
Crocheting the Lorenz manifold

Hinke M Osinga and Bernd Krauskopf

You have probably seen a picture of the famous butterfly-shaped Lorenz attractor

— on a book cover, a conference poster, a coffee mug or a friend’s T-shirt. The

Lorenz attractor is the best known image of a chaotic or strange attractor. We

are concerned here with its close cousin, the two-dimensional stable manifold of

the origin of the Lorenz system, which we call the Lorenz manifold for short. This

surface organizes the dynamics in the three-dimensional phase space of the Lorenz

system. It is invariant under the flow (meaning that trajectories cannot cross it) and

essentially determines how trajectories visit the two wings of the Lorenz attractor.

We have been working for quite a while on the development of algorithms to

compute global manifolds in vector fields and have computed the Lorenz manifold

up to considerable size. Its geometry is very intriguing and we explored different

ways of visualizing it on the computer [6, 9]. However, a real model of this surface

was still lacking.

During the Christmas break 2002/2003 Hinke was relaxing by crocheting hexagonal

lace motifs when Bernd suggested: “Why don’t you crochet something useful?” The

algorithm we developed ‘grows’ a manifold in steps. We start from a small disc in

the stable eigenspace of the origin and add at each step a band of a fixed width.

In other words, at any time of the calculation the computed part of the Lorenz

manifold is a topological disc whose outer rim is (approximately) a level set of the

geodesic distance from the origin. What we realized then and there is that the mesh

generated by our algorithm can directly be interpreted as chrochet instructions!

After some initial experimentation, the first model of the Lorenz manifold was
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crocheted by Hinke and then mounted by Bernd with garden wire. It was shown for

the first time at the 6th SIAM Conference on Applications of Dynamical Systems in

Snowbird, Utah in May 2003 and made a second public appearance at the Equadiff

2003 conference in Hasselt, Belgium, in July 2003 [7]. The model is quite large,

about 0.9m in diameter, and has to be ‘flattened’ and folded for transportation.

In this article we explain the mathematics behind the chrocheted Lorenz manifold

and provide complete instructions that allow you to chrochet your own. The images

shown here are of a second model that was crocheted in the Summer of 2003. We

took photos at different stages, and it was finally mounted with great care and then

photographed professionally. This second model stays mounted permanently, while

we use the first model for ‘touring’.

We would be thrilled to hear from anybody who produces another crocheted

model of the Lorenz manifold. As an incentive we offer a bottle of champagne to

the person who produces model number three. So do get in touch when you are

done with the needle work!

The Lorenz system

The Lorenz attractor illustrates the chaotic nature of the equations that were derived

and studied by the meterologist E.N. Lorenz in 1963 as a much simplified model for

the dynamics of the weather [8]. Now generally referred to as the Lorenz system, it

is given as the three ordinary differential equations:


















ẋ = σ(y − x),

ẏ = %x− y − xz,

ż = xy − βz.

(1)

We consider here only the classic choice of parameters, namely σ = 10, % = 28, and

β = 22

3
. The Lorenz system has the symmetry

(x, y, z) 7→ (−x,−y, z), (2)

that is, rotation by π about the z-axis, which is invariant under the flow of (1) .
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A simple numerical simulation of the Lorenz system (1) on your computer, start-

ing from almost any initial condition, will quickly produce an image of the Lorenz

attractor. However, if you pick two points arbitrarily close to each other, they will

move apart after only a short period of time, resulting in two very different time

series. This was accidentally discovered by Lorenz when he restarted a computation

from printed data rounded to three decimal digits of accuracy, while his computer

internally used six decimal digits; see, for example, the book by Gleick [1].

While the Lorenz system has been widely accepted as a classic example of a

chaotic system, it was proven by Tucker only in 1998 [12] that the Lorenz attractor

is actually a chaotic attractor. For an account of the mathematics involved see the

Intelligencer article by Viana [13].

Stable and unstable manifolds

The origin is always an equilibrium of (1). The eigenvalues of the linearization at

the origin are

−β and −
σ + 1

2
±
1

2

√

(σ + 1)2 + 4σ(ρ− 1) .

