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Abstract 1 

This is the first public release of the draft of Altiscope’s quantitative open risk framework for 2 
unmanned aerial systems. It provides a direct path to implementation in present-day scenarios, as 3 
well as the conceptual groundwork to enable increasingly complex, dense and autonomous UAS 4 
operations informed by risk. The first chapters provide the justification for the framework and 5 
situate it in relation to other efforts to identify UAS risks. Next, this framework outlines a variety 6 
of high-level use cases so that various users can understand how they might use the framework. 7 
We provide conceptual details of several derivative models using the framework. So that users of 8 
this framework can gain a better understanding of how it might be applied and implemented, we 9 
provide detailed calculations and derivations for present-day small vehicle missions. As a matter 10 
of nomenclature, a model that is implemented in software and available for operational use is 11 
referred to as a “service.” A service may be available to many users and operators, or it might be 12 
used exclusively by a single user. 13 

Note to Readers 14 

This is a preliminary draft of Altiscope’s open risk framework, provided for external consultation 15 
with the hope of generating debate and discussion on how to improve it. Disclaimer: this is a 16 
draft document being released to invite collaboration. It should not be used to assess risk 17 
for any flight mission or operation. ALTISCOPE AND AIRBUS DISCLAIM ANY 18 
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 20 
PARTICULAR PURPOSE. This is an open framework because Altiscope and Airbus are 21 
providing it to the entire aviation community free of terms and restrictions. Anyone may take and 22 
adapt, modify, change or incorporate any of these methodologies into their own processes 23 
without needing a license to do so. We believe this is the best way to foster collaboration and 24 
ensure that the evolving framework meets the needs of industry, regulators and air navigation 25 
service providers, while enabling safe operations anywhere in the world. 26 

All comments and critiques are welcome on this draft. Please submit them directly to 27 
peter.sachs@airbus-sv.com, referencing the relevant line numbers in the left-hand margin. 28 

Many readers may be curious what relationship this framework has to the JARUS SORA 29 
(Specific Operations Risk Assessment). The short answer is that we view this framework as 30 
complementary to the SORA methodology. Altiscope’s risk framework also could be used to 31 
extend SORA’s abilities – for example, by providing real-time risk assessment immediately 32 
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before departure, or at any point in a flight. Because this is a quantitative framework, we expect 33 
that it can be applied in high-volume, dynamic and autonomous settings in the future, for which 34 
SORA alone would not be useable in its present form. 35 
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1. Introduction 51 

Altiscope’s quantitative open risk framework recognizes that there are many steps between 52 
today’s small UAS (sUAS) missions and the high-density autonomous flights envisioned 20 53 
years from now. The current systems in place in manned aviation assume that all human 54 
participants are properly trained and that all equipment meets rigorous certification standards. 55 
But neither of those assumptions holds true for UAS operations today. Operators can receive a 56 
remote pilot’s license in many countries without ever demonstrating competency in flying the 57 
vehicle. And the vehicles themselves may vary widely in reliability and quality, since 58 
manufacturers do not yet need to meet the same level of rigor in their design and assembly 59 
processes as in conventional aircraft. 60 
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The need for a consistent, repeatable and scalable approach to risk assessment in UAS 61 
operations is immediate. In mid-2018, a consensus study report published by a committee of the 62 
National Academies of Sciences, Engineering, and Medicine recommended that the Federal 63 
Aviation Administration create a quantifiable approach to making risk-based decisions about 64 
UAS operations (National Academies of Sciences, 2018). The FAA historically has used 65 
subjective, qualitative criteria in its approval process. But that approach leads to inconsistent 66 
findings of hazard based on every possible (not probable) harm. And it cannot be scaled to the 67 
surging demand for UAS access to all levels of airspace. 68 

This open risk framework provides a basis for quantifying a variety of factors related to the 69 
pilot, the vehicle and the operating environment that today are analyzed by a competent pilot, 70 
dispatcher or operator. The benefit of this approach is that it can also be built into the processes 71 
that a semi- or fully autonomous system will conduct before, during and after a flight.  72 

In other words, the open risk framework solves two problems. First, it brings clarity to the 73 
actual risks behind UAS missions happening today with a human actively involved in some 74 
portion of the flight. And it provides a quantifiable (and therefore consistent and repeatable) 75 
approach for a set of autonomous UAS traffic management (UTM) services to manage risk 76 
across all airspace operations.  77 

2. Extending Safety Management System Principles 78 

Manned aviation around the world currently enjoys one of the best safety records it has ever had, 79 
in terms of accident and fatality rates. In the United States, a fatality in 2018 was the first due to 80 
an accident aboard a commercially operated flight since 2009. Other countries experience similar 81 
safety records as well. The result is a popular expectation that flying, as one of the safest modes 82 
of transportation, is immune to risks that could cause death or serious injury. The truth, of 83 
course, is that risks are carefully, systematically and proactively managed by every participant in 84 
the aviation industry, from manufacturers and airport ground handling personnel to pilots and air 85 
traffic controllers. 86 

A Safety Management System (SMS) is what helps ensure that aviation remains as safe as it 87 
is, providing a holistic and organization-wide approach to managing risk. Most aviation safety 88 
professionals recognize the term “safety culture,” which is one of the more obvious components 89 
of an SMS, and sets the tone for prioritizing safety above convenience or profit in day-to-day 90 
operations and decision-making. 91 

Because SMS processes are so critical to modern aviation, the Open Risk Framework is 92 
intended to intersect with and enable it at many points. Many people within the unmanned aerial 93 
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vehicle industry may not be familiar with SMS if they don’t have previous experience in 94 
aviation, so this section also provides a primer on how SMS is applied within an aviation 95 
organization. 96 

The International Civil Aviation Organization’s (ICAO) Safety Management Manual (SMM), 97 
Document 9859, describes the policies that each member state must institute as part of a 98 
comprehensive Safety Management System (SMS). An SMS is a set of top-down business and 99 
management processes that prioritize safety in the operation. Not only is each ICAO member 100 
state required to have an SMS in place for its regulatory duties, but member states impose similar 101 
requirements on the organizations that provide their air traffic control services. And many ICAO 102 
member states also require certificated operators, such as maintenance facilities, cargo airlines 103 
and air carriers, to develop their own companywide SMS documentation and procedures. 104 

An SMS helps ensure safe operations by making safety risk management and safety assurance 105 
activities central to the organization’s work. There are four broad components, though the details 106 
of each will vary significantly depending on the organization or company. 107 

1. Safety Policy: These are the documented processes, methods and standards for ensuring 108 
operational safety, holding managers accountable and providing avenues for all employees to 109 
report safety concerns without fear of retaliation. 110 

2. Safety Risk Management: A formal process used to evaluate threats, hazards, risks and 111 
mitigations of the operation, particularly when rules or ways of working are changed. This is 112 
often a qualitative process involving subject matter experts. The steps are commonly known 113 
by the mnemonic DIAAT: Describe the system, Identify the hazards, and then Assess, 114 
Analyze and Treat the risk. Ideally, this process should be consistent and repeatable, so that 115 
different people conducting an analysis arrive at similar conclusions. 116 

3. Safety Assurance: This component ensures compliance with policies, procedures and rules 117 
through audits of safety practices, review of mistakes and incidents, and the use of data 118 
collection and analysis to spot trends in safety threats and hazards. 119 

4. Safety Promotion: A robust internal safety culture is critical for an SMS to succeed. This last 120 
component enables and fosters that culture by providing relevant training and spreading 121 
lessons learned and best practices. 122 

In practice, Safety Risk Management (SRM) and Safety Assurance are closely linked. The 123 
SRM process makes a determination that a proposed change presents an acceptable level of risk 124 
before that change is enacted. Safety Assurance collects data on the operation after the change is 125 
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made to ensure that risks are in fact being effectively mitigated. It can trigger a new SRM 126 
process or other corrective actions if problems crop up. 127 

One of the potential weak links in most SMS systems is that while data is collected at many 128 
stages of the operation, it may not be easily quantifiable or even accessible in a way that can be 129 
used in an SRM process. And in the case of evaluating the risk of entirely new procedures, there 130 
may not be available data to use as a baseline. Where data does exist that would allow a 131 
quantified analysis, there is generally no requirement that the SRM process rely on that rather 132 
than subjective, qualitative analysis. As the ICAO SMM notes, “The absence of quantitative 133 
baseline data may force a reliance on more qualitative analysis methods.” (ICAO, 2015)i Even 134 
with available data to quantify the probability of a risk, the SRM process to assign severity 135 
generally relies on qualitative categories. Catastrophic, Hazardous, Major, Minor and Negligible 136 
are the most common terms, with more specific definitions as to the extent and seriousness of 137 
damage or injury. 138 

Likelihood and severity of a hazard can be plotted in a risk assessment matrix such as that in 139 
Figure 1, which has the advantage of being easily interpreted and is familiar to many aviation 140 
safety professionals. The colored regions indicate whether an operation is acceptable as-is 141 
(green), tolerable with mitigations in place (yellow), or prohibited unless mitigations are added 142 
(red).  143 

Because both axes are most commonly defined qualitatively, subject matter experts evaluating 144 
a given operation may arrive at different scores given the same set of background facts and 145 

Figure 1: ICAO Risk Assessment Matrix. 
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information. And depending on factors such as cost, complexity or feasibility of mitigation 146 
measures, some participants may be inclined to adjust their scoring so that the operation falls in a 147 
low-risk square instead of a yellow square where a mitigation might be required. 148 

Conversely, when asked to evaluate a novel operation with which participants have neither 149 
data nor experience, there can be a tendency to lean in an overly conservative direction. This 150 
results in a score in the red region based on the worst conceivable outcome, however improbable 151 
that might be (“A mast arm separates from the vehicle in flight, causing it to lose control and it 152 
impacts an above-ground fuel tank adjacent to a school at recess.”). 153 

