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Using Fault Trees to Compute 
UAV Mission Risk 

 
Abstract 
Project Altiscope is using fault trees to better understand the factors driving UAS loss of 
control accidents. Through extensive modeling and statistical analysis, we find that 
weather, electrical system and maintenance-related variables have the greatest 
influence on whether a UAV is likely to lose control and crash. In modeling flyaway 
events, we note that communications link degradation and compass errors are the 
most significant predictors of a loss of control. Additionally, there is a need for greater 
training and certification standards for any people involved in the operation — even in 
the case of a fully autonomous fleet — to reduce the risk of human error. And we 
conclude that detect-and-avoid commands need to provide sufficient lead time for the 
vehicle to be able to react and remain within its performance envelope. 
 
Introduction 
As part of the risk framework development process, Project Altiscope has developed a 
pair of fault tree models to encompass a depth and breadth of UAV failure modes. This 
is an important step in identifying which underlying factors are most likely to contribute 
to a UAV loss of control or collision event. With that information, we can target our 
research and data collection efforts, which will give Altiscope’s risk framework specificity 
and shape. 
 
Our results are largely consistent with previous work done by others using fault trees to 
evaluate UAV mission risk. We find that weather factors; navigation reliability; operator 
error; and battery performance are the categories of events most in need of mitigation 
to reduce the frequency and severity of UAV safety events. 
 
This paper presents our work in developing the fault trees and the results of sensitivity 
analyses performed on both trees. The analyses are especially important because we 
do not have data on exact component failure rates for each UAV model — factors that 
will vary by vehicle design, usage and environmental conditions. But we can test the 
relative significance of each event by applying a wide range of failure rates to each one, 
measuring how much of an influence those changes have on the probability of a top-
level failure. We use these results in our conclusion to prioritize those events for which 
we need to gather data and conduct more research. These findings are also helping us 
determine which factors to focus on as we gather data and construct our risk 
framework. 
 
Notional Mission Profiles and Failure Risks 
Our scope began with a relatively specific notional profile for a mission that might occur 
in the not-too-distant future: that of a small UAV with present-day capabilities doing 
photography or surveying work within a geofence region near a Class B airport. This 
made sense as a starting point because it’s precisely what the Federal Aviation 
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Administration is attempting to address through its Part 107 airspace authorization 
request process -- although we envision future provisions that allow for more extensive, 
tailored use of controlled airspace (e.g. closer to the airport and at higher altitudes). 
This scenario forced us to immediately tackle a variety of complex interactions in 
developing the model. We assumed that frequently used commercial aircraft arrival and 
departure corridors are known, and that a system for handling UAV flight plans 
automatically rejects proposals for geofence volumes within or immediately adjacent to 
those corridors. The top-level event was a geofence escape resulting in either a mid-air 
collision, or a crash resulting in injuries or damage on the ground. 
 
We soon discovered that a number of factors related to lack of collision/obstacle 
avoidance capabilities (or their failure) would contribute to a top-level event occurrence. 
Consider the following scenarios: 

 
Ø The UAV is operating correctly 

within its geofence volume at 
an altitude of 1,000 feet AGL, 
which the regulator has 
determined to be an acceptable 
height given the site location in 
relation to the airport. However, 
a VFR helicopter is transitioning 
the Class B airspace on a 
random point-to-point route 
that intersects the geofence 
volume, creating a conflict 
about which air traffic 
controllers may be 
unaware. 

Ø In a similar scenario as 
above, with the UAV 
operating correctly, an 
aircraft on arrival 
experiences an unrelated 
TCAS RA (Traffic Collision 
Avoidance System 
resolution advisory). The 
pilots decide to execute the published missed approach but are unaware that 
the charted procedure places the aircraft in conflict with the UAV. 

Ø A local utility is surveying high-tension power lines that are offset from, but 
parallel to, the airport’s primary arrival runway. 

 
○ Due to a gust of wind, one of the UAV’s mast arms impacts the top of a 

transmission tower, causing it to fly with limited control. The UAV flies out 
of the geofence volume and into the adjacent arrival corridor.  
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○ Alternatively, the UAV encounters interference from nearby radio 
transmitter. This interference causes a communications link failure and 
anomalous compass readings. The UAV attempts to follow a correctly 
programmed return-to-home routine, but because of the compass error 
flies in the wrong direction, out of the geofence volume and into the 
arrival corridor. 

