UTM, with a
particular focus on the tradeoffs between system efficiency and
fairness to aircraft operators. The starting point of our research
is the significant body of related prior work on air traffic
flow management (ATFM), which has focused on conventional
aircraft. The key idea behind ATFM is to proactively manage
congestion by anticipating traffic demand and predicting the
usage of various airspace and airport resources, with respect
to their capacities. Delays are then assigned to aircraft, either
before departure (i.e., on the ground) or in the air (through
airborne holds or speed changes), in order to meet resource
capacity constraints. The overarching objective of ATFM is to
improve system efficiency by reducing the total delay, and by
absorbing unavoidable delays on the ground, where they are
less costly, rather than in the air.

The revised schedule that minimizes system delay may
unevenly distribute delay between different flights or operators.
Also, the optimal solution may increase schedule reversals,
wherein a flight f1 arrives at a resource before another flight
f2, which was originally scheduled to arrive at that resource
before f1. These scenarios capture a notion of unfairness, where
certain flights are more delayed than others or the schedule
order deviates from the first-scheduled first-served sequence. A
key challenge while considering fairness in UTM is that there
are multiple reasonable definitions of fairness. Furthermore, the
different notions of fairness may not be aligned.

Enforcing a notion of fairness could result in a loss in
efficiency. For instance, barring maximum delay limits, flights
could be delayed indefinitely to ensure first-scheduled-first-
served ordering. Thus, one can consider a spectrum of con-
straints, ranging from no fairness considerations to complete
fairness in the revised schedule. As fairness levels increase, the
system efficiency, measured in terms of total delay, is expected
to decrease.

A. Motivation

This paper adapts solutions to the classic ATFM problem to
the UTM context. The focus of our analysis is fairness, which
has been recognized as a key consideration by industry stake-
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holders and regulators [3]. If fairness is not addressed, the sys-
tem will benefit first-movers or large operators of UAS, stifling
new entrants. Additionally, the system may incentivize strategic
behavior (e.g., filing ‘fake’ UAS missions, or exaggerating
vehicle limitations) that compromises safety and efficiency. In
addition, an organization could be a UAS Service Supplier
(USS) as well as a UAS operator in the same airspace. Policies
that ensure a certain degree of fairness are thus needed to
prevent the monopolization of airspace. Finally, it is preferable
to consider fairness while discussions about UTM architectures
are at their infancy, rather than later in a post hoc manner. In
summary, our work helps address the following questions: What
are the trade-offs between efficiency and fairness in UTM? Can
we quantify the loss in efficiency when incorporating varying
degrees of fairness? What are different notions of fairness and
are some more preferable than others?

B. Prior Work

The efficient allocation of constrained airspace and airport
resources has been studied extensively, from a single-airport
scenario to the entire system. Fairness and equity have been
considered in the context of arrivals at a capacity-constrained
airport [4, 5]. The ATFM problem, which considers both
airspace and ground resources, is more challenging to address;
however, significant progress has been made in solving this
problem over the past two decades [6, 7, 8].

Fairness in ATFM has previously been defined in terms
of three popular metrics: reversals [9], overtakings [9], and
time-ordered-deviation [10]. Several definitions of fairness have
also been proposed and analyzed in the context of trajectory-
based operations. For instance, max-min fairness [11], cost-
based penalization for fairness and equity [12], and accrued
delay [13] have been considered. This paper complements
these works by showing that some of these metrics may be
aligned, whereas others may measure fairness along relatively
orthogonal dimensions.

The study of fairness in the UTM context [14] is a nascent
field. Proposed ideas include auctioning the airspace [15] or in-
troducing fairness in decentralized operations [16]. While there
has been recent work on federated and distributed approaches to
UTM [8], this paper considers fairness in a centralized setting.

C. Contributions and Main Findings

The contributions of this paper are threefold. First, we
identify the nuances of the UTM context that prevent the direct
application of ATFM solutions. Second, our work emphasizes
that there is no all encompassing metric of fairness, and that
the choice of metric may be critical in determining the optimal
allocation of resources. Finally, we use realistic simulations,
including trajectory data from an Airbus simulator, battery-life-
based flight time constraints, dynamic demand with low file-
ahead times, and a rolling horizon implementation to evaluate
the tradeoffs between efficient and fair solutions in a practical
UTM setting.