There are available methods to quantify both axes of the above chart, but consistent 154 
application will require a number of systemic changes, starting with education for SRM experts 155 
who don’t normally evaluate scenarios in that way. The frequency axis can be divided into 156 
failure rate ranges, either as a rate per 100,000 operations, a rate per 1 million flight hours, or 157 
some similar metric. Intervals such as rate per number of days, months or years are less optimal, 158 
unless the operation is known to occur with relatively steady frequency across that interval, and 159 
is not expected to grow or shrink with time. 160 

Quantifying the risk severity axis requires careful consideration of the hazard effects that need 161 
to be measured. Counts of the number of people injured or killed provide a very high-level view. 162 
Using buckets defined by severity on the Abbreviated Injury Scale or ranges of Injury Severity 163 
Score would provide a much finer tuning of the risk severity scale, and provides a means to 164 
systematically quantify the inherently qualitative nature of evaluating medical trauma (AAAM, 165 
2015). Quantifying damage can take a more straightforward approach in selecting appropriate 166 
ranges to reflect insurance liability, replacement value, or both. 167 

This process may not be sustainable going forward in risk assessment, though using a matrix 168 
or other visualization tool will still be important in understanding how the risks of a new 169 
operation compare with a baseline or some other point of comparison. Much of the 170 
organizational risk management that occurs today focuses on off-nominal events – that is, things 171 
that didn’t quite go as expected, but don’t result in a crash or collision – as precursors in an event 172 
chain that could eventually lead to a catastrophic accident. Since UAV operations are so new, 173 
and largely unfamiliar to the public at large, it may in fact be necessary in some jurisdictions to 174 
mitigate against much less severe failures. Doing so will likely require that insurance companies 175 
or regulators (or both) mandate that such data be collected and shared.  176 

But ultimately, an approach that uses a variety of outputs from a risk model to describe the 177 
range of risks of an operation may be more adaptable for the long-term needs of the UAS 178 
industry, rather than trying to shoehorn autonomous processes into an existing risk evaluation 179 
tool designed for simplicity. 180 
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2.1. Building and Applying an SMS in an Aviation Setting 181 

Creating an effective SMS requires not only an extensive effort to create policy, process and 182 
procedure documentation, but an equally large effort to educate everyone in an organization 183 
about the importance of those documents, and how to use them on a daily basis. Some 184 
documents may already exist, while others may need to be updated or rewritten. Establishing a 185 
blame-free environment for reporting safety concerns may also necessitate changing other 186 
organizational policies and procedures if they’re in conflict. 187 

The widely accepted continuum of safety culture comprises several mileposts, each with 188 
increasing trust, information and awareness about safety (Hudson, 2001). Many organizations 189 
struggle to move past the “reactive” stage, in which resources are poured into the response after 190 
an accident or safety lapse. Even with the “calculative” systems in place at the next level, it can 191 
be hard to use the data available to progress to the “proactive” level, since doing so requires 192 
using those systems to anticipate safety problems before something occurs. The ultimate goal is 193 
to operate at the “generative” level, in which safety is deeply engrained in all aspects of an 194 
organization, and even slight irregularities are recognized and addressed. 195 

In settings with any level of autonomy, SRM processes will take on a different flavor 196 
compared to today’s groups of stakeholders working through a proposal in a conference room. 197 
As we gather more operational data and quantify both the severity and likelihood of various 198 
occurrences, we can work on making our SRM processes more predictable and repeatable. In 199 
many cases, an autonomous system will be able to conduct its own SRM process – essentially, 200 
running a validated risk model on a given operation – and assigning mitigations or changes to the 201 
operation as necessary to meet compliance thresholds set by regulators, insurers or the operator 202 
itself. 203 

Safety Assurance responsibilities may fall to an existing quality control unit, or may require 204 
new roles. Providing the right data analytics tools to those people is crucial. While many 205 
organizations already collect large amounts of data, it may be warehoused or siloed in ways that 206 
make it difficult to unpack and visualize. An effective safety assurance program not only 207 
conducts after-the-fact investigations of errors and incidents, but also continuously reviews 208 
routine data at a high level to spot possible sources of future errors and problems. At the outset, 209 
the safety assurance team will need to scrutinize the entire organization to make sure that new 210 
and existing systems are collecting the right kinds of data. For example, who are all the people 211 
who touch a UAV from the day it (or its components) first arrive, to its last day in operation? 212 
Those people need ways to enter vehicle information – repair status, results of bench tests and 213 
flight checks, pre- and post-flight notes and anything unusual or unexpected that happens along 214 
the way – that fit with the existing data warehouse format. 215 
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2.2. Existing safety frameworks for UAS operations 216 

Most of the frameworks we use to manage risk in aviation today are inherently qualitative. They 217 
are effective at what they do, leading a human operator (whether mechanic, pilot, controller or 218 
someone else) through an intentional checklist or set of steps to ensure that they’ve done 219 
everything they can in their respective domain to identify and manage any perceptible risks. 220 
Specific to UAS operations, several insurance companies have developed proprietary 221 
frameworks they use to assign risk and therefore set pricing for premiums. Details of these 222 
frameworks are not available publicly, other than listing broad categories of risk that are 223 
considered. This makes them difficult to extend to an operational setting, since there is no way to 224 
validate their underlying methodologies. 225 

The most well developed framework in use today is the SORA developed by the Joint 226 
Authorities for Rulemaking of Unmanned Systems (JARUS). The SORA has been endorsed by 227 
the European Aviation Safety Agency for use by EU member states in deciding whether to allow 228 
a given UAS operation. SORA presents a relatively straightforward, qualitative process to 229 
determine one’s Specific Assurance and Integrity Level, or SAIL, which directs the types of 230 
processes and mitigations an operator needs to have in place to enable a safe operation. The 231 
inputs are the overall width (or wingspan) of the vehicle; the type of operational scenario (VLOS 232 
or BVLOS, and density of the environment over which the flight will occur); any mitigations in 233 
place to decrease the damage a crash of the vehicle might cause; and the type of airspace and 234 
altitude of the mission.  235 

SAIL levels range from I to VI, with higher levels requiring the operator to provide 236 
documentation or evidence demonstrating more robust maintenance and operational procedures. 237 
In many cases, to achieve the high levels of assurance required for SAIL V and VI, the operator 238 
must have their processes independently validated by a third-party organization. Especially at the 239 
SAIL VI level, the practical implication of this is that the vehicle and operator must meet 240 
guidelines that are only slightly less stringent than going through a full certification process. 241 

While following the SORA framework results in an initial SAIL assignment, this does not 242 
immediately translate to a flight authorization. Nor does it correlate to a quantitative range for 243 
probability of vehicle loss of control, crash or fatality.  244 

Because the SORA process does not take into account temporal risk factors, such as weather 245 
conditions, vehicle maintenance, fuel load or actual airspace occupancy levels, some operators 246 
may find that they need to conduct an additional preflight risk assessment to determine a 247 
quantifiable set of values representing that mission’s predicted risk levels. That allows a 248 
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comparison against benchmark safety rates, whether set by the operator themselves, the insurer 249 
or the airspace regulator – or all three. 250 

The advantage of SORA is that is provides a holistic view of hazards and risk mitigations 251 
during the flight planning stage. Its approach is fairly conservative, assigning high SAIL levels to 252 
many types of missions. This reduces the likelihood that an airspace regulator will inadvertently 253 
decrease the equivalent level of safety in their airspace. 254 

Since SORA is a qualitative process and not a comprehensive evaluation, its applicability to 255 
future UTM risk assessment needs is limited. SORA provides 12 categories of airspace usage 256 
and eight categories of operations (including over urban, rural or suburban areas). This does not 257 
provide a fine enough level of detail for an autonomous path planning system to optimize vehicle 258 
routes for a target risk threshold. Altiscope is working on an air risk model based on a clustering 259 
algorithm that may be able to improve the current process of conducting an expensive and time-260 
consuming airspace usage study before seeking mission approval (see Annex C). And we are 261 
investigating methodologies to calculate ground risk using databases of people density and 262 
building footprints (see Annex B). Taken together, our hope is that validating these two 263 
approaches may be able to greatly simplify the current SORA workflow for establishing air and 264 
ground risk, making it a quantitative process that can be initiated in the background with 265 
software, and not requiring extensive knowledge on the operator’s part. 266 

SORA’s scope is limited to vehicles without passengers, so the framework does not provide 267 
guidance for de-risking air taxi missions that almost certainly will want access to dense urban 268 
areas and airports. Further, SORA does not provide a mechanism to evaluate the combined risk 269 
of many UAS flights in a given volume of airspace. Even in an environment similar to today’s, 270 
with most vehicles supervised closely by a human operator, this means SORA does not take into 271 
account the added risk (if any, depending on navigation and performance abilities) of two UAS 272 
missions operating in proximity to one another. While the calculations in this version of 273 
Altiscope’s open risk framework are geared toward small, battery-powered vehicles (see Annex 274 
A), we intend to create similar failure mode sub-models for other types of vehicles, providing the 275 
scalability and flexibility that will be needed to accommodate future missions. 276 

Altiscope envisions that the quantitative approaches in this framework could be used to 277 
complement and extend the SORA framework, providing operators and regulators with a single, 278 
comprehensive framework that could be used in defining mission needs (long before departure) 279 
to autonomously separating vehicles and managing airspace capacity from moment to moment. 280 
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2.3. How the Open Risk Framework enables SMS 281 

Altiscope’s open risk framework and implemented versions of its risk models can engage and 282 
enable an SMS in a variety of ways. The following notional examples are intended to illustrate 283 
some of those interactions. 284 

1. A risk model evaluates each operation before it takes place, outputting a variety of results 285 
and providing safety risk management functionality on a systematic, flight-by-flight basis. 286 
Within a given regulatory jurisdiction, all implemented risk services must use the same 287 
underlying model, so that results generated by different services are consistent, repeatable 288 
and comparable to one another. This fundamental requirement ensures that safety policy is 289 
applied across all facets of the regulator’s jurisdiction. 290 