 
Consideration of scenarios such as these led us to refine the model and develop two 
independent fault trees. We assume that basic mitigation measures are not followed, as 
this allows us to arrive at some “worst case” conclusions. In these examples, obvious 
mitigations may include restricting UAV position and altitude in proximity to commonly 
used arrival and departure routes; or terminating operations when winds approach a 
vehicle’s performance limits. Vehicles may also have more advanced and redundant 
systems that reduce probability of erroneous navigation or compass guidance. 
 
A UAV may experience a set of failures that lead to an unrecoverable loss of control, 
and subsequent crash or collision, as in the third example above. But that same vehicle 
may also encounter failures or environmental factors resulting in a controlled crash or 
collision — not unlike the factors that often contribute to controlled flight into terrain 
(CFIT) accidents in manned aircraft. Many of the basic events leading up to either a 
controlled or uncontrolled accident are independent from one another. As a result, a 
UAV could experience failures leading to one type of accident, independent of the 
probability of the other type. Thus, it made sense to model these as two different fault 
trees. 
 
Fault Tree Background and Design Considerations 
The fault tree analysis process is well documented in aerospace applications, as it 
enables systematic identification and review of the relationships between system 
components and their failure modes [3]. Fault trees are one way of visualizing the 
relationships between factors that increase safety risk and are often complementary to 
bow-tie analyses or Bayesian Belief Networks. Fault trees are advantageous because 
they provide a way to test failure probabilities without the steep learning curve of 
Bayesian Belief Networks, whereas bow-tie analyses are most commonly conducted in 
qualitative contexts. All three depict cause-and-effect relationships between 
combinations of threats (basic events on a fault tree), consequences (gates) and hazards 
(the top-level event on a fault tree). Just as each bow-tie diagram considers the factors 
surrounding a single hazard at the center, each fault tree uses combinations of basic 
events and gates arranged hierarchically and culminating in a single top-level event. 
 
The most relevant literature we found is a paper describing a generic UAV fault tree [1] 
for beyond visual line of sight (BVLOS) operations. We discovered this paper after 
completing a large portion of our fault tree design work, and noted that we had 
independently arrived at similar design relationships, particularly for an uncontrolled 
crash or collision (Hammer’s tree uses an equivalent top-level event). In response to 
Hammer’s design and sensitivity analysis work, we adopted the additional “probability 
of loss of control” event to several second-level failures. However, where Hammer 
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models a robust branch related to obstacle detection failures, we envision an even 
more intricate set of relationships represented in the controlled crash/collision tree. 
 
The fault trees are useful not only in articulating failure modes, but also in helping us 
identify exactly which kinds of data we need in order to generate meaningful failure 
probabilities. Some of that data, such as a battery’s average failure rate, is specific to 
each battery model and likely proprietary to each manufacturer. Environmental factors 
such as wind and icing conditions are spatial and temporal, varying widely between 
nearby locations and over the course of a day (or even an hour). And we anticipate that 
autonomous drone traffic management systems that don’t exist today will make errors 
in deconflicting two vehicles.  
 
Our model only considers battery-powered multi-rotor vehicles, though many of the 
calculations can be extended to fixed-wing electric vehicles, or those with hybrid 
propulsion systems. The trees are designed to capture present-day Remotely Piloted 
Aircraft Systems (RPAS) as well as systems that may function with greater levels of 
autonomy, including BVLOS.  
 
The first fault tree involves failures leading to a loss of control that results in a crash, 
collision or near-midair collision. All three are represented by the same top-level event, 
since a given sequence of failures may lead to any of them occurring depending on the 
UAV’s location in relation to other aircraft and ground-based risk factors (e.g. critical 
infrastructure, large groups of people, etc.). The aim is to mitigate the risk of substantial 
damage, serious injury or death, which could occur to a passenger on the UAV, another 
aircraft or a bystander on the ground. In this first tree, failures in any one of four 
branches (described below) can lead to the loss of control. That is, neither a human 
operator nor an autonomous management system would be able to regain control of 
the vehicle to make a safe diversionary landing. 
 
