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Abstract 
Many studies and design discussions are concerned with “dense” or “high density” UAV 
operations—but there is no definition of what this term means. We propose two metrics that can 
be used to determine when the traffic in flight is dense. These metrics are based on an intuition 
that density matters when the vehicles in flight interact with each other. We find that the absolute 
number of vehicles in a volume is not, by itself, a good metric for determining dense operations, 
but that instead our proposed metrics reflect the effects of varying degrees of order in traffic 
flows. Analysis of the results suggests that traffic can become “dense” at low traffic volumes, 
including levels much lower than anticipated demand in urban areas. 

1. Introduction 
Many studies and designs for UAS traffic management (UTM) have discussed that when the 
traffic in flight is “dense” it will require more control than when the traffic is “not dense”. This 
usually is taken to mean that when traffic is not dense, few air traffic management services are 
required, but that when the traffic does become dense, a system that provides services analogous 
to the current Air Traffic Services [1] will be required to maintain safe and efficient operation. 
For example, the European U-space project [2] expects first to deploy services that only handle 
low-density operation, and follow on with a system that can handle dense operations some years 
later. 

The investment required to define, analyze, and deploy these services is high, so it is 
mandatory to have a clear understanding of the conditions that make a traffic flow “dense”. This 
report discusses two proposed metrics for determining when traffic should be treated as dense. 

We start with the intuition that it is interactions between vehicles in flight that makes a traffic 
flow dense. If no aircraft are having to change their behavior—such as changing their path to 
avoid each other—then intuitively there is no issue with density. When aircraft are constantly 
tracking or avoiding other aircraft, then our intuition is that density is high.  

The two metrics we propose are based on this operational understanding of density. 
Informally, these metrics are (1) how close the closest aircraft is on average, and (2) how many 
aircraft are in the immediate vicinity on average. These metrics provide an indication of how 
often the typical aircraft is having to maneuver to avoid collision, and how many nearby aircraft 
must be tracked as potential collision threats. 

This approach to defining dense traffic makes the result dependent on patterns or order within 
the traffic flow. For example, if aircraft are travelling randomly in all directions, there are more 
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interactions than if the same number of aircraft are all travelling in the same direction at about 
the same speed. This reflects intuitive understanding people have from walking in crowds or 
driving cars. 

We find that by these metrics, traffic flows expected in urban areas by 2030 will regularly 
exhibit dense areas that require traffic management solutions to maintain safe operations. 

2. Metrics 
The two metrics we propose for evaluating effects of density both derive from ways of looking at 
how much vehicles in flight interact: if they don’t interact, then the traffic flow is not dense, and 
if they interact a lot, it is dense. 

We have focused on vehicle interactions that relate to collision avoidance: how soon a vehicle 
has to maneuver to avoid collision, and how many other vehicles are potential collision threats.  

The metrics are computed from the point of view of the ownship, that is, from the point of 
view of one particular vehicle that has other vehicles around it. This is a standard approach for 
the design of collision avoidance mechanisms. 

The metrics are based on the closing time. This is the distance from the ownship to another 
aircraft, divided by the speed at which the other aircraft is moving toward the ownship, which 
gives the amount of time required for the other aircraft to reach the ownship. This a 
simplification of the tau measures used in TCAS; we compute a single measure rather than 
making separate measurements in the horizontal plane and along the vertical axis.[3] 

In most cases, the other aircraft will not be moving directly toward the ownship, but will be 
approaching at a slant. The closing time metric uses the component of its velocity vector that is 
in the direction of the ownship for the closing speed. This is found by projecting the other 
aircraft’s velocity vector onto the unit vector from the other aircraft to the ownship: 

𝑠closing = 𝑣aircraft ⋅ 𝑐	 

where 𝑐 is the unit vector from the aircraft to the ownship, and 𝑣aircraft is the net velocity of the 
other aircraft relative to the ownship: 𝑣aircraft = 𝑣other − 𝑣ownship. If the other aircraft is moving 

away from the ownship, this speed will be negative. 