2. An individual operator may implement an internal risk model to aid in the flight planning 291 
process and increase the likelihood of approval without subsequent modifications. A risk 292 
service interconnected with other UTM and ATM components may recommend flight plan 293 
approval to a discrete planning service. Or a flight plan processing service may fully 294 
integrate a risk model into its system to provide both capabilities at once. Any of these 295 
permutations enable safety risk management processes across all users of a UTM. 296 

3. The data collected from the risk model, such as how it arrived at its results, as well as inflight 297 
performance and telemetry data, is collected, stored and processed by either a standalone risk 298 
data service, or one of the same risk calculation services described in the previous step. This 299 
service, initially trained based on human-driven root cause analysis processes, is responsible 300 
for tracking and reporting flights that operate with a higher actual risk than predicted. It must 301 
also identify slight deviations that indicate an impending malfunction or a set of hazards not 302 
properly accounted for in a risk model. Taken together, these capabilities provide safety 303 
assurance at very high levels, since the service can process and aggregate large datasets to 304 
identify underlying risk factors before an unsafe event occurs. 305 

4. The aggregate data collected from a system that relies on the risk framework enables policy 306 
and procedure decisions that are informed by a holistic understanding of the operation, not 307 
just anecdotal evidence. That same data is also the basis for learning from mistakes, 308 
incorporating best practices and the continual education that occurs within a strong safety 309 
culture. 310 
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3. Use Cases 311 

The value of this risk framework is in how it can be applied in real-world scenarios, both today 312 
and in the future. These broad descriptions are intended to capture the needs of all participants 313 
who would interact with a service based on the risk framework. While many of these use cases 314 
apply to civil or commercial UAS operations, they may apply to military operations as well, 315 
depending on the specific mission and context. 316 

3.1. Operator Use Cases – Present Day 317 

Hobby/recreational drones: These vehicles are flown for fun, and as of today, we expect 318 
that operators will not need a certificate or licence to fly them. Because of this, their operations 319 
are limited to low altitudes in Class G airspace and are flown exclusively within visual line of 320 
sight. Unless the vehicle itself is available both to recreational and commercial users (and 321 
therefore may need to meet certain performance criteria for the latter), it might not be subjected 322 
to any level of risk assessment. Many of these vehicles will likely fall under future standards for 323 
de minimis1 or no-risk vehicles based on their low weight and limited range and payload 324 
capabilities. 325 

Visual line-of-sight (VLOS): sUAS flown by a commercial operator in controlled airspace 326 
below 400’ AGL. Operation is limited to a small radius for surveying, photography, etc. Flights 327 
generally less than 30 minutes long, a function of battery capacity. Flights may occur at night, 328 
over groups of people or in proximity to an airport if the vehicle’s capabilities reduce the risk of 329 
a crash or collision. 330 

Beyond visual line-of-sight (BVLOS): sUAS flown by a pilot on the ground who may be co-331 
located with the general area of operation, or who may monitor and control the vehicle from a 332 
remote station hundreds or thousands of miles away. Vehicles tend to be larger, have the 333 
capacity for flights 30 minutes or longer, and may carry specialized payloads. Includes linear 334 
infrastructure inspections, precision agricultural spraying and landscape surveying/hydrology 335 
missions.  336 

BVLOS Package Delivery: Payload-carrying vehicle flies between a warehouse or pickup 337 
point and delivery location, then returns to the next warehouse or pickup point. Flights may 338 
operate with varying levels of autonomy in scheduling, dispatch and flight operations. A human 339 
                                                

1
 “De minimis” here refers to the concept that some flights may fall below a very low, quantifiable risk threshold, 

and therefore would be exempt from a formal risk assessment process. This is not to say those aircraft wouldn’t 
crash, but that the likelihood of resulting injury or damage would be extremely small. 
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pilot monitors multiple operations at once, but may only have limited capability to manually 340 
control the vehicle. A human on the ground may have functionally limited roles in loading a 341 
package onto a vehicle, doing the preflight check or checking fuel/battery levels. 342 

Infrastructure maintenance: sUAS, remotely or visually piloted, that comes within very 343 
close proximity or direct contact with a building or object. Includes applications like wind 344 
turbine cleaning and cell tower component installation. Vehicles may pick up and release 345 
payloads between the installation site and a nearby ground location. 346 

3.2. Operator Use Cases – Near Future 347 

Operations in proximity to manned aircraft: These missions may either be conducted as 348 
VLOS or BVLOS, but are subject to more stringent risk thresholds to comply with higher target 349 
levels of safety associated with manned aircraft (that is, the risk calculation must take into 350 
account lethality as a primary harm, whereas a conventional VLOS mission in a sparse area may 351 
not need to meet the same level of assurance). Primary means of achieving required risk level is 352 
likely through a combination of robust/redundant and low-latency command-and-control links; 353 
precise lateral/vertical positioning; and onboard traffic avoidance as a last-resort conflict 354 
resolution tool. Coordination based on real-time manned aircraft arrival/departure corridors in 355 
use will be essential. 356 

Emergency Response, Search-and-Rescue: Vehicles requiring priority handling and 357 
authorization in conjunction with police, firefighting or other operations critical to life. Vehicles 358 
may be deployed by a pilot at the scene of an event and operate similarly to a VLOS mission, 359 
except that they may need broader and faster access to controlled airspace that wouldn’t 360 
otherwise be permitted. Depending on mission needs, flights may need to operate at altitudes 361 
above 400’ AGL, or may follow a path (e.g. a wildfire containment line or aerial support of a 362 
police pursuit) or search-and-rescue grid pattern. Vehicles may autonomously launch from a 363 
storage and recharge depot to the location where needed, and either continue operating 364 
autonomously or be manually controlled once on scene. 365 

3.3. Operator Use Cases – Future Missions 366 

Urban air mobility/air taxi: Large VTOL vehicle that is certified by an airspace regulator, and 367 
therefore has demonstrated its robustness in design, reliability and flight handling characteristics. 368 
It carries 1-4 passengers over distances of up to 100 nautical miles and at altitudes up to 4,000’ 369 
AGL. Vehicles takeoff and land at designated vertiports, but may use helipads, playing fields or 370 
other open spaces as emergency diversion locations. Vehicles may have an onboard safety pilot 371 
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during initial deployment phases, and/or monitored by a human in a ground control center with 372 
limited override capabilities. Vehicle is equipped with a variety of detect and avoid (DAA) and 373 
other sensors to deviate for birds, non-cooperative aircraft or uncharted obstructions. 374 

Flocking vehicles: UAVs with the same or similar origin, route segments or destination may 375 
flock, especially in designated UAV corridors, to maximize airspace efficiency. These vehicles 376 
share some performance characteristics but need not be the same model. All vehicles must meet 377 
equivalent CNS (communications, navigation and surveillance) requirements to receive corridor 378 
control instructions and other services from a drone traffic management system, and also to 379 
communicate amongst each other to coordinate flocking behavior. By design, all vehicles must 380 
be autonomously flown and managed, since human intervention in the flight of a single vehicle 381 
would have immediate cascading effects to all other vehicles in the flock. 382 

3.4. Insurance Use Cases 383 

Actuarial data is crucial to enabling a robust, competitive and economically viable insurance 384 
ecosystem for UAS operations. Insurers that lack the required data risk setting premiums too 385 
high to compensate for unknown risks and may lose out on business. Conversely, rates that are 386 
too low or coverage limits that are too generous may force payouts on claims that are 387 
unsustainable and too costly for the insurer’s business model. 388 

We expect that insurers will want to dynamically set coverage limits, premiums and other 389 
policy terms based on the predicted risks of a given mission and how those compare to past 390 
mission profiles using an algorithmic process. Therefore, the three use cases for insurers are 391 
intertwined, since the data and outputs for one will inform the others. 392 

Individual short-term liability policy: These are issued on a case-by-case basis, for a 393 
specific mission. Since policies are in effect for a term of only a few hours, premiums are 394 
generally low, since the risk of a crash resulting in liability to a third party is low in a given time 395 
period (assuming a lightweight vehicle). These policies today generally do not cover hull loss of 396 
the vehicle, which some operators may desire especially for large, expensive or customized 397 
vehicles. Insurers using this model today are interested in refining their decision-making to take 398 
into account a greater number of variables in their prediction of risk, and determining 399 
corresponding premiums. 400 

Individual long-term liability, comprehensive and/or hull policies: Commercial operators 401 
who fly frequent missions in many areas may prefer to have a policy similar to car insurance, 402 
which is in effect at all times and is paid monthly, quarterly or yearly. Premiums may still reflect 403 
risk-related factors such as the type of vehicle, operator experience and expected mission 404 
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profiles. Just as car drivers today can opt into programs using an in-vehicle transponder that 405 
collects data on driving habits to adjust premiums, operators and insurers may be interested in 406 
similar capabilities for UAV operations. And just as with conventional car insurance, operators 407 
may want the ability to tailor their coverage limits, deductibles and other options.  408 

Fleet coverage (any combination of liability, comprehensive and/or hull): Many 409 
commercial trucking operations today maintain group policies that cover all of their drivers. 410 
Operators with many UAVs and pilots or managers controlling their fleet may desire similar 411 
insurance to simplify expenses and ensure a standard level of coverage for all flights. Operators 412 
may also expect that, by spreading risk across a pool of pilots and vehicles performing a variety 413 
of missions, their premiums would be lower and their coverage limits more favorable than if they 414 
had to maintain a portfolio of individual policies for each vehicle and pilot. Likewise, because a 415 
company operating multiple UAVs faces different exposures than a single-person commercial 416 
outfit, that company may want a single policy that also provides robust liability protection to the 417 
company. 418 

3.5. Regulator Use Cases (see also ANSP/Controller below) 419 

Regulators have three envisioned uses for the risk framework, both now and in the future. 420 

Oversight of flight plan approvals: Depending on jurisdictional requirements, the regulator 421 
may maintain control of flight authorizations, or delegate that role to an air navigation service 422 
provider (ANSP) or a U-Space/UTM flight plan processing service provider. Regardless of who 423 
performs this role, similar outputs from the risk model are required to make an informed manual 424 
or autonomous decision. These include outputs of all risk weights and access to the regulatory 425 
risk thresholds the flight must meet. The approver also needs visibility on any factors not 426 
included in the risk calculation (e.g. due to a lack of data) and how that affects the results. 427 