For the standard parameter values they are numerically

−22.828, −2.667, and 11.828

in increasing order. This means that the origin is a saddle with two attracting and

one repelling direction. According to the Stable Manifold Theorem [2, 11], there

exists a one-dimensional unstable manifold W u(0) and a two-dimensional stable

manifold W s(0), defined as

W u(0) = {x ∈ R3 | lim
t→−∞

φt(x) = 0},

W s(0) = {x ∈ R3 | lim
t→∞

φt(x) = 0},

where φ is the flow of (1). The manifolds W u(0) and W s(0) are tangent at the

origin to the unstable and stable eigenspace, respectively. We call W s(0) simply the
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Figure 1: The two branches of the unstable manifold, one red and one brown,

accumulate on the Lorenz attractor. The little blue disc is in the stable eigenspace

and separates the two branches.

Lorenz manifold. While most trajectories end up at the Lorenz attractor, those on

W s(0) converge to the origin instead.

The z-axis, the axis of symmetry, is part of the Lorenz manifold W s(0), which

is itself invariant under rotation by π around this axis. Furthermore, there are

two special trajectories that are tangent to the eigenvector of −22.828, which is

perpendicular to the z-axis. They form the two branches of the one-dimensional

strong stable manifold W ss(0). All other trajectories on W s(0) are tangent to the

z-axis.

Apart from the origin, the Lorenz system (1) has two other equilibria, namely

(±
√

β(ρ− 1),±
√

β(ρ− 1), ρ− 1) ≈ (±8.485,±8.485, 27),

which are also saddles. They sit in the centres of the ‘wings’ of the Lorenz attractor

and are each other’s image under the symmetry (2).

Figure 1 shows an image of the Lorenz attractor that was not obtained by
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simply integrating from an arbitrary starting condition, but by computing the one-

dimensional unstable manifold W u(0). Since the origin is in the Lorenz attractor,

plotting W u(0) gives a good picture of the attractor. We computed both branches,

one in red and one in brown, of the unstable manifold of the origin by integration

from two points on either side of W s(0) at distance 10−7 away from the origin along

the unstable eigendirection.

It is clear from Figure 1 that each of the branches of the unstable manifold visits

both wings of the attractor, as is to be expected. In fact, due to the symmetry of

equations (1), the red branch is the symmetric image of the brown branch. Locally

near the origin, each branch starts on a different side of the two-dimensional stable

manifold W s(0). In Figure 1 we show a small local piece of W s(0) as a small blue

disc.

The main question is: what does the global Lorenz manifold W s(0) look like, as

it ‘wiggles’ between the red and brown curves of Figure 1? Remember that W u(0)

cannot cross W s(0) . . .

Geodesic level sets

The Lorenz manifold, like any global two-dimensional invariant manifold of a vec-

tor field, cannot be found analytically but must be computed numerically. The

knowledge of global stable and unstable manifolds of equilibria and periodic orbits

is important for understanding the overall dynamics of a dynamical system, which

we take here to be given by a finite number of ordinary differential equations. In

fact, there has been quite some work since the early 1990’s on the development of

algorithms for the computation of global manifolds. We do not give details here

but refer to [5] for a recent overview over the literature. The key idea of several of

these methods is to start with a uniform mesh on a small circle around the origin in

the stable eigenspace and then use the dynamics to ‘grow’ this circle further away.

The main problem one needs to deal with is that the flow does not evolve the initial
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circle uniformly, so that the mesh quality generally deteriorates very quickly.

The goal of our algorithm is to compute ‘nice circles’ on the Lorenz manifold to

obtain a uniform mesh. Nice circles on the manifold are those that consist of points

that lie at (approximately) the same distance away from the origin. In other words,

we want to evolve or grow the initial circle radially outward (away from the origin)

and with the same ‘speed’ everywhere. To formalize this, we consider the geodesic

distance between two points on the manifold, which is defined as the length of the

shortest path on the manifold connecting the two points. The geometrically ‘nicest’

circle is then a geodesic level set, which is a smooth closed curve whose points all

lie at the same geodesic distance from the origin.

The algorithm that we developed computes a manifold as a sequence of approx-

imate geodesic level sets; see [4, 5] for the details. We start from a small disc in the

stable eigenspace of the origin which we represent by a circular list of equidistant

points around its boundary. This is our first approximate geodesic level set. The

algorithm then adds at each step a new approximate geodesic level set, again given

as a circular list of points. To this end we compute for every known point on the

present geodesic level the closest point that lies on the new geodesic level set. (This

can be achieved by solving a boundary value problem.) When the distance between

neighbouring points on the new level set becomes too large, we add a new point

between them by starting from a point on the present level set. Similarily, we re-

move a point when two neighbouring points become too close. In this way, we ensure

that the distribution of mesh points along the new level set is close to uniform. At

the end of a step we add an entire band of a particular fixed width to the manifold.