The first metric is the minimum closing time. This is computed by looking at all the aircraft in 
the airspace, measuring their closing time, and selecting the smallest. This measure approximates 
the amount of time that the ownship will have to react and maneuver to the situation when it has 
to maneuver to avoid another aircraft.  
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This metric slightly overestimates the actual time available for reacting and maneuvering, so 
that the actual situation is on average slightly worse than the time computed; however, that is not 
important as a metric of density. The problem can show up when there is another aircraft that is 
close to the ownship but travelling in close to the same direction, so that the closing speed is 
small. For this case, TCAS adds a second condition for issuing resolution advisories (RAs) that 
is based solely on distance, regardless of closing speed.[3] Since the interest in this study is for a 
metric that estimates density, we do not attempt to add a correction to the minimum closing time 
metric and accept the possibility of an imperfect metric. 

The second metric is the number of close aircraft. This is determined by computing the 
closing time for all aircraft in the airspace, and counting the number that have a closing time less 
than 15 seconds. This gives an estimate of the number of aircraft the ownship will be monitoring 
as potential collision threats, which measure drives the complexity of guidance computation on 
the ownship and the complexity of making avoidance decisions. In Section 4.4 show that the 15 
second parameter is a reasonable bound for different types of aircraft, and discuss how that 
parameter might change based on aircraft capability. 

The 15 second threshold is what TCAS uses for issuing a resolution advisory at 1000 feet 
AGL.[3, p. 23] TCAS uses larger thresholds at higher altitudes, but most UAV operations will be 
at low altitudes and UAVs are not expected to be spaced multiple miles apart. The TCAS 
thresholds were derived from estimates of pilot reaction time and the time for a large commercial 
aircraft to perform a vertical maneuver with the expected acceleration. The thresholds for UAVs 
are not yet determined, and likely vary widely: a remotely-piloted fixed-wing UAV being 
operated using VLOS rules at the extreme of visual line-of-sight distance seems likely to have 
reaction times much slower than those assumed by TCAS, while an autonomous UAV with high-
performance on-board detection capabilities is likely to react much faster. 

3. Evaluation approach 
This study evaluates the minimum closing time and number of close aircraft metrics for 
randomly-generated scenarios, to determine how these metrics vary with the number of aircraft 
in flight and the pattern of the traffic flowing in the region. 

Both metrics are computed from the point of view of a single ownship, which is located at the 
center of the airspace (Figure 2). The analysis code generates random, instantaneous snapshots of 
an airspace and computing the metrics at that instant. 

The analysis code generates random scenarios in a 10 km by 10 km airspace, with a 300 m 
thick vertical region. The ownship is travelling at 20 m/s in the +y (northward) direction. The 
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other flights have start and end points picked randomly in the region, with speeds chosen 
uniformly randomly between 2 m/s and 40 m/s; the aircraft is at a randomly-chosen point on its 
path. 

The analysis proceeds by varying the number of aircraft (besides the ownship) that are in 
flight between 25 and 10,000 aircraft.  

For comparison, some of our traffic projections suggest an aggregate 2,000 flights per hour 
across all classes of traffic in a typical similarly-sized region; accounting for flight durations, we 
expect between 450 and 500 aircraft in flight at any given moment over the entire region. The 
density is not at all uniform, with greater density over the center of the region and a few points 
around no-fly areas that concentrate traffic even further.1 We use 500 vehicles in flight as a 
comparison point in our evaluations below. 

                                                

1 Based on projections for UAV flights over the Paris metropolitan area in 2030, including Urban 
Air Mobility and package/cargo delivery traffic.  Our projections for other metropolitan areas are 
similar. 

Figure 1: Snapshot of projected traffic over the Paris metropolitan region in 2030. Note how 
vehicles are clustered in the center of the region, and how no-fly zones create local 

concentrations of flights around airports. 
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For each case of number of aircraft and traffic pattern, the analysis generates 10,000 random 
scenarios and computes the minimum closing time and number of close aircraft metrics for each. 
The analysis reports the mean and standard deviation of the 10,000 samples of both metrics. 