Tailored risk thresholds by location and/or time: We also refer to this as “risk policy.” 428 
These are factors largely independent of whether a vehicle is likely to crash or lose control, but 429 
influence the severity of the resulting harm. Risk thresholds can be based on any combination of 430 
things like: 431 

• Probability of lethality (function of populated density, exposure/shelter factor, vehicle kinetic 432 
energy) 433 

• Probability of a midair collision with manned aircraft  434 

o vehicle performance characteristics 435 

o airspace in use by manned aircraft (finals, traffic patterns, heliports) 436 

o quality of onboard traffic avoidance 437 
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o navigation and communications equipment 438 

• Likelihood of a compound mechanical/C2/navigation failure (“flyaway”) 439 

• Proximity to critical infrastructure, installations vital to national security or other sensitive 440 
locations 441 

• Stadiums and arenas, particularly during a game, concert or other event 442 

Airspace usage and conformance data: Regulators will rely on an implemented risk model 443 
to inform them about how operators are flying, how their airspace is being used, and to help 444 
them answer a variety of questions. What types of operations are most common, and where do 445 
they occur? What are the actual operational risks, and how do those compare with the predicted 446 
risk? How closely does each flight conform to its expected flight plan or mission profile? If there 447 
is variation, is that increasing risk? And perhaps most importantly, are the regulator’s risk 448 
thresholds (risk policy regions) appropriately set and allowing or blocking flights that the 449 
regulator or the public deem excessively risky? The risk framework should complement and 450 
enhance existing quality assurance and SMS auditing processes. 451 

3.6. ANSP/Controller Use Cases 452 

The current approach of authorizing very-low-level UAV operations in many countries assumes 453 
that those flights have no operational impact for air traffic controllers. That is, UAVs are limited 454 
in how high they can fly, and in most cases are kept to the periphery of controlled airspace at the 455 
surface. However, this approach does not provide an obvious path toward integrated operations 456 
at higher altitudes or in proximity to manned aircraft. Therefore, we consider the following broad 457 
use cases, which are dependent on a risk-based process to filter flights. 458 

Flight Authorizer: This person may be a safety specialist working in a specific facility or in 459 
a central location that is responsible for the ANSP’s entire jurisdiction. The role may require 460 
granting manual approval of flight requests based on guidance or recommendations output from 461 
a risk service. Or this person may deal with a relatively small number of exceptional or unusual 462 
requests that a risk service is unable to handle. 463 

Quality Assurance/Compliance Specialist: This person needs access to much of the same 464 
airspace usage and conformance data described in the previous section. He or she may be 465 
responsible for conducting root-cause analyses of individual safety events, or they may look at 466 
aggregate trends and outcomes across large numbers of flights. This person needs to be able to 467 
compare predicted and actual risks to determine whether a given set of off-nominal operations 468 
reduced the margin of safety, and whether that effect was expected or not. 469 
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Controller on position (near term): Working at a control tower position or approach control 470 
sector, the human controller’s attention must be on ensuring safe operations of conventional 471 
piloted aircraft. Therefore, a system that merges UAV flight data should prioritize and display 472 
only those flights that could require controller intervention. This could include large military 473 
vehicles flown by a pilot at a ground control station that are depicted similarly as manned aircraft 474 
and may land or takeoff from the same runways. But it must also include authorized UAVs 475 
inside of controlled airspace that experience a malfunction and are flying toward a manned 476 
aircraft. How much information does the controller need to know (and how long in advance of a 477 
conflict), assuming the controller can only issue instructions to the manned aircraft?  478 

Controller on position (future): Assume that an autonomous traffic management system for 479 
drones handles almost all UAV flights in controlled airspace, using some combination of 480 
procedures, routes and separation rules to avoid conflicts with manned traffic. In the event of a 481 
failure of the vehicle, the communications link, or a UTM Service Provider, the controller needs 482 
awareness not just of the impending unresolved conflict, but also of any follow-on conflicts that 483 
might emerge based on the controller’s response (i.e. a vector in one direction might lead to a 484 
new conflict with a third vehicle). Can a decision support tool provide the controller with the 485 
suggested best course of action so that the controller doesn’t have to gain full situational 486 
awareness of a dozen vehicles in her airspace that may pose a conflict? 487 

Front-Line Supervisor or Controller-in-Charge (CIC): This person has responsibility for 488 
the operational quarters, which may include several adjacent sectors, or all positions open in the 489 
tower cab. He or she needs a higher-level awareness of UAVs in the airspace, again prioritized 490 
so that those operating normally, on low-risk flight segments far from manned aircraft, are de-491 
emphasized. The supervisor/CIC needs at-a-glance information and clear awareness about a 492 
change that increases risk. This could be a vehicle malfunction (before it reaches the 493 
proximity/criticality threshold at which it appears on the operational controller’s screen), or it 494 
could be a previously approved flight happening during an unexpected change in runway 495 
configurations. In those instances, the supervisor/CIC needs a straightforward and immediate 496 
way to contact one or several pilots to convey basic instructions (return to home now, hold 497 
position until advised) and receive confirmation from the pilot. This could be done digitally 498 
through text message or notification on the UAV pilot’s control device/screen.  499 

  500 
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4. Preflight Risk Model for Present-Day Missions 501 

The preflight risk model provides ANSPs with guidance and context to understand the risk levels 502 
of present-day VLOS and BVLOS missions so that a specialist can make an informed decision 503 
(either manually or automatically) to approve or prohibit a flight. The model’s inputs are a flight 504 
plan and expected conditions (weather, airspace usage patterns, etc.). The outputs are a set of 505 
probabilistic scores and guidance that identifies the the most significant factors driving those 506 
scores.  507 

Altiscope is implementing this model as a risk service, which will provide a wealth of data on 508 
calculated and actual mission risks to further improve and refine its performance. Up until now, 509 
our previous research on UAS risk factors has guided the prioritization of modeling capabilities. 510 
Once a version of this model becomes operational, the development of future versions will be 511 
guided in large part by data that indicates relationships between inputs (existing or new) and 512 
unaccounted for risk factors. It will also be guided by the operational needs of ANSPs, including 513 
any specific needs or criteria that enable regulatory compliance. 514 

Note that in its current draft form, the specific computations provide the rate of unrecoverable 515 
vehicle loss of control – the hazard. Work is underway to implement clustering algorithms that 516 
will enable computation of the rate of harms we wish to avoid: midair collisions, and crashes that 517 
injure or kill people on the ground. Understanding the hazard rates is an important first step in 518 
this process. It may also be useful by itself in jurisdictions that wish to account for the risk of 519 
poor public perception. While a small vehicle crashing in the middle of a street may not injure 520 
anyone or damage anything, bystanders may find it alarming and unwelcome. 521 

4.1. Theoretical Basis 522 

The design for the preflight risk model began with the construction of a pair of fault trees for a 523 
small UAV loss of control that would lead to a crash, collision or near-midair collision (NMAC). 524 
That approach was explored and analyzed extensively in (Sachs, 2018) and the findings informed 525 
the initial thrust of research and design into this model.  526 

That research also revealed a greater complexity of interactions that lead to some losses of 527 
control that are commonly classified as “flyaways.” In these events, several simultaneous failures 528 
result in the operator being unable to manually regain control of the vehicle, and the vehicle 529 
being unable to execute a preprogrammed “return to home” command.  530 

To account for those complexities, the framework for a preflight risk model must be able to 531 
weigh those interactions using something other than the Boolean logic of fault trees. Therefore, 532 
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we plan to pursue further analysis using Bayesian belief networks. One of the key benefits of this 533 
approach is that it allows any input to exert a causal force on several intermediate conditions, 534 
whereas in fault tree analysis, basic events must be discrete and connected to just one gate. 535 

A notional framework for a Bayesian net may look like Figure 2. This model captures the effects 536 
of weather conditions on both battery performance and vehicle flight behavior. Note that the 537 
current modeling effort will need to expand to address other fuels, including hybrid systems (fuel 538 
cell, combustion or turbine used to generate electricity) and tethered electric supplies.  It also 539 
illustrates how an operator can either directly or indirectly contribute to a loss of control, 540 
particularly if that person responds incorrectly to a malfunction and worsens the condition. 541 
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Figure 2. A notional Bayesian network for a UAV loss of control.
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4.2. Architecture and Computational Approach 494 

The preflight risk model is optimized for small UAS operations that occur today: VLOS or 495 
BVLOS flights conducted with lightweight vehicles that do not require or receive separation 496 
instructions from air traffic controllers. Altitudes are generally restricted to below 500 feet AGL 497 
based on jurisdictional regulations, but the model can calculate risk for operations at any altitude. 498 

This model chooses variables that are easily attainable from the vehicle itself, existing weather 499 
data sources and existing databases of vehicle performance characteristics. We make deliberate 500 
choices in this model’s design to either omit other inputs that we know are important (especially 501 
if we know that data isn’t available), or to make conservative modeling assumptions based on 502 
subject matter expertise. The intent is that once all interactions are defined in modeling software, 503 
that structure can be engineered into a developer API to run calculations using flight plans 504 
submitted to an ANSP through some kind of user flight plan application. The model, in other 505 
words, runs in the background, but provides outputs that can appear on an operator’s, regulator’s 506 
or ANSP’s interface to help them understand mission risks and make informed decisions. 507 

This model calculates risk using inputs from six categories (additional details in Annex A). 508 
These categories are the same ones identified in Altiscope’s fault tree sensitivity analysis as 509 
having the greatest influence on the risk of loss of control of a UAV resulting in a crash or 510 
collision: 511 

• The flight’s location, time, duration, etc. 512 

• Vehicle make, model and performance characteristics 513 

• Operator experience 514 

• Wind and weather conditions 515 

• Vehicle maintenance 516 

• Battery performance 517 

Additional input categories allow the model to predict the chance of a flyaway and the 518 
likelihood and severity of an airborne collision and of killing someone on the ground: 519 