Our major findings are as follows:
1) Depending on the fairness metric, a significant improve-

ment in fairness can be obtained in exchange for little to
no decrease in system efficiency.

2) Some fairness metrics may be aligned in the sense that
they can be jointly optimized and improved upon. On the
other hand, other fairness metrics may be misaligned, and
optimizing one may worsen another.

3) Dynamic demand, or demand with low file-ahead times,
can be incorporated in the TFMP by using a rolling
horizon framework. However, a rolling horizon frame-
work reduces system efficiency. Interestingly, fairness of
the solution may improve or worsen, depending on the
metric.

II. UAS/UAM TRAFFIC FLOW MANAGEMENT (UTFM)

ATFM in the context of UTM poses a set of unique chal-
lenges that are not present in the original problem.

A. Confounding Factors in UTFM

Unlike airlines, UAS/UAM operators are likely to have a
wider range of preferences based on their mission requirements
and vehicle capabilities. For instance, the delay cost of a
package delivery mission may be very different from that of
an aerial pollution monitoring platform. Vehicles with limited
range and endurance, or even fixed wing drones, may be more
sensitive to airborne delays, speed restrictions, or holds, as
compared to rotary wing drones. Secondly, UTM demand is
expected to be highly dynamic, making it more difficult to
anticipate the usage of airspace and vertiport resources. UAS
operators may also file their flight plans with short, and varying
advance notice. The UTM system needs to support such on-
demand mobility applications. Finally, the projected scale of
UAS/UAM operations is so large that there will be a significant
need for congestion mitigation through UTM. The scale of
operations will also magnify the impact of any unfairness in
the allocations, which could affect thousands of aircraft every
hour.

B. Conventional Implementation of ATFM

Certain features of conventional aviation make ATFM easier
to implement in practice. It is worth highlighting them and com-
paring them to the case of UTM. Firstly, airport constraints are
generally considered the primary bottlenecks and are prioritized
over airspace flow constraints. However, for UAS operations,
parts of the airspace may be more congested than vertiports,
which are easier to build and operate than airports. Fairness
has not been considered in detail in the context of networked
airspace resources. Secondly, there is little unscheduled or
pop-up demand with commercial aviation, and schedules are
generally known months in advance. By contrast, UTM demand
is expected to be dynamic and unscheduled, with low lead times
in flight plan filings.
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C. Addressing UTFM challenges

We address these challenges by (a) comparing multiple
metrics of fairness (overtakings, number of reversals, and time-
ordered-deviation) and evaluating the performance of one met-
ric when the system is optimized for another; (b) leveraging an
industry-developed UAS/UAM traffic simulator for the dynamic
demand and trajectories; and (c) implementing UTFM in a
receding horizon manner to account for dynamic demand and
low file-ahead times.

III. THE TRAFFIC FLOW MANAGEMENT PROBLEM (TFMP)

In this section, we present the main formulation for the
traffic flow management problem. We describe three metrics
to measure fairness and show how they can be incorporated in
the optimization. The initial formulation is the classical ATFM
formulation presented in [6].

A. Setup and Notations

Consider time to be discretized, with each time interval of
length ∆T , and the set of all time periods T = {1, . . . ,T}.
The set of all airports is A , and the set of all airspace
sectors is S . The capacity of each airport a ∈ A and sector
s ∈S for every time period t ∈ T is denoted by ca,t and cs,t
respectively. Associated with every flight f ∈F is a schedule
departure time d f , origin airport orig f , scheduled arrival time
a f , destination airport dest f , and a list of sectors that it must fly
through S f . Each flight has a path that begins at an airport,
traverses multiple sectors, and ends at an airport. Moreover,
each flight has a set of times T f

j that it can arrive at sector
or airport j. Each sector s has a capacity at time t, C(s, t).