3.1. Traffic patterns 
The analysis evaluates the metrics using four different traffic patterns (Figure 2): 

• Uniform random traffic, where the start and end points are selected using a uniform 
random distribution over the entire x, y, and z ranges. This pattern has the least order of 
the patterns evaluated. 

• One-way traffic, where all traffic is going from the lesser y (“south”) half of the airspace 
to the greater y (“north”) half of the airspace. The x and z values are chosen uniformly at 
random over the full range of those dimensions. The y values are chosen uniformly at 
random within the appropriate half of the space. This pattern has a general direction to 
the flow, and the ownship is going in that same general direction, but some traffic can be 
headed at close to 90º off from the ownship’s direction. This traffic pattern models what 

uniform random one way

quadrant stream

Figure 2: Traffic patterns evaluated.  The triangle in the 
center depicts the ownship. 
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would be observed if aircraft were segregated into two altitude bands by east-west 
heading. 

• Quadrant traffic, where all traffic is going between the southwest and northeast quadrants 
of the airspace, in both directions. This traffic is generally at an angle to the direction of 
the ownship, with a bias toward a smaller range of encounter angles. This pattern is 
similar to what is observed when a bidirectional stream of aircraft is squeezed into a gap 
between obstacles or no-fly zones. 

• Stream traffic, where all the traffic is going from the south half of the airspace to the 
north half; the paths are limited in how far east or west they will travel (to +/- 1 km). This 
produces the most ordered stream of traffic, and in the same direction as the ownship is 
travelling. This traffic pattern models what would be observed if aircraft are segregated 
into many altitude bands by narrow ranges of headings. 

4. Results 
Using the approach defined above, we ran the analysis to get the results that follow. We first 
present the results using uniform random traffic patterns, which presents the most difficult 
situation, followed by results for more ordered traffic patterns. 

4.1. Uniform random traffic 
This traffic model presents the most chaotic environment amongst the models evaluated. It 
models free flight with no mechanisms that segregate traffic to improve flow.  Table 1 shows the 
results; Figures 3 and 4 illustrate them. 

The metrics show smooth changes as the number of aircraft in flight increases. As these 
metrics are based on the geometric relationships between random flight segments, this is 
expected. 

First consider the minimum closing time metric, shown in in Figure 3. In an average instant, 
when there are 250 flights in the air, the nearest aircraft will be close enough to trigger a TCAS 
resolution advisory. For UAV traffic, this means that at 250 aircraft in flight, a UAV using 
TCAS collision avoidance rules would be almost continuously maneuvering to avoid other traffic 
if flight plans are not coordinated. This can be resolved by either generating flight plans that 
reduce the number of encounters, or by using collision avoidance mechanisms that have a tighter 
tolerance.  
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This result indicates that a region where the traffic is uniformly random must be treated as 
dense at 500 aircraft in flight, the volume projected to occur over the Paris region. This can be 
handled by generating flight plans that reduce the number of encounters, especially by 
introducing greater order (as the evaluations of the next traffic patterns will show). Deploying 
collision avoidance mechanisms that can respond in a shorter time frame will also help, but will 
not solve the problem—if automation can reduce the reaction time from 15 seconds to 10 
seconds, at 500 active flights the aircraft would still spend most of its time in avoidance 
maneuvers. 

The number of close aircraft metric shows that at 500 active flights, a UAV will need to be 
tracking 1-2 other vehicles on average at all times for collision avoidance. The collision 
avoidance system will need to be designed for tracking significantly more vehicles than that, as 
the number in this analysis is only an average, and the peak numbers are surely much higher. 

Table 1: Results using a uniform random traffic pattern 

Number 
of flights 

Average 
minimum 
closing time 
(seconds) 

Average 
number close 
aircraft 

25 46.8 0.0848 

50 32.8 0.158 

75 27.0 0.241 

100 23.4 0.311 

170 18.1 0.537 

250 15.1 0.796 

500 11.0 1.57 

750 9.23 2.34 

1000 8.21 3.12 

1700 6.58 5.28 

2500 5.63 7.74 

5000 4.38 15.5 

7500 3.79 23.3 

10000 3.42 31.0 
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4.2. Traffic with more order 
The other three traffic patterns we modelled—quadrant, one way, and stream—have greater 
degrees of order in their flow.  The quadrant pattern has traffic going both ways between the 
northeast and southwest quadrants; the one way pattern has traffic going arbitrarily from the 
southern half of the airspace to the northern; and the stream pattern going south to north with 
little east-west variation. 