The second fault tree evaluates more complex system failures resulting in the same top-
level event as described above. Modeling the same top-level event in both trees is 
important so that we can draw comparisons between them. These failures may include 
equipment malfunctions that don’t immediately result in a loss of control, such as the 
failure of an onboard obstacle sensor. But in combination with other failures in the tree, 
this could result in a vehicle that encounters a crash or collision scenario even though 
its flight controls, navigation and propulsion systems were working correctly. 
 
Fault Tree 1: Losses of Control 
Similar to Hammer’s approach, in designing this tree (Figure A-1) we posit that a failure 
in any one of four branches -- hardware, weather, maintenance or flyaway scenarios -- 
can result in an unrecoverable loss of control and crash, independent of the other three 
branches. Full depictions of each branch, including mean unavailability assigned to each 
event, are located in Figures A-2 through A-5. Basic events PLC1 through PLC4 are fixed 
probabilities to address the fact that a vehicle may remain controllable (or at least able 
to make a forced landing) in some circumstances after a failure in the respective 
branch.  
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Starting from the left, the first branch considers a wide variety of vehicle hardware 
failures (Figure A-2). These are broadly categorized as propulsion, battery and electrical 
system failures. We did not model hybrid vehicle power designs that use a gas turbine 
engine to generate electricity for the motors and other systems. Those design 
complexities will require additional modeling for evaluating mission risk in vehicles such 
as the prototype SureFly Workhorse. The hardware branch also includes failure of the 
vehicle’s electronic speed controller and the flight computer; as well as multiple motor, 
rotor and wiring failure modes. The tree takes a very conservative approach in 
assuming that the failure of one motor on a quadcopter (or two motors on a multirotor 
vehicle with six or eight powerplants) constitutes a failure that could propagate to a loss 
of vehicle control. Actual design considerations, including software control routines 
unique to each vehicle model, may allow some vehicles to continue flight, but with 
limitations on range, altitude, thrust or degrees of freedom (i.e. maneuverability). 
  
The flyaway branch (Figure A-3) is of particular interest, because these incidents are 
often the result of compound failures influenced by environmental factors. We modeled 
this branch with four sub-parts: 
 

Ø Compass error, which could result from a failure to properly calibrate it; 
electromagnetic interference (EMI); or the actual failure of the onboard solid-
state compass. 

Ø Communications failure or latency (link loss) resulting from either the failure of 
the onboard radio or a remote station; or signal degradation between the 
vehicle and ground station. 

Ø An unreachable home point (or rally/ditching location) due to winds aloft being 
higher than predicted, and the point being into the wind relative to the vehicle 
location (the vehicle may be unable to reach the home point due to winds that 
exceed available forward thrust; or due to battery range limits).  

Ø A GNSS failure due to signal loss (modeled separately due to EMI or poor satellite 
coverage) or the failure of either the onboard GPS antenna or receiver. 

 
A failure of any one of these four subparts does not result in a crash because of the 
semi-redundant nature of most vehicle systems. For example, without GPS, the vehicle 
can still use the IMU and compass to dead reckon and follow an operator’s commands 
to manually land. Without a communications link, the vehicle can use its GPS and 
compass to navigate itself to the home point and land. To represent these 
dependencies, we use a voting gate above all four elements: any two (or more) of the 
four must fail at the same time. This would mean, for example, a situation in which a 
vehicle loses GPS and communications link, rendering it unable to find its way to the 
home point and the operator unable to send a “land now” command. The vehicle’s 
behavior may be unpredictable, depending on how the manufacturer configured it to 
behave and whether the user correctly set the home point and calibrated the compass 
before flight. If it regains communications link or GPS, then it can attempt to land. Such 
a recovery is broadly represented by PLC2, a fixed probability of loss of control.  
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The third branch (Figure A-4) of the tree depicts four categories of weather conditions 
that may cause a loss of UAV control: high winds at the takeoff or landing site; icing 
conditions; low visibility; and convective activity. We do not include inflight winds 
because a strong headwind condition is already represented in the flyaway branch. Low 
visibility is included here both because line-of-sight is a requirement for many present-
day operations; and because vehicles may use optical sensors both to gauge position 
when close to the ground, and to detect obstacles. 
 