T : Set of time periods {1, . . . ,T} of length ∆T
A : Set of all airports
S : Set of all airspace sectors
F : Set of all flights

C(s, t) : Capacity of sector s ∈S at time t
A(a, t) : Arrival capacity of airport a ∈A at time t
D(a, t) : Departure capacity of airport a ∈A at time t

a f : Scheduled arrival time for flight f ∈F
d f : Scheduled departure time for flight f ∈F

S f : Sequence of sectors in flight f ’s scheduled
S f

j : Next sector after j in flight f ’s trajectory
P f

j : Sector preceding j in flight f ’s trajectory
orig f : Origin airport for flight f
dest f : Destination airport for flight f
l f ,s : Minimum time spent by flight f in sector s
M : Maximum delay for each flight

T f
j : Set of feasible time periods for flight f to arrive

at resource j ∈S ∪A (airport or sector)
T̄ f

j : Latest time in the set T f
j

T f
j : Earliest time in the set T f

j

B. Baseline TFMP

The objective function minimizes total delay cost (T DC).
The expression for total delay cost (TDC) is T DC = GD +
αAD, where total delay (TD) includes ground delay (GD) and
airborne delay (AD) and α is the ratio of airborne delay cost
to ground delay cost. The expression can be manipulated as
follows: T DC = GD+αAD = GD+α(T D−GD) = αT D−
(α − 1)GD. Below, the costs of total delay and ground delay
are super-linear to favor evenly-distributed delays.

c f
total(t) = α(t−a f )1+ε (1)

c f
g(t) = (α−1)(t−d f )1+ε (2)

T DC = ∑
f∈F

( ∑
t∈T f

dest f

c f
total(t)(w

f
dest f ,t

−w f
dest f ,t−1)

− ∑
t∈T f

orig f

c f
g(t)(w

f
orig f ,t

−w f
orig f ,t−1)) (3)

The following constraints must be satisfied:

∑
f∈F : orig f =k

(w f
k,t −w f

k,t−1)≤ D(k, t), ∀k ∈A , t ∈T (4a)

∑
f∈F : dest f =k

(w f
k,t −w f

k,t−1)≤ A(k, t), ∀k ∈A , t ∈T (4b)

∑
f∈F : i∈S f , j=S f

i

(w f
i,t −w f

j,t−1)≤C( j, t), ∀t ∈T (4c)

w f
i,t = 0, ∀ f ∈F , t = T f

j −1, i = S ∪A (4d)

w f
i,t = 1, ∀ f ∈F , t = T̄ f

j , i = S ∪A (4e)

w f
i,t −w f

j,t−l f , j
≤ 0, ∀ f ∈F , t ∈ T f

i ,

i ∈S f : i 6= orig f , j = P f
j

(4f)

w f
i,t−1−w f

i,t ≤ 0 ∀ f ∈F , i ∈S f , t ∈ T f
i (4g)

w f
i,t ∈ {0,1} ∀ f ∈F , i ∈S f , t ∈ T f

i (4h)

The key aspect of the formulation that lends computational
tractability to larger scale problems is the choice of the decision
variable w f

i,t , which is a binary variable that is non-decreasing
in time (Constraints (4g) and (4h)). w f

i,t is 1 if flight f has
arrived at resource i by—but not necessarily at—time t. Thus,
a flight f is said to enter a resource i (which could be an airport
or a sector) at time t if (w f

i,t −w f
i,t−1) = 1. Constraints (4a),

(4b), and (4c) enforce departure, arrival, and sector capacities,
respectively. Constraint (4d) ensures that a flight does not
reach a sector before the earliest feasible time. Analogously,
constraint (4e) enforces that a flight must arrive at a sector
before the latest feasible time. The minimum time to be spent
in each sector is described in Constraint (4f).

C. Fairness Metrics

We focus on two candidate notions of fairness, which we
describe qualitatively below. We then incorporate them into the
baseline TFMP formulation.
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1) Reversals and overtaking [9]: According to this notion,
a fair solution is one in which the relative ordering of arrivals
at any resource is preserved according to published schedules.
More precisely, a flip in the ordering of flight arrivals at a sector
or an airport with respect to the original schedule is called as
a reversal, and the magnitude of the reversal, in terms of the
difference in arrival times is referred to as overtaking.

Two additional sets for reversals and overtaking are defined
below.