Figure 5 compares the results we observed for these patterns. 

Figure 3: Minimum closing time for uniform random traffic 

Figure 4: Number of close aircraft for uniform random traffic 
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The quadrant pattern has the least order: other flights can be traveling both in a similar 
direction as the ownship and in a nearly opposite direction, from nearly 180º horizontal range.  It 
shows the most conflicts of the three, with minimum closing time a bit more than half of what 
the one way pattern yields. 

Figure 5: Metrics for traffic patterns with more order 
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The one way pattern also has flights from nearly 180º range as well, but all traveling south to 
north, the same as the ownship. This results in more time to react to nearby flights compared to 
the quadrant pattern. 

The stream pattern has the greatest order: all flights are travelling south to north on nearly the 
same headings. This results in a dramatic increase in the time that the ownship has to react to 
other aircraft. Compared to random flight paths, having all traffic moving northward allows more 
than ten times the number of aircraft in flight before reaching the point where the ownship is 
nearly continuously avoiding other aircraft. 

The first conclusion to draw from these results is that for a given number of aircraft in flight, 
the more that all these aircraft are on similar headings the better these measures of the effect of 
density are. We have observed this effect in simulation results before, and these metrics match 
those observations. 

A second conclusion is that when a region has an area where traffic is pinched by obstacles, it 
is important to take management steps to reduce the entropy in the traffic flow. The quadrant 
traffic pattern is similar to a situation we observe in the Paris simulations, where traffic is forced 
in to a gap between the UAV no-fly zones around De Gaulle and Le Bourget airports. This 
situation compresses the traffic to a higher local number of aircraft per area while making more 
encounters closer to head-on with greater closing speeds and thus less time to react. 

4.3. Effect of distance versus speed 
The metrics by which we measure the effects of density are based on closing time.  The closing 
time between the ownship and another aircraft depends on both the distance between the two 
aircraft and their relative velocities. We wanted to determine how much of the effects we observe 
are due to differences in distance and how much from differences in velocity. 

Figure 6 compares the distributions of distance between the ownship and other aircraft for 
different patterns. This graph shows the fraction of all the other aircraft at different distance 
ranges: in buckets of 100 meters up to 500 meters, then in 500-meter buckets thereafter. (The 
bucket for distances over 5000 meters is not shown for clarity.) We note that all the traffic 
patterns except the stream pattern will tend to produce a concentration of flights near the center 
of the airspace, and indeed in the limit should tend toward a normal distribution of distances.  
The stream pattern should produce a near-uniform distribution of distances on the x axis and a 
normal distribution of aircraft locations on the y axis. 

Our metrics only focus on the vehicles that are close to the ownship, so almost all the aircraft 
reported in these distributions do not affect the metrics. For the closest bins, 500 m and closer, 
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the distance measure orders the traffic patterns in nearly the same way as the metrics: the stream 
pattern has the least aircraft less than 500 m away, just as it has the furthest average minimum 
closing time. However, the one way and quadrant traffic patterns generate similar numbers of 
aircraft less than 500 m distant, but show significantly different minimum closing time or 
number of close (measured by closing time) aircraft. This difference comes from the different 
relative velocities in the one way and quadrant traffic patterns: the quadrant pattern has half the 
other aircraft traveling north to south, in the opposite general direction to the ownship. 

From this we conclude that neither distance nor relative velocity by themselves dominate the 
results we see in the metrics; instead, using closing time usefully combines these effects into a 
single measure.  

4.4. Interpreting closing time 
We have used 15 seconds, the TCAS resolution advisory threshold at 1,000 feet, as the threshold 
for interpreting closing time results so far. However, the actual time required to respond to 
potential collisions varies widely for different kinds of UAVs and missions. TCAS also uses 
much larger thresholds at higher altitudes, up to 35 seconds. 