• RF spectrum and communications link characteristics 520 

• GNSS coverage and obstacles/terrain that result in degraded navigation accuracy 521 

• Historical flight track information 522 

• People density and exposure 523 
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  524 

Our approach favors easily attainable data and variables to make it possible for anyone to 525 
implement a service using the model in the short term. This will start giving operators and 526 
regulators responsible for today’s UAS missions greater shared insight into the safety levels and 527 
risk factors of their flights. Using our existing knowledge from our fault tree models, future data 528 
sources and other modeling techniques, we can extend this model over time to capture more of 529 
the nuance and complexity behind mission risk factors.  530 

The ANSP’s requirements for handling flight plan requests will dictate the time horizon on 531 
which the model operates. Initially, this might be several days in advance of a mission to give a 532 
human specialist time to manually review the request. The ANSP may issue a conditional 533 
approval, assuming the proposed mission is able to show a similar set of outputs within hours of 534 
the flight time. In particular, process would allow the operator to adjust their flight time to occur 535 
during more favorable wind conditions, and to ensure their battery is sufficiently charged for the 536 
duration and profile of the mission. Because of the different time horizons that may be involved 537 
for the same flight, Annex A provides guidance on how to handle calculations when some 538 
information may be missing. This same model should be able to handle risk calculations 539 
immediately before takeoff.  540 

The preflight risk model will be capable of informing automated flight approvals, but depending 541 
on jurisdictional needs, an implemented version of it might produce a report to help a human 542 
decide whether to approve a flight or not. We expect that as usage of this model grows, we’ll be 543 

Figure 3. Architecture diagram of a near-term preflight risk service (“Risk Model 
Library”) used to inform automatic flight approvals. 
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able to collect aggregate data on how well it performs and whether it is accurately capturing 544 
operational risk factors. This is an important validation step that we cannot otherwise replicate, 545 
even with the extensive testing and statistical analysis we plan to apply to the model before it is 546 
deployed. 547 

The data we collect will inform enhancements and improvements to future models: adding 548 
variables, changing the relationships between them, and so on. This makes the preflight model 549 
iterative, and it will be updated and version-tracked in this framework just like any piece of 550 
software. Ultimately, we expect that the risk framework and derivative models will be managed 551 
and updated by an international advisory or standards body, such as JARUS. 552 

This preflight risk model will substantially inform the comprehensive preflight model. 553 

  554 
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5. The Comprehensive Preflight Model 555 

The comprehensive preflight model takes advantage of an increasing wealth of available data 556 
about vehicles, missions and airspace usage that is shared between UTM services, operators and 557 
data providers. It assumes that flight plans are automatically approved and amended by a flight 558 
plan service component of a UTM. A key functionality here that doesn’t exist in the previous 559 
model is that the outputs are used in optimizing a vehicle’s route, including deconfliction before 560 
takeoff.  561 

The plan-time deconfliction functionality assumes that an operator (autonomous or human) 562 
submits a flight plan within a few minutes of actual takeoff. This allows the flight planning 563 
service to consider all other proposed flights, including nearby vehicles that are already airborne. 564 
Operators may submit their flight plan in stages: Farther in advance, a more general intent to fly 565 
that specifies origin, destination and basic route and equipment characteristics, similar to a 566 
conventional flight today. The plan submitted shortly before takeoff would include a greater 567 
amount of data pulled from the vehicle about its battery or fuel state, maintenance condition and 568 
other parameters that might not be known farther in advance. 569 

The comprehensive model accounts for a greater number of temporal and environmental risk 570 
factors, including: 571 

● Real-time weather conditions reported from vehicles already in flight and weather 572 
sensing equipment installed in high-density UAV areas 573 

● High-resolution calculations of the effects of terrain, buildings, obstacles and urban 574 
canyons 575 

● The built environment, land use patterns and populated density on a much finer scale than 576 
is available today 577 

● Communications signal availability (taking into account multiple means of 578 
communication and security requirements of using any shared protocol, such as 4G LTE 579 
or 5G cellular networks) 580 

● Navigation reliability, predicted GNSS availability, accuracy and local augmentation 581 
● Surveillance coverage requirements 582 

 583 

This model dynamically calculates air risk, using advanced algorithms that take into account 584 
current and historical airspace usage to route vehicles away from the specific volumes of 585 
airspace used by manned aviation, such as arrival and departure corridors and traffic patterns. 586 
This approach is crucial to enabling integrated UAV operations in all classes of airspace. It is 587 
designed to account for changing traffic flows, such as a switch in the runways in use at a busy 588 
metropolitan airport as a result of a wind shift.  589 
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We intend for the approach behind the preflight model to be applicable in de-risking inflight 590 
route changes as well, though further research is needed to determine at what traffic levels such 591 
flight-by-flight risk-based route changing becomes too computationally burdensome. The benefit 592 
of applying a variant of this risk model to route changes is that it can check whether a new route 593 
would enable the vehicle to stay within its range limits and safely away from adverse weather or 594 
areas of poor communications coverage. By contrast, because this model must perform 595 
algorithmic queries of several different real-time data sources, it may prove to be too 596 
computationally burdensome for use in tactical inflight deconfliction. 597 

We expect that a large number of the components and calculations of a mature, future version 598 
of the basic risk model above will transfer directly into the comprehensive preflight model.  599 

The model runs calculations for each flight plan it receives, taking advantage of appropriate 600 
algorithms to accurately predict battery performance, account for multiple complex interactions 601 
between variables, and suggest changes to the flight plan to bring it into compliance with the 602 
regulator’s established risk thresholds.  603 

Recall that all implemented models must use the same underlying framework for consistency 604 
of calculations. Practically, that also means that all services would need to consult functionally 605 
identical data sources. In Figure 4, this is depicted as a Shared Data Access Layer, which would 606 

Figure 4. Architecture diagram showing the dual roles of a comprehensive preflight risk 
service in informing capacity management and route deconfliction. 



 

 DRAFT – FOR EXTERNAL CONSULTATION 25 

provide the same sets of data to all risk-related services.2 In implementation, each service might 607 
individually contract with the necessary data providers, or may include its own provisions for 608 
data access that complies with the framework requirements.  609 

A service operating under this model processes two distinct types of flight planning 610 
information. First, an operator may submit a flight intent notification several hours (or farther) in 611 
advance. This contains some elements of a flight plan, such as vehicle type, origin, destination 612 
and expected flight time. But it would not contain the specific vehicle health information 613 
necessary to perform a complete risk calculation. It would, however, be enough to inform 614 
capacity management and corridor control services about expected future demand. Knowing that 615 
allows those services to generate ad-hoc corridors to meet short term demand, and to create 616 
preferential routes or assign time-based slots to help manage capacity constraints.3 An operator 617 
who submits notice of intent for 1,000 flights would receive a bucket of slot times, as well as 618 
corresponding preferential routes to use with those slots, depending on destination. Knowing 619 
those details in advance allows the operator to allocate the slot times best for their needs and 620 
speeds up the flight plan filing and acceptance process – almost identical to what happens today 621 
for major air carriers in United States and EUROCONTROL airspace. 622 

Within a few minutes before departure, the operator submits detailed flight plans, which 623 
include slot assignments, preferential routes and corridors the operator expects that flight to use. 624 
The flight plan also contains the other inputs needed for a complete risk calculation, such as 625 
vehicle health and fuel state. With a 4-D flight plan, the risk service is able to do the granular 626 
checks of obstacle clearance, GNSS performance, weather conditions and other risk factors. 627 

This model’s output isn’t just a probability of collision or a risk score, but also whatever 628 
information a future UTM service would need so that it can apply dynamic separation standards 629 
between vehicles. For example, a vehicle with redundant navigation and communications 630 
systems may be eligible to fly with reduced separation and over areas that other drones wouldn’t 631 
be qualified to overfly. A given vehicle’s minima may vary over the course of a flight. For 632 
example, passing through an area with known high-latency communications coverage, a vehicle 633 
might require greater separation distances, whereas in an area with micro-positioning navigation 634 

                                                

2 In NASA’s UTM architecture, this functionality is provided by one or more Supplemental Data Service Providers 
(SDSP). 
3 One implicit assumption here that deserves considerable further definition is how to ensure fairness in the system. 
Left unchecked, an operator could flood a flight plan filing service with thousands of requests, effectively tying up 
large airspace blocks and preventing their competitors from launching their missions. This is a complementary area 
of policy creation and regulation. Broadly, Altiscope’s UTM architecture assumes that a central System Manager 
acts as a check on these types of events, ensuring that an operator’s needs and requests are balanced by other system 
and airspace constraints – as well as the airspace access needs of other operators. 
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augmentation and calm winds, that same vehicle – during the same flight – may be able to take 635 
advantage of reduced separation minima. 636 

The separation minima are appended to the flight plan and passed to a strategic deconfliction 637 
service. Knowing the separation requirements, the deconfliction service is able to plan an 638 
optimal route that takes into account other vehicles that will be flying through that area at the 639 
same time.   640 
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6. The Inflight and Capacity Management Models 641 

Like the comprehensive flight planning model, this model anticipates the needs of an integrated, 642 
autonomous UTM system, with traffic management (tactical, strategic and flow-based) provided 643 
by multiple service providers in each jurisdiction. This model is oriented toward holistic airspace 644 
optimization assuming hundreds of vehicles in the air over a metropolitan area at any given time, 645 
including fully autonomous package delivery and passenger transport vehicles.  646 

The model is most likely to be used by services that need to make routing and airspace usage 647 
decisions that will affect many vehicles at once. Assuming that multiple providers will provision 648 
services in the same physical volume of airspace, it is important that all of them reference the 649 
same risk framework to arrive at logically consistent decisions. As in the previous section, we 650 
depict the need for consistent and functionally identical data sources through the Shared Data 651 
Access Layer in Figure 5. 652 