Finally, the fourth branch (Figure A-5) includes failures resulting from maintenance 
actions and inflight structural impact. This includes human error in failing to follow 
correct maintenance procedures, and in failing to identify loose or missing parts that 
could result in an inflight breakup. 
 
Fault Tree 2: Redundant System Failures 
With the exception of several weather factors, this tree (Figure A-6 through A-9) is 
completely unique compared to the previous. Whereas the previous tree includes both 
temporal threats and failures that are the result of fatigue or random error, this tree 
models the breakdown in redundancies that may occur, especially in BVLOS or fully 
autonomous regimes. The tree assumes that the vehicle is equipped with onboard 
sensors to detect and avoid other traffic or obstacles. It also assumes the vehicle has a 
link with some type of service that provides control and routing instructions to avoid 
vehicle conflicts. This could include present-day capabilities available to users of some 
third-party fleet management software, or future UAS traffic management (UTM) 
systems. 
 
The top level event is a voting gate, in which two of the three gates below it must fail at 
the same time: 
 

Ø Route Conflict (Figure A-7). Two vehicles are in conflict with each other because 
a traffic management system isn’t aware of one of the vehicles; or one vehicle 
unexpectedly deviated from a previously approved course. Deviations may occur 
due to inflight emergency, unexpected weather or a change in destination. 
Vehicles can either conflict in crossing/head-on trajectories; or one may be 
overtaking the other because of different cruise speeds. A fixed probability 
variable in this branch controls for the obvious fact that both vehicles must be at 
the same altitude (even if one is descending or climbing into the path of 
another). 

Ø Human-in-the-Loop (HITL) (Figure A-8). Human error may take a variety of 
forms in UAV operations, even when the flight is considered to be fully 
autonomous. In VLOS and BVLOS settings, the operator may lack sufficient 
training, experience or good judgment to ensure the safety of the flight. Preflight 
errors, such as failing to follow correct cargo loading procedures or calculating 
flight plan information incorrectly, may also jeopardize the success of the flight. 
Or an operator may intentionally try to crash the vehicle to cause harm to other 
people. In environments with increasing levels of autonomy, a remote operator 
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overseeing multiple vehicles may not react quickly enough to correct a deviation 
or avoid a conflict. 

Ø Deconfliction Failure (Figure A-9). The third branch includes multiple pieces of 
equipment a vehicle may have to help it avoid obstacles and other traffic, 
including a transponder (specific mode/protocol was not considered), optical 
sensors and LIDAR. Those components could fail, making it impossible for the 
vehicle to detect inflight hazards. Alternatively, while that equipment may be 
working correctly, the avoidance command may come too late, requiring climbs, 
turns or other maneuvers that would exceed the vehicle’s performance 
envelope. 

 
Sensitivity Analysis Methodology 
We designed both fault trees using the Relyence web app interface, treating the failure 
of each basic event as mean unavailability. We tried to make reasonable assumptions in 
assigning mean unavailability values, but we are cognizant that the mean values 
assigned have a significant role in influencing higher-level unavailability. Because of this 
variability and uncertainty, we calculated several different statistical indicators of 
uncertainty and importance. These include: 
 

Ø Fussell-Vesely (FV), a formula which measures an event’s overall contribution to 
higher-level risk probability. With values between 0 and 1, lower values indicate 
an event has negligible influence on failure rates, while higher values are more 
critical to system reliability. 

Ø Risk Achievement Worth (RAW), which measures the increase in top-level event 
failure if a given basic event’s mean unavailability is set to 1 (that is, always 
unavailable). 

Ø Risk Reduction Worth (RRW), which indicates the reduction in top-level failure if a 
basic event’s mean unavailability is set to 0 (that is, always available).  

Ø Birnbaum’s Importance (BI), is a derivative function that measures the rate of 
change in system risk as the probability of a basic event’s failure changes. BI is 
equivalent to the sum of RAW and RRW, and therefore is not influenced by the 
mean unavailability of a basic event. 
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The above measures are calculated using different formulas, and examining multiple 
measures may be useful when addressing varying objectives [2]. FV is commonly used 
to rank basic events based on their importance on higher-level outcomes, but it can be 
sensitive to small baseline probabilities. BI is also useful as it reveals the sensitivity of 
top-level risk to changes in basic event probabilities. We examined FV and BI for basic 
events on both the top-level as well as the branches (hardware, flyaway, weather, 
maintenance). The branch sensitivity measures provide insight into how basic events 
affect particular modes of failure.   