Most maneuvers involving civilian manned aircraft, where the people on board are not 
specially equipped or trained, are limited to 0.25 or 0.33 g acceleration. We have confirmed this 

Figure 6: Distribution of other vehicles by distance from the ownship.  Note that the graph 
shows values at every 100 m up to 500 m in order to detail the structure near the ownship, 

and in increments of 500 m thereafter. 
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through our own measurement of commercial transport aircraft during takeoff, turns, and 
maneuvering, and from the design rules for TCAS II.[3] We expect this standard to hold for 
passenger-carrying urban air mobility vehicles. 

Maneuvers for unmanned UAVs can potentially experience higher accelerations.  We have 
anecdotal reports of 2 g maneuvers for small quadcopters and fixed-wing UAVs flying non-
aerobatic courses. 

Based on these estimates, we can construct some best-cast estimates of the reaction time 
required for collision avoidance.  We consider two cases, where the ownship must perform a 
50 m deflection or a 100 m deflection in order to resolve a potential problem: 

 

Type 50 m deflection 100 m deflection 
Unmanned 
(2 g) 

2.3 s 3.2 s 

Manned  
(0.25 g) 

6.4 s 9.0 s 

 

These times assume that the vehicle performs a constant acceleration at 0.25 or 2.0 g until it 
has reached the deflection distance. The time to slow and return to the original course is not 
considered. 

In addition, it will take some time for the vehicle to detect the need for performing the 
avoidance maneuver and for its control system to perform actuation to achieve the desired 
acceleration. For autonomous collision avoidance systems, we assume best case 3 sec lag total 
for these steps, based on receiving two sensing updates at one-second intervals plus a one-second 
lag in the controller, speed controllers, and motors.  We ignore this overhead in the remainder of 
this analysis. 
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4.5. Fraction of time maneuvering 
We combine the results so far to answer a final question: how much of the time will the ownship 
spend maneuvering around potential conflicts, if no deconfliction is provided by a traffic 
management system? 

We model the ownship’s status as a continuous-time Markov process with three states: 

 

where the vehicle starts in normal flight, following its flight path.  When another vehicle comes 
close enough (at rate 𝛌), the vehicle begins diverting.  While diverting, the vehicle may 
encounter another vehicle (at rate 𝛌) or finish the evasive maneuver (at rate 1/d).  The vehicle 
then performs a second maneuver to return back to its normal flight path.  It either has to evade 
another vehicle (at rate 𝛌) while recovering, or it completes the return to its normal path (at rate 
1/2d). Using a continuous-time Markov process implies exponentially-distributed times for 
encountering other aircraft and for the ownship completing a diversion maneuver. 

We computed the encounter rate 𝝀 from the observed durations of encounters and the 
distribution of times when there are zero, one, or n nearby aircraft, as detailed in Section 4.5.1 
below. 

The evasive maneuver takes on average d seconds, from Section 4.4. This translates to a rate 
of 1/d. 

We assume that the maneuver to return to the original flight path takes twice as long as the 
evasive maneuver: d seconds to decelerate from the evasion, and a similar amount of time to 
move to a new velocity that will move in an acceptable way to the next navigation waypoint on 
its flight path.2 

                                                

2 There is significant uncertainty in this assumption.  A naïve recovery assumption would 
involve an average recover time of 3d: deceleration at the same level to eliminate the ∆v from 
the evasion, plus 2d at the same acceleration and deceleration to return to the previous path. The 
2d value is based on assumption that the system will do something cleverer. The naïve approach 
will result in longer recover times and less time in normal flight; recovering at gentler 
accelerations will result in even worse results. 

normal diverting recovering

λ

λ λ

1/d

1/2d
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Using this model, we compute the fraction of a flight that the ownship will spend in the 
normal state for the uniform random and stream traffic patterns (Figures 7 and 8).  

As we note in the analysis in Section 4.5.1, it is likely that the lower limits reached in 
Figures 7 and 8 are overoptimistic, and that the ownship spends more time in avoidance 
maneuvers than is indicated. These results should therefore be taken as an upper bound on how 
well aircraft can perform. 