One or more risk services may interact with flight plans in a variety of different ways. An 653 
operator may have its own internal risk service (or subscribe to one) that helps in preparing 654 
batches of flight plans, taking into account UTM-wide airspace management initiatives that may 655 
affect those flights. A preflight risk service handles factors unique to an individual vehicle and its 656 

Figure 5. Architecture diagram of multiple risk services informing all phases of flight, 
including vehicle-level tactical deconfliction and airspace-level capacity management. 
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mission and route. As in the previous model, those calculations inform the separation criteria for 657 
each vehicle, and therefore affect the deconflicted route issued to each vehicle. An airspace risk 658 
service looks at how the interactions among large numbers of vehicles affect total airspace risk. 659 
This includes one-to-one vehicle encounter risks and more complex interactions based on density 660 
and traffic flow patterns. An airspace risk service’s outputs will affect how capacity and corridor 661 
management services use their airspace. This could include creating new corridors to handle a 662 
high-demand stream (many vehicles going in the same direction, possibly assembled into a 663 
flock). It could also include time- or distance-based flow management initiatives to ensure that a 664 
given volume of airspace remains within safe density limits given the vehicles traversing it, 665 
weather conditions and any limitations due to communications, navigation or surveillance 666 
coverage. 667 

Finally, an inflight risk service plays a critical role in helping tactical deconfliction services 668 
decide how to resolve the inevitable inflight conflicts that will emerge. As our studies have 669 
shown, even with robust preflight deconfliction algorithms to resolve many situations, the slight 670 
natural variations in individual flight behavior (e.g. exact departure time, climb profile, cruise 671 
performance and course deviation) can add up to create new conflicts between vehicles. Tactical 672 
deconfliction services resolve these encounters similar to air traffic controllers today, using a 673 
variety of tools, like vectoring, level changes and speed restrictions. A risk service that is aware 674 
of a vehicle’s operational capabilities is important to identifying the most effective conflict 675 
resolution strategies. 676 

This model treats overall airspace risk as a changing surface across which vehicles fly. Higher 677 
parts of the surface represent higher levels of risk based on a combination of factors. Some 678 
vehicles may be properly equipped or qualified to traverse those areas (and in fact would not 679 
“see” peaks in the same way, because they would not be susceptible to those risk factors), while 680 
others will naturally be pushed away from those areas to lower-risk sections of the surface. 681 
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Airspace density therefore can be dynamically and temporally represented. Assuming all other 682 
risk factors are constant, less-dense areas become “depressions” in the surface and areas close to 683 
their maximum capacity for the fleet mix in the region become increasingly higher peaks. This 684 
draws vehicles toward valleys and away from peaks until the vehicles flying through dense 685 
hotspots exit the area and density levels trend toward an equilibrium for that airspace.  686 

High-risk region 

Low-risk region 

Vehicle path 

Figure 6. Notional view of varying levels of risk or density in a volume of airspace, as 
perceived by a given vehicle. High-risk areas are naturally repulsive, pushing vehicle 

routes toward nearby lower-risk areas. (Image Source: MathWorks France) 
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7. Definitions 687 

Reserved.  688 
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Annex A: Computational Approach for a Preflight Risk Model 689 

Required Inputs: 690 

Vehicle model 691 

Percentage of time flying in manual or programmed mode 692 

Drone pilot hours 693 

Latitude and Longitude of flight location, path or polygon 694 

For polygonal regions, total distance to fly (km) 695 

Flight duration (minutes) 696 

Date and time of flight 697 

Operating altitude (AGL feet) 698 

Count of hardware faults recorded by vehicle in last five flights 699 

Indication of any repairs completed to vehicle since last hardware fault 700 

Verification of preflight check completed 701 

Initial battery voltage measurement (sum of all cells) 702 

Payload weight (kg) 703 

Calculated Inputs 704 

 Based on vehicle model: 705 

Platform Length (m) Max Range (mi) Airframe 

Platform Width (m) Max Altitude (ft) Rotors Enclosed 

Platform Height (m) Wind Resistance Speed (knots) Launch 

Wing Span (m) Min Operating Temp (C) Recovery 

Wing Span Area (m2) Max Operating Temp (C) Communication/Data Link 

Platform MGTOW (kg) Payload Weight (kg) Operating RC Bandwidth 

Max Speed (knots) Power (kW) Operating Conditions 

Cruise Speed (knots) Propulsion Navigation/Control 

Max Ascent Speed (ft/s) Energy Source Navigation Method 

Max Descent Speed (ft/s) Battery Type BLOS Capability 

Endurance (mins) Battery Weight (g)  
 706 

Based on location and time: 707 
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MSL takeoff and operating altitude 708 

Cruising airspeed (knots) 709 

Peak wind speed (including gust, kt) 710 

Ceiling (lowest BKN or OVC value, feet) 711 

Visibility (SM) 712 

Count of each frozen precipitation code (FZ, SN, PL, IC, GR, GS, SG) 713 

Count of each thunderstorm-related code (TS, SQ, FC or CB in cloud group) 714 

Temperature (Celsius) 715 

Outputs 716 

(All expressed in units of “per flight hour” and “per operation”) 717 

Rweather, the risk of loss of control due to Weather  718 

Rpilot, the risk of loss of control due to Pilot  719 

Rmaint, the risk of loss of control due to Maintenance  720 

Rbattery, the risk of loss of control due to Battery  721 

Rparam, the risk of loss of control due to flight parameters outside of the vehicle’s 722 
performance limits 723 

Rflight, the total risk of loss of control, a simple summation of the above five risk values 724 
above 725 

 726 

A moderately conservative normalized percentage score for each risk category can be calculated 727 
by the formula: 728 

!"#$%&'(&)* = 1 −
ln ! + 15

25
 729 

Finally, a total risk score can be found by averaging the percentage risks of each of the first five 730 
output risk scores. 731 

Battery Risk 732 

The battery model is given by the equation 733 

!34**&'5 = −12,180 + 1.98;< + 1.67 ∗ 10@AB − 7.68 ∗ 10@A<& − 4.86 ∗ 10@DE − 121.9BF  734 

With the given inputs: 735 
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 IV, initial voltage measurement (millivolts) 736 
 D (total Haversine4 distance) (m) 737 

Ve (average total velocity) (km/sec) 738 
Du (total flight time) (min) 739 
A (difference between highest and lowest altitude) (mm) 740 

And where  741 

<& = 	
B

BF
 742 

The derivation of this model is provided in Annex B. 743 

Pilot Risk 744 

!H"IJ* = *K	L	MK + *H	L	MH  745 

Where tm and tp are the percentage of time (expressed as a value between 0 and 1) spent 746 
operating in manual (Fm) and programmed (Fp) flight modes, respectively. 747 

Fm is given by the equation: 748 

Fm	=	6.4103E-13h5	-	4.3725E-10h4	+	1.1121E-07h3	-	1.2499E-05h2	+	5.2364E-04h	+	749 
2.5007E-03	750 

When Pilot hours (h) ≤ 200, otherwise Fm = .0025 751 

Similarly, Fp is given by the equation 752 

Fp	=	2.4318E-14h6	-	1.6940E-11h5	+	4.4357E-09h4	-	5.2312E-07h3	+	2.4663E-0hx2	-	753 
1.7112E-04h	+	1.0986E-03	754 

When Pilot hours (h) ≤ 200, otherwise Fp = .0011 755 

The basis for these equations is provided in Annex C. 756 

Weather Risk 757 

These calculations are a function derived by the vehicle’s peak wind tolerance and assume, even 758 
in BVLOS operations, that the vehicle must remain in VMC (visual flight rules) weather 759 

                                                

4 The haversine distance determines the arced distance between two points on a sphere given their longitude and 
latitudes. 
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conditions. The weather calculation may vary slightly based on the amount of time between 760 
flight plan filing and proposed departure; the availability of nearby weather sensing equipment; 761 
and the precision of any forecast models used. For additional details, refer to Annex D. 762 

!V&4*ℎ&' = !V")X + !(&"I")Y L	([\ + M] + <) 763 

Where wind risk is a bounded third-order polynomial for peak winds less than 75 percent of the 764 
vehicle’s tolerance, and otherwise a bounded forth-order polynomial. As an example, for a 765 
vehicle with a 23-knot maximum wind tolerance, the equations would be: 766 

!V")X = 	9.64357E − 05VD + 	0.001361059V_ + 0.006376812w + 2.77556E − 17 767 

For winds less than 75 percent of the peak tolerance, and: 768 

!V")X = 	−3.81169E − 06Va + 0.000608811VD − 0.036084856V_ + 0.939636531w769 
− 8.05952381 770 

for winds greater than or equal to 75 percent of the vehicle’s peak tolerance. In both cases, w is 771 
the measured or predicted wind at the flight location. 772 

!(&"I")Y	 = (2	L	10@b)cD 	−	(1	L	10@d)c_ 	− 	0.002c	 + 	1.0144 773 

when the difference between the vehicle’s operating altitude and the ceiling, ∂, is less than 400 774 
feet, and otherwise is  775 

!(&"I")Y	 = 	0.03&@e.ee_f	776 

TS is the Count of each thunderstorm-related code (TS, SQ, FC or CB in cloud group) 777 

FZ is the Count	of	each	frozen	precipitation	code	(FZ,	SN,	PL,	IC,	GR,	GS,	SG):	778 

V is the parameterized visibility in statute miles 779 

Maintenance Risk 780 

!K4")* =
0.0001&_.gebA	h	i

!