 
We used the Relyence web application to create and export the fault trees. Next, we 
analyzed the fault trees using the statistical software R to conduct the sensitivity 
analysis. While Relyence automatically calculates similar measures for FV (Diagnostic) 
and BI (Marginal), at the time of writing the company provided limited documentation 
on the formulas and calculation process behind those measures. Therefore, we selected 
R because of its ability to run custom reproducible simulations and its robust 
documentation of methodology.   
 
Sensitivity Analysis Findings 
The charts below show the FV and BI values of each event in Fault Tree 1 (loss of 
control) plotted on a log scale. The events are very closely correlated in importance 
using both measures. Most significant is an impact that damages a vehicle’s mast arm 
or rotor assembly (STR-IMPACT FV 0.21, BI 0.96). This event is located in the 
maintenance branch (Figure 5) one level above two other events, all of which were 
assigned mean unavailability of 0.01.  
 

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

ST
R-
IM

PA
CT

W
X-
CO

N
V

W
X-
IC
E

W
X-
VI
S

W
X-
W
IN
D-
2

BL
AD

E-
TO

RQ
UE

EL
EC

-S
O
LD

ER
EL
EC

-W
IR
IN
G

BA
TT
-C
HG

BA
TT
-C
O
LD

BA
TT
-C
UR

R
BA

TT
-H
EA

T
BL
AD

E-
FA

TI
GU

E
BL
AD

E-
ST
RI
KE

M
O
TO

R
M
ai
nt
-w

or
k

Pr
e-
fli
gh
t

EL
EC

-B
US ES
C

FL
T-
CO

M
P

SI
GN

AL
GP

S-
EM

I
GP

S-
SI
G

CM
P-
CA

L
CM

P-
EM

I
CM

P-
FA

IL
O
N
BO

AR
D

RE
M
O
TE

GP
S-
AN

T
GP

S-
RE

C
HO

M
E-
PO

IN
T

W
X-
W
IN
D-
1

Im
po

rt
an
ce
	(l
og
	sc
al
e)

FV on top level (uncontrolled crash)



 

 9 

 
 
 
All four weather events are the next most important (FV 0.14, BI 0.67). All are at the 
same level in the tree depth and also assigned mean unavailability of 0.01. Of course, 
weather is temporal and can vary between locations less than a kilometer apart. 
Current high-resolution weather models provide short-term predictions at a 1-km scale, 
which would supersede the mean unavailability values. 
 
Six events for various battery and electrical issues also carry high importance values (FV 
0.01, BI 0.47), but notably an order of magnitude lower when expressed in FV.  
 
We also performed sensitivity analysis calculations for each event on the second-level 
failures (flyaway, hardware, maintenance and weather). The chart at right compares the 
FV values for the basic events in the flyaway branch on the top level of the entire tree 
(blue) versus on just that branch (green).  
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The results show that while compass and GPS reliability issues carry an importance of 
between 4.7E-5 (three events related to compass failure and inaccuracy) and 7.7E-5 
(communications link loss or degradation) on the top of the tree, they are much more 
impactful within their branch, with FVs that rise in importance to between 0.28 and 0.45, 
respectively.  
 

The analysis of the second fault tree (system redundancies leading to a controlled 
crash) found that five events related to operator training, skill and judgment had the 
largest FV values, all 0.14. Two equipment failures, that of the onboard GPS and 
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compass, shared the next-highest FV values, at 0.13. In addition, four inputs on the right 
side of the tree related to how quickly or aggressively a vehicle could maneuver in 
response to an obstacle avoidance command shared an FV value at 0.13. 