For uniform random traffic, at 500 active flights (the steady-state number in our expected 
urban scenario), an unmanned cargo UAV will be in normal flight about 2/3 of the time, and a 
passenger-carrying UAV will be flying normally only 29% of the time. That means that all 
vehicles will be spending a significant amount of time in maneuvering. 

For the stream traffic pattern at 500 active flights, where all aircraft are moving in a similar 
direction though at different speeds, the situation is much better: an unmanned UAV will fly 
normally 93% of the time, spending less than 7% of its time in evasion, while a passenger-
carrying UAV will be flying normally 75% of the time. 

Figure 7: Fraction of time the ownship will be in normal state, for an 
unmanned UAV diverting 50 m 
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At 25 active flights, the lowest value we modeled, we find that vehicles will spend the 
following percentage of their time in normal flight: 

 Uniform random traffic pattern Stream traffic pattern 
Type 50 m deflection 100 m deflection 50 m deflection 100 m deflection 
Unmanned (2 g) 95.8% 94.2% 99.6% 99.5% 
Manned (0.25 g) 89.0% 85.1% 98.9% 98.5% 

	

For 500 active flights: 

 Uniform random traffic pattern Stream traffic pattern 
Type 50 m deflection 100 m deflection 50 m deflection 100 m deflection 
Unmanned (2 g) 66.8% 58.3% 92.6% 90.0% 
Manned (0.25 g) 38.3% 28.8% 81.5% 75.4% 

	

An analysis of TCAS system performance in the US reported one resolution advisory every 
116 flight hours.[4] By comparison, the best result above is equivalent to roughly two resolution 

Figure 8: Fraction of time the ownship will be in normal state, for a 
manned UAV diverting 100 m 
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advisories per hour,3 or about 230 times higher rate of collision avoidance events than what is 
currently observed in manned aviation systems. 

These results suggest that “dense” traffic, meaning traffic where flights interact often enough 
that they spend more than perhaps 10% of their time maneuvering to avoid collision, occurs even 
at very low numbers of aircraft when the traffic is not organized. Conversely, if a UTM system is 
organizing traffic flows to reduce the number of interactions by grouping aircraft on similar 
headings together—the stream traffic model here—then the vehicles will spend far less time 
avoiding collision. 

4.5.1. Estimating encounter rate 

The analysis above uses the estimated rate 𝜆 at which the ownship will encounter other aircraft 
and begin an avoidance maneuver. We estimate this rate from the measured duration of 
encounters and the amount of time that no other aircraft is within the 15 second limit of the 
ownship. This estimation method is similar to that used by Maki et al.[5] 

We model the number of other aircraft close to the ownship as a continuous-time birth-death 
Markov process: 

 
where states are labeled with the number of other aircraft within the 15 second limit; 𝜆 is the rate 
at which some other aircraft enters the limit zone; and µ is the rate at which other aircraft 
complete their encounter and move out of the zone. 

We can then use the rule 𝜋. = 1 − 𝜌 𝜌. for the amount of time spent in state i, where 𝜌 = 1
2
. 

Solving for 𝜆 we get 𝜆 = 𝜇(1 − 𝜋5). 

We measured the average duration 𝑑 of an encounter for each traffic pattern and number of 
flights; 𝜇 = 1/𝑑 for exponentially-distributed durations. We also measured 𝜋5, the fraction of 
time that no aircraft are close by the ownship.  

                                                

3 The average flight duration in our simulations lasts about 15 minutes. 99.6% in normal flight 
means about 3.6 seconds per flight in evasion on average; each evasive maneuver lasts on 
average 6.9 seconds, for ~0.52 maneuvers per 15-minute flight.   