R j : Pairs of reversible flights
T r

f , f ′, j : Set of time periods common for flights f and
f ′ where a reversal could occur at resource j

λr : Penalty factor for reversals
λo : Penalty factor for overtaking

For reversals, we define a new variable s f , f ′, j which is 1
if flight f ′ arrives before flight f at resource j, where f was
scheduled to arrive before f ′, and 0 otherwise. In the objective
function, we sum the previously defined T DC with the total
number of reversals multiplied by a weight λr.

min T DC + λr ∑
j∈S,( f , f ′)∈R j

s f , f ′, j (5)

The following constraint must be satisfied:

s f , f ′, j = max(0,w f ′
j,t −w f

j,t) ∀t ∈ T r
f , f ′, j (6)

For overtaking, we define a new variable si
f , f ′, j which is 1

if flight f ′ arrives but flight f does not arrive by time T f
j + i in

resource j, where f was scheduled to arrive before f ′, and 0
otherwise. The objective function looks similar to incorporating
reversals, but note that si

f , f ′, j is summed over the cardinality of
T r

f , f ′, j.

min T DC + λo

|T r
f , f ′, j |

∑
j∈S,( f , f ′)∈R j

si
f , f ′, j (7)

The following constraint must be satisfied:

si
f , f ′, j = max(0,w f ′

j,T f
j +i
−w f

j,T f
j +i

) (8)

2) Time-order deviation [10]: In this section, we describe
the time-order deviation metric used to quantify fairness. We
calculate the first-come first-serve (FCFS) arrival time FCFS f

i
for each flight f at resource i that it goes through, assuming
that i was the only constrained resource. With first-come first-
serve, arrival slots are assigned to flights according to the
original schedule ordering. For each flight, we then calculate
the maximum FCFS delay dFCFS

f .
FCFS f

i : First-come first-serve arrival time for
flight f at resource i assuming that i was
the only constrained resource (i∈S ∪A )

dFCFS
f : Maximum FCFS delay for flight f

c f
TODA(t) : Additional delay cost when flight f is

delayed for time t
λt : Penalty factor for time-order deviation

The intuition behind time-order deviation is as follows. When
there are multiple constrained resources, each flight should not
expect to incur any less delay than it would incur as a result
of only the most constrained resource along its route. In other
words, there is a notion of expected delay, that every flight is
inherently entitled to be assigned, and only delays beyond this
expected delay should be equalized among the multiple flights.
Thus, for every flight f ∈F , the maximum delay that it would
have been assigned as a result of only the most constraining
resource is

dFCFS
f , max

i∈S∪A
FCFS f

i (9)

Thus, the modified optimization problem is

min T DC + λt ∑
f

T

∑
t=a f

c f
TODA(t)(w

f
dest f ,t

−w f
dest f ,t−1),

where c f
TODA(t) = (max{0, t−a f −dFCFS

f })1+ε . (10)

IV. EXPERIMENTAL SETUP

A. Scenario generation

We use a package delivery scenario created by Airbus
where four operators in Toulouse, France have warehouses
on the outskirts of the city and make deliveries in locations
randomly distributed around the city [17]. The vertiport traffic is
determined through a Poisson process. Each flight has a desired
4D trajectory (three spatial dimensions with time as the fourth
dimension). For simplicity, only the outbound flight segments,
from the warehouse to the delivery site, are considered. We
used two demand scenarios: 50 flights/hour and 25 flights/hour
per vertiport. Fig. 1 shows the scenario with 50 flights/hour.

Fig. 1: Simulation map with 4 vertiports.

One of the key requirements of the TFMP formulation is
that time is discretized into timesteps. We rounded sector entry
and exit times to the nearest 60 s, while ensuring that each
flight spent at least one timestep in each sector. We set a sector
time discretization threshold of 3 s, and omit a sector from a
flight’s trajectory if it spent less than 3 s in it. Also, the TFMP
formulation requires that a flight may only traverse through a
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TABLE I
LIST OF PARAMETERS

Parameter Value
Timestep Size 60 s

Sector X-Y Dimensions 1 km × 1 km
Sector Z Dimension (Height) 65 m

Sector Capacity 1 per sector
Departure Capacity 2 per timestep

Sector Discretization Threshold 3 s
Maximum Battery Life 20 min.

Airborne Delay Cost to Ground Delay Cost Ratio α = 3

sector once. We smoothed the trajectory in 8 instances where a
flight entered a sector multiple times. For example, a flight that
entered sector A, briefly left to sector B, then reentered sector
A would be modified to stay in sector A.