 
These values are comparatively low because the top-level event only occurs if failures in 
two of the three branches occur at the same time. Because of that dynamic, the BI 
measures are all much lower, as one might expect. No single event leads to a crash or 
collision, and conversely, mitigating a single event cannot substantially reduce that risk. 
Most of the BI values correlate to FV values for a given event, with the noteworthy 
exception of three events related to intentional efforts by a person to cause a crash 
(acts of terrorism, cybersecurity threats and other malicious intent).  
 
Conclusions 
In Fault Tree 1, we found that weather, electrical system and maintenance-related 
variables have the greatest influence on whether a UAV is likely to lose control and 
crash. This is consistent with Hammer’s findings, and we arrive at a similar conclusion 
that systematic maintenance procedures and accurate weather data are important in 
mitigating that risk. In evaluating the flyaway sub-branch, we find that communications 
link degradation and compass errors are the most significant contributors. This 
suggests that ensuring highly reliable onboard equipment alone is not enough to 
reduce flyaway risk — we must also find ways to mitigate against signal loss. 
 
Fault Tree 2 provides additional areas for emphasis: the need for training and 
certification standards for any people involved, whether they are remote pilots or 
monitoring an otherwise autonomous fleet. And we can see that detect-and-avoid 
commands need to come with sufficient notice for the vehicle to be able to react. 
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Our risk framework (and therefore any model implementations) needs to focus on the 
following elements because of their overall influence in affecting the successful 
outcome of a flight: 
 

Ø Access to location-specific real-time weather data sources in combination with a 
robust database of vehicle performance attributes and operating environment 
tolerances. 

Ø One or more input variables to represent the vehicle’s maintenance status and 
the quality of repair work (for example, were repairs done by a certified 
mechanic and tested in accordance with future industry or regulatory 
standards?) 

Ø At least one input variable indicating the operator’s qualifications, certifications 
and experience level. 

Ø A data layer representing ground-based sources of EMI, which might include 
electrical infrastructure; cellular and radio transmission towers; and known 
localized areas of geomagnetic disturbance. 

Ø Enabling regulatory and industry consensus on clear definitions for closest 
allowable proximity between vehicles (whether separation standards in airspace 
managed by air traffic controllers; an automated Drone Traffic Management 
system, or “well-clear” detect and avoid thresholds) and sensor arrays that can 
detect conflicts with sufficient advance warning time. 

  



 

 13 

 
Acknowledgements 
Chris and Erin Dienes made substantial contributions to this paper, including 
conducting several iterations of the sensitivity analysis, highlighting structural issues in 
early versions of the fault trees and providing careful documentation of their 
methodology and findings. 
 
Project Altiscope would like to thank Mark Dombroff, Simon Hennin, Rob 
Knochenhauer, Peng Wei and Steve Weidner for providing critique and feedback on 
drafts of this paper. 
 
References 

[1] Hammer, J. et al. 2017. Safety analysis paradigm for UAS: Development and use of a 
common architecture and fault tree model. 2017 IEEE/AIAA 36th Digital Avionics 
Systems Conference (DASC) (2017), 1–10. 

[2] Idaho National Laboratory Importance Measures. 
[3] Stamatelatos, M. et al. 2002. Fault Tree Handbook with Aerospace Applications. 
NASA Headquarters Office of Safety and Mission Assurance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 14 

 
Annex A: 
Fault Tree Diagrams 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 

 
 
 
 
 
 
 

Figure A-1. Uncontrolled crash, collision or near-midair event. Green symbols 
indicate branches depicted in subsequent figures. 
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Figure A-2. Hardware failure branch with mean unavailability rates used in sensitivity analyses. 
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Figure A-2. Hardware failure branch with mean unavailability rates used in sensitivity analyses. 
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Figure A-4. Weather failure branch with mean unavailability 
rates used in sensitivity analyses. 
 

Figure A-5. Maintenance failure branch with mean 
unavailability rates used in sensitivity analyses. 
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Figure A-6. Controlled crash, collision or near-midair event resulting from 
redundant system failures or human error. Green symbols indicate 
branches depicted in subsequent figures. 
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Figure A-7. Route conflict failure branch with mean unavailability rates 
used in sensitivity analyses. 
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Figure A-8. Human error failure branch with mean unavailability rates 
used in sensitivity analyses. 
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Figure A-9. Deconfliction failure branch with mean unavailability rates used in sensitivity analyses. 
 