A/k

 781 

where µ is an integer value between 0 and 5 representing the number of hardware faults recorded 782 
by the vehicle in the last five flights. For values of µ > 5, Rmaint =1. 783 
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R is a parameterized integer value between 2 and 4 based on whether the operator performed a 784 
preflight check of the vehicle; and whether the operator performed a repair since the last 785 
hardware fault. 786 

P is a parameterized value between 1 and 3, with increasing values as the payload weight 787 
approaches and exceeds the vehicle payload limit. 788 

Flight Parameter Risk 789 

!H4'4K =	0.001A/(lmnomnpm) 790 

Sr is a parameterized value between 0.3 and 10 based on the vehicle’s calculated airspeed and 791 
maximum speed. 792 

Tr is a parameterized value between 0.3 and 10 based on the air temperature and the vehicle’s 793 
minimum and maximum operating temperature. 794 

Er is a parameterized value between 0.3 and 10 based on the vehicle’s maximum endurance and 795 
the filed flight duration. 796 

  797 
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Annex B: Quantitative Ground Risk Calculation Approach 798 

We quantitatively calculate ground risk by computing the vehicle’s path over one or more 799 
LandScan people density tile squares (or other data source as appropriate). The ground risk 800 
output is the probability of a third-party lethality on the ground per flight-hour. The following 801 
methodology does not account for mitigations like a parachute or the vehicle’s ability to self-802 
select an emergency landing site in the event of a partial propulsion failure. 803 

 804 
Ground risk (that is, the number of lethalities per flight hour) for each waypoint and/or path 805 
segment can be calculated from the equation 806 

!Y'"X	 = q'"Xors 	∗ Bktuvwt ∗ E ∗ %xtyz{w ∗ \ℎ&I*&'M4(*J' 807 

 GridTMR is the total time-based mission risk for a grid square, A is the vehicle’s frontal 808 
area (see below) and PLethal is the probability that if a person is hit, they will be killed. This is a 809 
function of the vehicle’s kinetic energy at impact and can be looked up from a curve such as this 810 
one: 811 

  812 
1. To determine kinetic energy, we must know the vehicle’s terminal velocity at impact for 813 

multi-rotors. For fixed-wing vehicles, Vterm is the vehicle’s best glide speed (this assumes 814 
the vehicle auto-trims for that speed in the event of a propulsion failure). 815 

2. For each waypoint, calculate the vehicle’s terminal velocity as a function of its altitude, 816 
frontal area and weight. 817 
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<ytm| =
2V

}X	L	~	L	E
 818 

a. Where w is the vehicle weight, Cd is the drag coefficient from a lookup table, ~is 819 
the gas density, and A is the vehicle’s frontal area (wingspan * height for fixed-820 
wing, or �' _ for a multi-copter). 821 

b. Gas density can be calculated given MSL altitude, temperature and dewpoint (or 822 
relative humidity) using a calculation like these: 823 
https://www.brisbanehotairballooning.com.au/calculate-air-density/ 824 

3. Kinetic energy from terminal velocity and weight eqn 825 

4. [Simplistic calculation] For each route segment, determine the time (t = d/V) the vehicle 826 
spends overflying each square immediately below its route. 827 
Consider the flight path distance will vary from one square 828 
to the next, depending on how it traverses the square. 829 

a. A more robust calculation entails a convolution of 830 
the vehicle’s path with the underlying footprint. This 831 
is because, if the vehicle fails while turning, its 832 
trajectory will be a tangential vector that could cause it to travel into an adjoining 833 
grid square that otherwise wouldn’t be overflown. 834 

b. Thus, the calculation needs to 835 
consider the vehicle’s (x,y) 836 
velocity vector and descent 837 
angle. Assume a 1:1 glide ratio 838 
for multi-copters, since they may 839 
have some autorotation capability 840 
and will have a forward velocity 841 
vector unless hovering at the time 842 
of failing. Where-ever possible, look up the actual glide ratio for the vehicle, since 843 
these can vary greatly for fixed-wing and tilt-rotor vehicles. 844 

5. For a failure that causes the vehicle to plummet straight down, the flight-hour probability 845 
of impact can be calculated for each square by multiplying “total-mission-risk” for the 846 
waypoints in that grid square by the time value, tgrid, from the previous step (units of 847 
hours). 848 

q'"Xors 	= ([Ä!A + [Ä!_ +⋯+ [Ä!Ç) ∗ *ÉmÑÖ 849 

850 
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Annex C: Quantitative Air Risk Calculation Approach 851 

We calculate air risk quantitatively based on a UAV flight path’s proximity to known 852 
commercial aircraft volumes, and the average hourly historical traffic counts in each volume. 853 
The output is a probabilistic rate of collision with a manned (conventional) aircraft.  854 

1. Using historical ADS-B data and/or radar track data, run a clustering algorithm around all 855 
airports in the jurisdiction to identify arrival and departure volumes. 856 

a. Departure ADS-B tracks are identified from the time that an aircraft on the 857 
ground applies takeoff thrust. 858 

i. Radar track identification methodology will need to be tested. One 859 
approach would be to count tracks that initiate within 1 nautical mile of 860 
the end of a runway at an altitude less than 500’ above the airport 861 
elevation. 862 

b. Arrival ADS-B tracks are identified in reverse, from the time an aircraft touches 863 
down on a runway and decelerates.  864 

i. Radar track identification methodology will need to be tested. One 865 
approach would be to count tracks that terminate within 1 nautical mile of 866 
the end of a runway at an altitude less than 400’ above the airport 867 
elevation. 868 

c. Compute and store in a lookup table the average hourly departure and arrival 869 
traffic count, B!ℎ, and , E!ℎ, respectively, and standard deviation for each 870 
volume.  871 

i. Expected B!ℎ values will be between 0 and 100, inclusive. 872 

ii. Expected E!ℎ values will be between 0 and 60, inclusive. 873 

2. Each volume is a 3-D shapefile encompassing at least 90% of the arrivals or departures 874 
for a given runway. A lookup table should identify the runway associated with each 875 
volume, and the criteria under which it is used (wind speed and/or bearing ranges; and/or 876 
times of day). 877 

3. For each UAV flight, query a SWIM source for the active runways in use at the airport(s) 878 
nearest the UAV flight path. 879 
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4. Calculate the closest slant range distance of the path to each of the extents (sides and 880 
edges) of the runway arrival and departure volumes returned in the previous step. 881 

a. If the active runways are not known, then perform Step 4 for all arrival and 882 
departure volumes (most conservative). 883 

5. If any flight plan waypoint or segment 884 
is within a volume, assign a collision 885 

value of Üsz
Dáee

 or àsz
Dáee

for the waypoints. 886 

In the transverse view at right, neither 887 
waypoint is within the volume, but part 888 
of the segment is. In this case, both 889 
waypoints should be assigned an air 890 

risk collision value of Üsz
Dáee

 or àsz
Dáee

 per flight hour. 891 

6. For all other waypoints, the air risk is a function of the “mission-risk” value for that 892 
waypoint, and the shortest distance to the edge of an arrival or departure volume. 893 

a. â	 = |ÑääÑuÇ@mÑäã	

få
x (Üsz

Dáee
+àsz

Dáee
) 894 

i. Where c(is the closest slant-range distance in kilometers and âis the air 895 
risk per flight hour. 896 

7. Total air risk, âtot = â
çvy@Ç
çvy@A  897 

8. Note that this initial model is overly conservative because it does not take the vehicle’s 898 
velocity into account. Based on the validation results of this model, we expect that future 899 
models will compensate for velocity, with a higher risk value for segments that spend 900 
more time in or near an arrival or departure volume. 901 

 902 

Note: a suggested alternative definition. 903 

1. Build small voxels using ADS-B or ground radar tracks as discussed above.  For any 904 
given airspace configuration, calculate a rate 'Ñ, measured in flights per second, for voxel 905 
".  This is just the average number of flights that enter that voxel per time unit, calculated 906 
by the number of tracks observed to intersect the voxel divided by the duration of logs 907 
considered.   908 
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2. For a flight path P, compute the accumulated risk of crossing a region of airspace as the 909 
probability that the path will occupy at least one (or more) voxels at the same time as an 910 
aircraft is in that voxel.  If the probability that there is an aircraft in voxel " in a period of 911 
length * is %Ñ(*), then the cumulative probability of  encountering at least one other 912 

aircraft when traversing over a path % = (0, 1, . . . , ", . . . , )) is 1 − éÇ
Ñèe (1 − %Ñ(*Ñ)). 913 

3. We can approximate %Ñby assuming Poisson arrivals, so %Ñ(*) = &@mêy. 914 

4. We can compute *Ñ, the amount of time that the vehicle spends in voxel ", by computing 915 
the entry and exit points of the path through the voxel’s faces, finding the distance 916 
between the points, and dividing by the average speed through the voxel. 917 

5. Limitations in this model so far: 918 

○ This does not account for the time that an aircraft (from the ADS-B or radar 919 
tracks) spends in the voxel.  Keep in mind that it isn’t just the aircraft itself; any 920 
wake should be accounted for as well.  This will increase the value of %Ñ(*). 921 
 922 
This can possibly be addressed by defining %Ñ(*) as the probability that there is an 923 
aircraft arriving in the voxel in a period *, or that there was an arrival ≤ Vbefore, 924 
where V is the time required for the aircraft to clear the voxel (which may be the 925 
time from entering to exiting the voxel plus time for any wake to dissipate). This 926 
could be computed %Ñ(*) = &@mê(ynç). 927 
 928 
However, the risk of encountering wake should probably be treated differently 929 
from the probability of encountering the aircraft itself. 930 

○ This only addresses the probability of encounter (approximately probability of 931 
collision). This does not say anything about the harm outcome from that hazard. 932 

  933 
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Annex D: Battery Life Analysis – Practical Variable Model 934 

Erin Dienes, Ph.D. and Chris Dienes, Ph.D. 935 

 936 

Linear Regression Model 937 

Altiscope derived the preliminary battery performance model using drone telemetry logs on 137 938 
inspection flights. We intend to conduct additional flights and analyze data from a greater 939 
number of completed missions to refine the battery models. All vehicles used the same vehicle 940 
performing similar (though not identical) preprogrammed mission routes in similar VFR weather 941 
conditions with surface winds less than 10 knots. This model is presented as an operational 942 
example. Implementations of the preflight risk model must take into account varying battery 943 
chemistries, characteristics and operating limits; care should be taken in generalizing this model 944 
to other flight profiles. 945 

The drone telemetry logs contained data on 137 flights ranging in duration from 0.47 minutes 946 
up to 22.93 minutes.  Two of the flights were dated in 1969 and based on their trajectories were 947 
determined to be outliers.  These flights were removed from this analysis.  Out of the 526,311 948 
data points in the logs (generally 10 per second), there were 430 observations with a measured 949 
altitude less than 100 millimeters. The observations less than 100 were deemed to be outliers and 950 
were set to “missing”.  In this analysis we are interested in modelling the relationship between 951 
battery life, using voltage as a proxy, and various practical predictors including initial voltage, 952 
total haversine distance, and total flight time.  Linear regression was used to model the end of 953 
flight voltage measurement. 954 

From the flight variables recorded in the telemetry logs we created 8 flight summary 955 
measures, ranges of which are likely known prior to the flight.  Descriptions of these variables 956 
are provided in the table below. 957 

Variable 
Name 

Model 
Variable 

Variable Description Correlation 
with End 
Voltage 

init.voltage IV First voltage 
measurement. 