An additional factor that we accounted for was maximum
battery life, which we assumed to be 20 min. We used the
remaining battery life and the unimpeded time-to-destination
to calculate an upper-bound on airborne delay for each flight at
each sector. Table I lists some additional parameters used for
the experiment.

B. Fairness-Efficiency Tradeoff

We seek to evaluate the fairness-efficiency tradeoff when in-
corporating one of three fairness metrics: reversals, overtaking,
or time-order deviation. Recall that the weight that a fairness
metric is given is represented by λr, λo, or λt . We vary these
values to generate fairness-efficiency curves. We use total delay
cost as a measure of efficiency (refer to equation (3)). Note
that total delay cost is distinct from total delay, as it penalizes
airborne delay 3 times more than ground delay.

C. Rolling Horizon Implementation

The standard TFMP formulation assumes that the demand is
not only deterministic, but also known well in advance. Given
the on-demand nature of many UTM applications, this is not a
safe assumption. One way around this challenge is to implement
a rolling horizon version of the TFMP. With a rolling horizon
of length n minutes long, we propose to solve the TFMP once
for every horizon (i.e. every n minutes). Each flight is thus
scheduled to takeoff in one horizon and must file their flight
plan before the start of the horizon. Once a flight is assigned a
revised schedule, it is fixed and acts as a constraint for flights in
the next step. For example, if n = 5 mins., we solve the TFMP at
6:00, 6:05, 6:10, and so on. All flights departing between 6:05
and 6:10, regardless of intended flight duration, must file before
6:05. At 6:05, all flights scheduled to depart between 6:05 and
6:10 are considered for planning (from takeoff to landing), and
their revised schedule constrains flights and resource capacities
in subsequent horizons. To enable greater flexibility, while
planning flights for a time horizon, one may also reconsider
any previously scheduled flights; we are currently exploring
this implementation.

V. RESULTS

A. Fairness-Efficiency Tradeoffs

Incorporating fairness metrics in the objective function re-
sults in an inherent tradeoff between fairness and efficiency,
measured in terms of the total delay cost. In the baseline
formulation, there is no fairness consideration, and the objective
function is simply the total delay cost. Thus, when incorporat-
ing fairness metrics in the objective function, the total delay
cost either remains the same or increases as the additional
terms drive the solution away from the optimal delay cost. In
return, we expect fairness to increase. Additionally, we want to
evaluate the effect of incorporating one fairness metric in the
objective on other fairness metrics.

Fig. 2 shows the average number of reversals per flight
and the total delay cost when minimizing total delay cost
for various scenarios. The ‘Baseline’ case minimizes the total
delay cost, and the other three cases (‘Reversal’, ‘Overtaking’,
‘TODA’) incorporate one of the three fairness metrics. Results
are shown for a high demand scenario (vertiport demand of
50 flights/hour) and a low demand scenario (25 flights/hour).
For each scenario, there is one data point for the baseline case,
but several data points for reversals, overtaking, and TODA,
corresponding to different λr, λo, and λt values, respectively.

We first look at the results of incorporating reversals as a
fairness metric in the low demand scenario (shown as blue
hexagon points). As λr increases, the number of reversals
decreases and the total delay cost increases relative to baseline
(shown as a black square). For small λr values, it is possible
to reduce the number of reversals with no increase in total
delay cost. For example, when λr = 0.4 the number of reversals
per flight decreases to 0.23 (compared to 0.54 in the baseline)
with no increase in total delay cost. With further increases in
λr, decreases in reversals are smaller and become increasingly
expensive in terms of the total delay cost. At λr = 10 the
optimal solution has only 3 reversals (equivalent to an average
of 0.03 reversals per flight) but an average delay cost per flight
of 1.86 (a 19% increase compared to 1.56 in the baseline).
Overall, the average number of reversals decays exponentially
with increasing total delay cost. This is because to prevent a
pair of flights from being reversed, it may be necessary for one
flight to incur excess delay. In the absence of limitations on the
maximum delay a flight can endure, the number of reversals
could be driven to zero at the cost of very high total delay.

In the high demand scenario, the new baseline (shown as
a black circle) has a higher average number of reversals and
average total delay cost than the previous baseline correspond-
ing to a demand of 25 flights/hour. This is expected, as more
congestion leads to more flight interactions and potential for
reversals. Incorporating reversals in the objective has a similar
effect as doing so with lower demand. The tradeoff curve has
a similar shape, and for very high λr, the average number
of reversals approaches zero while average total delay cost
increases substantially.
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Fig. 2: Reversals vs. Total Delay Cost (TDC) when incorpo-
rating different fairness metrics. The hourly demand level is
shown in parentheses.