The width of the band that is added depends on the (local) curvature of geodesics

on W s(0).
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(a) (b)

Figure 2: A close-up of the mesh generated by our algorithm, showing bands of

alternating colour and the edges of the triangulation (a), and (practically) the same

close up of the crocheted manifold (b). New crochet stitches are added exactly where

new mesh points are added.

Global information encoded locally

We used our algorithm to compute the Lorenz manifold up to considerable size,

where we made use of the parameterization in terms of geodesic distance; illustra-

tions and accompanying movies of how the Lorenz manifold is grown were published

in [6, 9] and are not repeated here. Instead we show a crocheted model of the Lorenz

manifold; see already Figures 4–6. The key observation is that, while the algorithm

computes each new mesh point as a point in R3, the essential information on the

shape of the manifold is actually encoded locally!

This is illustrated in Figure 2 (a), which shows an enlargement of a part of the

Lorenz manifold with the triangular mesh that was computed. Consecutive bands
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are shown alternatingly in light and darker blue; the mesh points in the bottom

right corner are closest to the origin. The mesh is formed from the mesh points on

the geodesic level sets. The diagonal mesh lines from bottom right to top left are

approximations of geodesics; they are perpendicular to the level sets. Whenever two

such geodesics move too far apart, a new one is started between them where a new

point is added.

The image is from a part of the manifold that is almost flat. Because the circum-

ference of a planar disc is linearly related to its diameter, the number of new points

being added to the level sets depends linearly on the geodesic distance covered. If

the level sets are all at the same distance from each other, as in Figure 2, then a

fixed number of new points is added at each step. If the manifold is curved, on

the other hand, then the number of points added during the steps varies with the

geodesic distance covered. For positive local curvature fewer points are being added,

while for negative local curvature more points are being added.

The crucial point is that the curvature of the manifold is given locally on the

level of the computed mesh simply by the information where we added or removed

points during the computation.

Interpretation as crochet instructions

This observation allows us to interpret the result of a computation by our algorithm

directly as a crochet pattern. Starting from a small crocheted circle, each new band

is created by making one or more crochet stitches of a fixed length (translated from

the width of the respective band) in each stitch of the previous round. Extra stitches

are added or removed where points were added or removed during the computation;

this information was written to a file.

Figure 2 (b) shows practically the same part of the crocheted Lorenz manifold

that is shown in Figure 2 (a). You are encouraged to look closely for the points in

the crocheted manifold where an extra crochet stitch was added and identify them
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Abbreviation British name American name

ch chain stitch chain stitch

dc double crochet single crochet

tr treble crochet double crochet

dtr double treble crochet treble crochet

Table 1: Abbreviations of the crochet stitches used for the Lorenz manifold.

in the original mesh.

To preserve the geometry of the manifold one needs to ensure that the horizontal

width of the used stitch and its length are in the same ratio as the average distance

between mesh points on a level set and the width of the respective band. The

crocheting reader will be relieved to hear that these considerations were translated

into the crochet instructions below — simply following them slavishly will give a

good result.

We assume that the reader is familiar with the basic crochet stitches, as they

can be found in any book on chrocheting. Throughout we use the British naming

convention of stitches, which differs from the American one; the definitions and

abbreviations used are summarized in Table 1. The Lorenz manifold is crocheted

in rounds. Stitches in each round are counted with respect to the previous round,

starting from the number 0.

The first stitch of a round is 1 ch, 3 ch, or 4 ch, depending on whether the round

is done in dc, tr, or dtr, respectively. Each round is closed with a slip stich in the

last ch of the first stitch. From one round to the next the colour alternates between

light and dark blue, which helps identify the different bands in the finished model.

We found that the end result is much better if the threads are cut after each round,

rather than carrying strands up the rounds.
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Getting started

To help with the interpretation of the instructions, we explain in more detail how

to get started. We used a 2.50mm crochet hook with 4-ply mercerized cotton yarn.

Note that the crochet hook is slightly smaller than recommended for the weight of

the yarn; this is done to obtain a tighter gauge. The finished model Lorenz manifold

up to geodesic distance 110.75 is then about 0.9m in diameter, and required four

100 g balls of yarn. Obviously, using a thicker crochet hook and yarn will lead to an

even bigger manifold. The complete crochet instructions are below; here we explain

briefly how to read the compact crochet notation.