0 1

λ

2 …

λ λ

µ µ µ
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The resulting mean time to encounter values, in seconds, for different traffic patterns are: 

Number of 
flights 

Uniform 
random 

One way Quadran
t 

Stream 

25 162 220 95.7 2090 
50 81.3 117 51.5 738 
75 58.3 78.2 36.1 536 

100 45.1 63.2 29.0 409 
170 29.5 39.1 20.1 249 
250 22.5 28.5 16.4 169 
500 15.3 18.1 13.1 88.9 
750 13.4 14.8 12.5 61.3 

1000 12.7 13.4 12.3 46.4 
1700 12.2 12.2 12.3 29.9 
2500 12.1 11.9 12.2 22.6 
5000 12.1 11.9 12.2 15.0 
7500 12.1 11.8 12.3 12.8 

10000 12.1 11.9 12.3 11.9 

 
At high numbers of flights, we did not reliably measure any time where there were no other 

aircraft close to the ownship. This suggests that we are underestimating 𝜋5 for those cases and 
thus overestimating the time between encounters. Consequently the results for high numbers of 
aircraft in flight are likely significantly worse than our analysis shows. 

5. Conclusions 
We set out to find a metric that would allow us to determine when traffic in a region is “dense”.  
We chose to follow the intuition that the effects of density would appear in how vehicles in flight 
interact with each other, and used collision avoidance as inspiration for defining “interaction”. 

Our first metric is the minimum closing time: how long does the ownship have before another 
vehicle might collide with it? We find that the traffic pattern—the general direction of flow of 
the other aircraft—affects this measure, with traffic on random headings resulting in much lower 
closing time than for traffic all headed in similar directions. This is largely due to the number of 
aircraft on nearly opposite headings from the ownship when traffic headings are random. 

Our second metric is the number of close aircraft. This provides some insight into how often 
the ownship will avoid one aircraft only to have to maneuver again to avoid a different one, and 
how many other aircraft the ownship needs to be tracking. In other work we have found that 
collision avoidance systems reduce overall system safety if traffic goes above a threshold where 



 

18 

one avoidance maneuver causes a cascade of other maneuvers in response; this metric helps 
show what regions and traffic patterns result in such situations. Once again, the degree to which 
all the traffic are flowing in the same direction affects this measure. 

We found that both measures scale smoothly with the number of aircraft in flight. As a result, 
there is no obvious knee in a curve where we can declare a limit. 

We also found that both heading and speed of the other aircraft affect the results, and that 
metrics based on closing time usefully combine these into one measure.  This stands in contrast 
to the use of separation distance alone as the measure for determining when two aircraft are too 
close. 

These results highlight the importance of certain kinds of order in traffic flows, such as 
organizing UAV traffic by heading. This suggests two conclusions: first, that it will be important 
to employ traffic management mechanisms in the airspace to reduce entropy in the traffic flow in 
volumes where traffic flows will be concentrated; and second, that the behavior of a dense air 
traffic flow is highly sensitive to perturbations in ordered flows—such as a wind gust, an 
intruding aircraft, or an aircraft that experiences a failure. Many ordered systems exhibit this 
kind of behavior, so this sensitivity is not a surprise: crystal structures, road traffic, and high-
bandwidth network flows all exhibit sharp transition changes when disorder in a system crosses a 
threshold. This suggests that traffic management systems must take these sensitivities into 
account, and build resilience into traffic flows to absorb some amount of perturbation. 

Each aircraft’s collision avoidance system must also be sized to track several aircraft 
concurrently in urban settings. Except for when all traffic is going in the same direction, at the 
average moment an aircraft will be tracking at least one other nearby aircraft and often more. 
(We noted earlier that in the case of the Stream traffic model, the results likely underestimate the 
amount of interaction between aircraft and so may be overly optimistic.) 

We also modeled how often aircraft are likely to be maneuvering, and how much of their 
flight time they will spend in such maneuvers. If we use a rule of thumb that no aircraft should 
spend more than 10% of its flight time in maneuvers, then only agile aircraft that can maneuver 
at high accelerations can meet this goal at traffic levels we expect to see over urban areas.  

In the end, we conclude that “dense” operations occur at low absolute numbers of aircraft, if 
those aircraft are all on different headings. Applying a traffic management system that organizes 
traffic into more unidirectional flows helps, but even then traffic will be “dense” at levels below 
what we expect to see in urban areas. It will be necessary to deploy a traffic management system 
with capabilities for handling dense operations within a very few years’ time. 
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