Fig. 3: Overtaking vs. Total Delay Cost (TDC).

Incorporating overtaking produces nearly identical results
as when incorporating reversals. In many cases they have
identical optimal solutions, not only with regard to fairness and
efficiency, but also concerning schedule and delay allocation.
This is expected since the two fairness metrics are intertwined,
with overtaking measuring the magnitude of time duration
that a given pair of flights was reversed. Whereas reversals
and overtaking are nearly in lockstep, time-order deviation
behaves differently from reversals or overtaking. For small λt ,
incorporating time-order deviation can lead to a decrease in
the average number of reversals with little to no increase in
the total delay cost, especially for the high demand scenario.
However, incorporating time-order deviation does not decrease
the average number of reversals as much as explicitly incor-

porating reversals. For larger λt , the optimal solution does not
change and no further reductions in reversals are apparent.

Fig. 3 is similar to Fig. 2 but displays average overtaking (in
minutes) instead of the number of reversals on the y-axis. Since
reversals and overtaking are closely related, it comes as no
surprise that the efficiency-fairness tradeoff of both are similar.
Average overtaking decreases exponentially in relation to the
total delay cost, and for very large λr or λo, it is possible
to reduce overtaking to zero, albeit at a great expense to the
total delay cost. Incorporating time-order deviation impacts
overtaking similarly to the way it impacted reversals.

Fig. 4 shows the average time-order deviation (in minutes)
on the y-axis. We first consider how incorporating time-
order deviation in the objective affects the average time-order
deviation per flight. As λt increases, the average time-order
deviation decreases and the average total delay cost increases.
The decreases in time-order deviation are modest, but more
pronounced in the high demand scenario, for which the tradeoff
between the average time-order deviation and the average total
delay cost is linear. At λt = 2, the average time-order deviation
decreases by 4.5% and the total delay cost increases by 3%.
The increase in total delay cost happens despite a reduction in
total delay (from 208 min in the baseline to 201 min)––this
is because the airborne delay (which is 3x more costly than
ground delay) increases.

Fig. 4: Time-Order Deviation vs. Total Delay Cost (TDC).

While penalizing reversals or overtaking can drive its value
to zero, it is not possible to drive the average time-order
deviation to zero, no matter how large λt gets. This is inherent
to the way time-order deviation is defined (10). If all flights
have delay assigned greater than or equal to their maximum
expected delay, time-order deviation cannot be reduced by
reallocating delay to flights that have delay assigned less than
their maximum expected delay. Instead, time-order deviation
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can only be decreased by also decreasing total delay. Thus,
when all flights have delay assigned that is greater than or equal
to their maximum expected delay and the total delay has been
minimized, then the time-order deviation is also minimized.
This appears to be the case here, as minimizing the total delay
rather than total delay cost in the objective function in the high
demand scenario leads to an optimal solution with the same
201 min of total delay seen with λt = 2. Incorporating reversals
or overtaking results in a 17% increase in average time-order
deviation in the low demand scenario and a 13% increase in
the high demand scenario. In contrast, incorporating time-order
deviation can slightly decrease reversals or overtaking.

While the improvement in the average time-order deviation
when penalizing time-order deviation may appear modest,
there is another benefit. Since the cost coefficient for time-
order deviation is a super-linear function, evenly distributed
time-order deviation is preferred over lopsided distributions.
As such, incorporating time-order deviation also reduces the
standard deviation of time-order deviation across flights. As
λt increases, the standard deviation decreases; λt = 2 results
in a 27% decrease in the standard deviation of time-order
deviation relative to the baseline. Further, incorporating time-
order deviation bounds the loss in efficiency while remaining
robust to the choice of λt . These observations suggest that time-
order deviation may be a suitable fairness metric in practice.