Begin (rnd1) with a foundation chain in light blue of 5 ch stitches that are closed

with a slip stitch to form a ring. The first round consists of 10 dc. This means that

one starts with 1 ch followed by 9 dc in the loop, after which the ring is closed with

a slip stitch. The small disc obtained so far represents the Lorenz manifold up to

geodesic distance (gd) 2.75. The next round (rnd2) is done in dark blue using a

treble crochet stitch. The total number of stitches doubles to 20 in this round, which

means that 2 tr stitches are made in each dc. (Recall that the 10 dc are numbered

from 0 to 9.) The crocheted disc has now grown to represent the Lorenz manifold

up to gd 4.75. In the next round (rnd3) the geodesic distance grows to gd 8.75 with

dtr crochet stitches. As in rnd2, there are 2 dtr in each tr. Starting from rnd4,

crochet stitches are no longer doubled at each previous stitch.

Notice that 20 new crochet stitches are added in each round from rnd2 to rnd7;

then the number of stitches starts to vary from round to round, but essentially re-

mains constant when counted over two consecutive rounds. This means that roughly

up to rnd10 of gd 36.75 the Lorenz manifold is a flat disc, allowing the algorithm to

take large steps, which is translated to dtr crochet stitches. From gd 36.75 onward,

all rounds are worked in tr crochet stitches.

In rnd37, that is, at gd 90.75 stitches are deleted for the first time. The notation

-515 means that the treble crochet stitch at position 515 merges with the one at
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position 514. This is done as follows: treble crochet stitch 514 is not finished

completely, namely one does not bring the yarn around the hook and pull it through

the last two loops on the hook. Similarly, treble crochet stitch 515 is then crocheted

except for this last step. The two stitches are crocheted together by pulling a loop

of yarn through all three loops at once. Note that -515 is followed by 515 so that

a second treble crochet stitch is made in position 515, which effectively undoes the

deletion of the stitch. This corresponds to an adjustment of the mesh points by the

algorithm, and we kept the instuctions to be faithful to the computed mesh. In later

rounds, for example, in rnd39, crochet stitches are deleted without being recreated

again.

Comparison with crocheting the hyperbolic plane

The idea to crochet a model of the Lorenz manifold was born quite suddenly in

December 2002, but was indirectly influenced by our knowledge of the Intelligencer

article “Crocheting the hyperbolic plane” by Henderson and Taimina [3]. Indeed

when their article came out in 2001 we already had developed our algorithm for

manifold computations, but somehow the idea of crocheting did not click. As soon

as we decided to crochet a mathematical object ourselves, we had of course another

look at this paper.

Their idea is to crochet a model of hyperbolic space by starting from a row (or

a round) of a fixed number of chain stitches and then adding rows (rounds), all of

the same basic crochet stitch. The trick is to add one extra crochet stitch every

N stitches. In other words, the number of stitches increases per row (round) and

this leads to negative local curvature as was explained earlier. The smaller N , the

more extra crochet stitches are added and the larger the negative curvature of the

resulting object. This curvature is constant as the procedure is repeated the same

everywhere.

From a crocheting point of view, crocheting a model of hyperbolic space is quite
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simple as it involves the same crochet stitch and counting to N . An expert needle

worker will be able to do this ‘on the side’ while having a nice conversation or

watching TV. Crocheting the Lorenz manifold, on the other hand, requires continu-

ous attention to the instructions in order not to miss when to add or indeed remove

an extra crochet stitch. This involves much counting and checking of each round.

In fact, Hinke crocheted the Lorenz manifold in the course of two months in an

estimated 85 hours, which corresponds to about 300 stitches per hour for the total

of 25,511 stitches. (To translate this time estimate to your own chrocheting skills,

be warned that Hinke is an expert at chrochet and counting alike!)

A shapeless crocheted topological disc

Initially, up to a geodesic distance of about 36.75, the Lorenz manifold is virtually

flat as a pancake. It then starts picking up a lot of negative curvature near the

positive z-axis, around which it spirals. The lower part of the manifold with z < 0

has almost zero curvature. It is impossible to flatten out the crocheted manifold on

a table, as the region of strong negative curvature forms more and more folds.