-0.049 

tot.distance D Sum of the Haversine 
distance between time 
points. 

-0.585 

duration Du Total flight time. -0.734 
avg.tot.velocity Ve Average total velocity; 

total velocity is the 
-0.693 
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square root of the sum 
of squared velocity in 
the x, y, and z 
directions. 

del.alt A Maximum altitude 
measured minus 
minimum altitude 
measured. 

-0.427 

ascent.rt ARt Average rate of ascent 
(rate of ascent = positive 
change in 
altitude/change in time). 

0.032 

descent.rt DRt Average rate of descent 
(rate of descent = 
negative change in 
altitude/change in time). 

-0.024 

avg.vz Vz Average velocity in the 
z direction. 

0.655 

 958 

Stepwise linear regression resulted in the following final model. 959 

Residuals: 960 
    Min      1Q  Median      3Q     Max  961 
-631.75  -85.43    6.74  103.81  489.61  962 
 963 
Coefficients: 964 
                   Estimate Std. Error t value Pr(>|t|)     965 
(Intercept)      -8.241e+03  6.176e+03  -1.334 0.184529     966 
init.voltage      1.684e+00  4.993e-01   3.373 0.000992 *** 967 
tot.distance      2.159e-01  2.905e-02   7.434 1.46e-11 *** 968 
avg.tot.velocity -1.184e+00  2.445e-01  -4.844 3.69e-06 *** 969 
del.alt          -3.424e-03  1.773e-03  -1.931 0.055728 .   970 
ascent.rt        -3.389e-03  1.553e-03  -2.182 0.030982 *   971 
duration         -1.510e+02  1.682e+01  -8.980 3.46e-15 *** 972 
avg.vz           -2.253e+00  1.022e+00  -2.206 0.029239 *   973 
--- 974 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 975 
 976 
Residual standard error: 189 on 125 degrees of freedom 977 
  (1 observation deleted due to missingness) 978 
Multiple R-squared:  0.7256, Adjusted R-squared:  0.7103  979 
F-statistic: 47.23 on 7 and 125 DF,  p-value: < 2.2e-16 980 
 981 

Residual analysis, the likelihood ratio test, and the Multiple R-squared value all indicate a 982 
good fit.  Using the abbreviations from the above table the model’s linear equation is given by 983 
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5 = −8,241 + 1.68;< + 2.16 ∗ 10@AB − 1.18<& − 3.42 ∗ 10@DE − 3.39 ∗ 10@DE!* −984 
151BF − 2.25<í. 985 

Predetermined values for the rates of ascent and descent may not be readily available.  In that 986 
case the best fitting practical model is given below. 987 

Residuals: 988 
    Min      1Q  Median      3Q     Max  989 
-646.75  -87.27   31.52  106.25  425.37  990 
 991 
Coefficients: 992 
                   Estimate Std. Error t value Pr(>|t|)     993 
(Intercept)      -1.218e+04  4.534e+03  -2.687  0.00818 **  994 
init.voltage      1.977e+00  3.672e-01   5.385 3.38e-07 *** 995 
tot.distance      1.665e-01  2.313e-02   7.198 4.73e-11 *** 996 
avg.tot.velocity -7.675e-01  1.816e-01  -4.226 4.50e-05 *** 997 
del.alt          -4.858e-03  1.732e-03  -2.804  0.00583 **  998 
duration         -1.219e+02  1.309e+01  -9.313 4.84e-16 *** 999 
--- 1000 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 1001 
 1002 
Residual standard error: 193.2 on 127 degrees of freedom 1003 
  (1 observation deleted due to missingness) 1004 
Multiple R-squared:  0.7088, Adjusted R-squared:  0.6974  1005 
F-statistic: 61.83 on 5 and 127 DF,  p-value: < 2.2e-16 1006 
 1007 

The fit of this model is slightly worse than the other model but practically speaking the 1008 
differences are negligible.  Using the abbreviations from the above table the model’s linear 1009 
equation is given by 1010 

5 = −12,180 + 1.98;< + 1.67 ∗ 10@AB − 7.68 ∗ 10@A<& − 4.86 ∗ 10@DE − 121.9BF. 1011 

The following plot shows the predicted values for the best fitting model (‘Original’ proposed 1012 
in the 06/28/2018 report), the first model given above (‘Practical 1’), and the second model 1013 
presented (‘Practical 2’). 1014 
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 1015 

This plot suggests there tends to be only small differences in the predicted final voltage 1016 
between the three models.  It seems reasonable to conclude that the simplest model (‘Practical 1017 
2’) is sufficient for this data. 1018 

Prediction Intervals 1019 

Prediction intervals for each of the three models can be calculated using the equation 1020 

5z ± *(î _,Öï) Ä\ñ + #& 5z
_ 1021 

where 1022 

#& 5z = 	 Ä\ñ óz
o óoó @Aóz . 1023 

In the above 1024 

• 5z is the predicted end voltage for a given set of inputs óz, 1025 
• ó is the design matrix, 1026 
• Ä\ñ is the mean squared error, and 1027 
• *(î _,Öï) is the 1 −	â 2 yz quantile from the t distribution with Xò equal to the number 1028 

of flights minus the number of predictors. 1029 

The width of the prediction interval is dependent on óz and hence we can only compare these 1030 
intervals based on the three models for specific input vectors.  To give an example we compare 1031 
the three models using the following inputs: 1032 

init.voltage = 12563 1033 

tot.distance = 10469.83 1034 

avg.tot.velocity = 890.2622 1035 
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del.alt = 121870 1036 

duration = 19.85698 1037 

The prediction intervals are 1038 

Model Predicted End 
Voltage (millivolts) 

95% Prediction 
Interval 

Width 

Original 10760.38 (10395.09, 11125.68) 730.59 
Practical 1 10719.22 (10345.26, 11093.18) 747.92 
Practical 2 10732.45 (10344.54, 11120.37) 775.83 

 1039 

Conclusion 1040 

The final model was based on a dataset with end voltage readings ranging from 10124 to 1041 
12403 millivolts and therefore all inferences are restricted to that range.  We found the initial 1042 
voltage, haversine distance, average total velocity, maximal difference in altitude, and duration 1043 
were all significant predictors of the battery voltage at the end of the flight.  The validity of our 1044 
models are dependent on the predictor values that were observed and it can be dangerous to 1045 
extrapolate outside of the ranges of the training data.  The five number summaries of the 1046 
response and final predictors are given below. 1047 

 1048 

  1049 
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Annex E: Pilot Hour Risk Calculations 1050 

The preflight risk model’s computation of pilot risk is based on research conducted for the 1051 
Federal Aviation Administration (Knecht, 2015) correlating manned aircraft accidents to the 1052 
number of hours the pilot-in-command held at the time of the accident, and whether the pilot 1053 
held an instrument flight rules (IFR) rating. The research derives two weighted models based on 1054 
the pilot’s rating, as depicted in the images on the next page. The parameter values from 1055 
Knecht’s model are: 1056 

TFH, total flight hours 1057 

A, the y-axis amplitude parameter 1058 

α, the shape parameter for the model 1059 

β, the scale parameter for the model 1060 

δ, the x-axis location parameter 1061 

b, the baseline annualized accident rate, and 1062 

R2
w, the weighted goodness-of-fit of the model curve. 1063 

 1064 

In both images, red bars indicate counts of accidents in each 100-hour bin, while the green 1065 
shading indicates the relative weight assigned to each bin.  1066 

Based on this research, we derived the equations used in the pilot risk sub-model to 1067 
approximate the shape of Knecht’s curves, with a few crucial differences in assumptions. We 1068 
apply the non-instrument-rated model’s peak and baseline rates to manually piloted flights, with 1069 
the same numeric value expressed per flight hour without converting from annualized rate. This 1070 
is because currently, most vehicles do not last in regular operation for more than 18 months 1071 
(whether due to accident or proactive retirement/replacement at signs of impending wear and 1072 
failure). Additionally, since most missions are less than 20 minutes in duration, we expect that 1073 
the baseline is reached by about 170 pilot hours (equivalent to more than 500 twenty-minute 1074 
flights).  1075 

For managed flights (i.e. flying in an automatic or autonomous mode with a human 1076 
monitoring and able to take manual control), we adopt the instrument-rated model’s peak and 1077 
baseline values in the same fashion. The higher peak value (1.74E-2, versus 1.3E-2 for manual 1078 
flight) is reasonable given that when a vehicle experiences a malfunction in managed mode, 1079 
human intervention may make the problem worse, until the human pilot has amassed sufficient 1080 
flight hours and experience (in either a managed or manual mode) to know how to respond 1081 
correctly. 1082 
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The current models are expected to change as data that matches UAV accidents to pilot hours 1083 
becomes available in sufficient quantity and quality. Additionally, in jurisdictions where more 1084 
extensive training, certification, proficiency and currency requirements are mandated, these 1085 
curves will be adjusted accordingly to capture the efficacy of those training mitigations.  1086 
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Annex F: Weather Impacts in Risk Model Calculations 1087 

Reserved.  1088 
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