B. Rolling Horizon Implementation

In this section, we discuss the results when using a rolling
horizon of varying size for the high demand scenario (50
flights/hour). In Fig. 5, the total number of reversals vs. the
total delay cost is shown for the case with no rolling horizon
(‘Deterministic’), identical to the previous section, and cases
with 15-minute and 5-minute rolling horizons. The rolling
horizon concept works for flights of any intended duration, but
it does require that flights file their flight plan before the start of
the horizon. Only the results of incorporating reversals or time-
order deviation are shown, as overtaking behaves very similarly
to reversals. Note that fairness is only incorporated among the
flights that are planned in a given horizon.

We first look at the impact of the rolling horizon in the
baseline case (no fairness metric incorporated). Recall that in
our implementation of the rolling horizon, flights from the
previous time step cannot be changed, eliminating the ability
to shuffle those flights with flights from the current time step.
While this lowers the number of reversals, it comes at the
expense of total delay cost. Thus, compared to the deterministic
baseline, both of the rolling horizon baselines (15-minute and
5-minute horizons) have a lower number of reversals and a
higher total delay cost. Flights are planned for the 5-minute
rolling horizon with even less information than with the 15-
minute rolling horizon; thus, it is not surprising that the total
delay cost for the 5-minute rolling horizon is greater than that
of the 15-minute rolling horizon.

The 15-minute rolling horizon (depicted with orange hexagon
points) is similar to the deterministic case, except the decrease
in fairness (reversals) is not exponential but close to a linear
decrease. Incorporating time-order deviation generally increases
the number of reversal. With the 5-minute rolling horizon,
incorporating reversals (green hexagon points) follows the ex-
pected behavior: decreasing number of reversals for increasing
total delay cost. Also, the number of reversals plateaus after
very little increase in total delay cost. This is likely since
fewer flights in each time step results in less leeway to adjust
schedules to untangle reversals.

Fig. 5: Reversals vs. Total Delay Cost (TDC), by length of
rolling horizon.

Fig. 6: Time-Order Deviation vs. Total Delay Cost (TDC), by
length of rolling horizon.
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Fig. 6 is similar to Fig. 5, except it shows time-order
deviation rather than the number of reversals on the y-axis. We
observe that decreasing the length of the planning horizon (from
deterministic to 15 minutes to 5 minutes) increases the total
delay cost and the time-order deviation. This is in contrast to
the trend with reversals, which decreased when using a rolling
horizon, relative to baseline. Additionally, we note that in the
rolling horizon case incorporating reversals increases the time-
order deviation, similar to the deterministic case. The impact
of incorporating time-order deviation is unclear. For the 15
and 5-minute horizons, incorporating time-order deviation did
not always improve time-order deviation. In fact, sometimes
it increased time-order deviation, highlighting that a ‘greedy’
approach in every horizon may not lead to optimal outcomes
in the longer term.

VI. CONCLUSIONS

This paper explores incorporating fairness metrics in UTM.
Before deciding the extent to which fairness is implemented,
it is important to choose a metric that defines fairness. From
our analysis, time-order deviation appears to be a promising
metric for fairness as it is robust to the specific choice of the
λ penalty, strives for equality in a relative sense rather than
on an absolute scale, and does not significantly compromise
efficiency. However, it is also worth remembering that a sig-
nificant fraction of the improvements in fairness and reversals
can be obtained for a small penalty in delays if the appropriate
λ is chosen. The UTFM framework can be used to evaluate
the centralized efficiency and fairness of any trajectory set
(e.g., trajectories with different demand profiles or ‘geofenced’
airspace restrictions).

Given the diversity of potential users of UTM, an area of
ongoing work is incorporating operator preferences into the
UTFM formulation. Operator preferences of several types need
to be studied ranging from the objective functions, preferred
choice of fairness metric, the extent of fairness desired, air
hold to ground hold cost ratio, and the maximum acceptable
delay. Presently, we are performing experiments to address the
following questions: (a) How does adding fairness preferences
for one set of vehicles change the fairness metrics for other
vehicles (a measure of the externality on the system); and (b)
are aligned fairness preferences (i.e., the same choice of fairness
metric) of different operators better for individual operators
than the scenario in which operators differ in their fairness
preferences.

Finally, we believe there is significant scope for future work
with respect to the rolling horizon implementation of UTFM.
One potential extension would allow the re-planning of airborne
flights that have already been scheduled. In the extreme case,
the rolling horizon could be implemented such that each flight
is scheduled on-demand.
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