Figure 3 shows the crocheted manifold at three different stages of progress and

flattened out as much as possible. The images on the left show the manifold as a

rimply disc; the z-axis corresponds to the vertical line through the center of each

panel. In the images on the right the crocheted manifold has been folded double

along the z-axis. To ‘absorb’ some of the curvature the z-axis is then no longer a

straight line in the upper part of the images, but even this is not enough to avoid

the increasing (with diameter) rippling of the object.
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(a)

(b)

(c)

Figure 3: The Lorenz manifold in the process of being crocheted, shown ‘as flat as

possible’ (left column) and doubled-up along the line of symmetry (right column);

from (a) to (c) the manifold is shown up to rnd26 (gd 68.75), up to rnd39 (gd

94.75), and up to rnd47 (gd 110.75). Where the manifold is rippled, the curvature

is most negative.
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Mounting the crocheted Lorenz manifold

When we first saw the crocheted but yet unmounted Lorenz manifold shown in

Figure 3 (c) we had some doubts whether we could get it into the required final

shape. However, as was explained above, the crocheted manifold ‘knows’ its shape

in three-space because of the locally encoded curvature information. When mounting

the manifold, it (almost) automatically falls into its proper shape. To achieve this

we found that only three ingredients are required:

1. fixing the z-axis with an unbendable rod;

2. supporting the outer rim with a bendable wire of the correct length;

3. Supporting the manifold in the radial direction with a single bendable wire

that runs from rim to rim and through the origin.

For the third task one could choose the geodesics that are locally perpendicular to

the z-axis, but we prefer to use the strong stable manifoldW ss(0), which is basically

the orbit of (1) that starts off at the origin in the direction perpendicular to the z-

axis. Because it is an orbit, it is not a geodesic of the Lorenz manifold, but rather

illustrates the difference between the geometry of the manifold and the dynamics on

it. We computed W ss(0) with the software from [10].

The next step was to identify the sequence of holes from one crocheted round

to the next through which the positive and negative z-axis and both branches of

W ss(0) go. This information is collected in the weaving instructions below.

To mount the Lorenz manifold we weaved an unbendable thin kiting rod through

the z-axis and bendable wires through the last round and the location of W ss(0);

details of this procedure can be found in the mounting instructions below. Modulo

rotations and translations in R3, there are only two results of mounting the manifold,

leading to the Lorenz manifold itself with a right-handed spiral around the z-axis, or

its mirror image with a left-handed spiral around the z-axis. By giving the rim wire

the right twist one can ensure that one obtains the former solution. The final step
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is to bend the supporting wires so that they are nice and smooth and the crocheted

model indeed resembles the Lorenz manifold.

The final result is shown in Figures 4–6. The carbon fibre rod fixing the z-axis

is vertical and in the centre of the images. The image in Figures 4 shows the Lorenz

manifold photographed with a white background, so that the crocheted mesh is

clearly visible. Furthermore, one can see through the manifold and get an impression

of the part that is hidden. This emphasizes the rotational symmetry of the Lorenz

manifold. Figures 5, on the other hand, shows the Lorenz manifold photographed

with a black background. One cannot see through the mesh any longer, and the

manifold appears as a two-dimensional surface. Notice the wire in the position of

the strong stable manifold W ss(0) that supports the Lorenz manifold. Figures 6

(a) and (b) show two different views taken from different angles, again against a

white and a black background to emphasize the mesh and the surface, respectively.

Finally, Figure 7 is an enlargement of the Lorenz manifold that shows the strong

stable manifold W ss(0) running from the origin until it meets the rim. Notice that

W ss(0) is perpendicular to the rings only near the origin and certainly not close to

the rim. In other words, it is clearly not a geodesic.

It is our experience that the crocheted model of the Lorenz manifold in Figures 4–

6 is a very helpful tool for understanding and explaining the dynamics of the Lorenz

system. While the model is not identical to the computer generated Lorenz manifold,

all its geometrical features are truthfully represented, so that it is possible to convey

the intricate structure of this surface in a ‘hands-on’ fashion. This article tried to

convey this, but for the real experience you will have to get out your own yarn and

crochet hook!



Osinga & Krauskopf Chrocheting the Lorenz manifold 16

Figure 4: The crocheted Lorenz manifold in front of a white background, which

brings out the mesh and the symmetry.
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Figure 5: The crocheted Lorenz manifold in front of a black background, which gives

a good impression of the manifold as a two-dimensional surface.
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(a)

(b)

Figure 6: Two more views of the crocheted Lorenz manifold in front of a white and

a black background. The difference between the views in Figures 4 and 5, panel (a)

and panel (b) is a rotation of about 15 degrees.
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Figure 7: A close-up view of the crocheted Lorenz manifold in front of a white

background. The vertical rod is the z-axis, and the wire emerging from the origin is

the strong unstable manifold W ss(0); notice also the wire supporting the outer rim

of the manifold.
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Complete instructions

Materials: 200 g light blue and 200 g dark blue 4-ply mercerized cotton yarn;

2.50mm crochet hook; embroidery needle; about 3m leftover yarn of a contrast-

ing colour; 0.9m unbendable 4mm or 5mm rod; 1.45m and 2 × 2.70m bendable

2mm wire; 2 electrical wire connectors (come in bars; available from DIY stores);

wire cutter; plyers; small screwdriver.

Abbreviations and Notation: see Table 1 and Figure 8.

Crochet instructions

Work 5 ch in light blue and join with a slip stitch to form a ring. Odd rounds are

worked with light blue and even ones with dark blue yarn. Work each round with

the stitch as indicated; count the stitches starting with 0 for the first stitch and make

two stitches in one for each stitch mentioned in the list. If the stitch appears with a

minus sign, crochet it together with the previous stitch (delete the stitch). Geodesic

distance (gd) of the Lorenz manifold after each round is given for orientation and

motivation.

rnd1: foundation round of 5 ch then 10 dc in loop (gd 2.75); rnd2: 20 tr 0 1 2 3 4 5 6

7 8 9 (gd 4.75); rnd3: 40 dtr 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 (gd 8.75);

rnd4: 60 dtr 0 3 4 7 8 11 12 15 16 19 20 23 24 27 28 31 32 35 36 39 (gd 12.75); rnd5:

80 dtr 0 5 6 11 12 17 18 23 24 29 30 35 36 41 42 47 48 53 54 59 (gd 16.75); rnd6: 100

dtr 3 4 11 12 19 20 27 28 35 36 43 44 51 52 59 60 67 68 75 76 (gd 20.75); rnd7: 120 dtr

0 9 10 19 20 29 30 39 40 49 50 59 60 69 70 79 80 89 90 99 (gd 24.75); rnd8: 122 dtr

111 116 (gd 28.75); rnd9: 148 dtr 0 3 8 11 12 15 20 27 32 39 44 51 56 63 68 75 80 87

92 95 96 99 104 107 108 121 (gd 32.75); rnd10: 171 dtr 7 8 30 31 44 45 58 59 72 73 86

87 100 101 108 123 124 135 138 139 140 141 144 (gd 36.75); rnd11: 189 tr 3 6 25 26 41

42 57 58 73 74 89 90 105 106 121 137 142 145 (gd 38.75); rnd12: 192 tr 13 16 149 (gd

40.75); rnd13: 214 tr 0 25 28 33 36 46 51 118 123 133 136 141 144 167 169 170 172 175

176 185 189 191 (gd 42.75); rnd14: 234 tr 3 48 61 68 71 76 79 86 89 94 97 104 107 112
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115 122 135 199 200 206 (gd 44.75); rnd15: 243 tr 23 24 177 178 193 204 213 215 222

(gd 46.75); rnd16: 261 tr 47 48 69 70 135 136 157 158 199 204 213 214 221 228 229 236

237 240 (gd 48.75); rnd17: 269 tr 7 8 95 96 117 118 216 217 (gd 50.75); rnd18: 283 tr

0 2 198 202 206 207 215 216 230 235 237 238 255 268 (gd 52.75); rnd19: 307 tr 16 17

21 25 32 49 56 169 176 193 216 225 226 229 234 237 246 258 259 269 271 276 277 280 (gd

54.75); rnd20: 325 tr 2 7 8 80 87 104 111 128 135 152 159 268 269 272 274 279 285 290

(gd 56.75); rnd21: 343 tr 7 16 44 200 209 225 235 251 261 262 267 283 284 287 297 298

300 314 (gd 58.75); rnd22: 375 tr 0 6 30 56 73 82 99 108 125 134 151 160 177 186 209

234 243 246 249 260 264 265 279 280 281 310 328 329 330 337 338 342 (gd 60.75); rnd23:

381 tr 54 55 265 272 314 341 (gd 62.75); rnd24: 411 tr 5 6 84 85 112 113 140 141 168

169 196 197 224 232 239 240 254 269 272 273 274 277 280 302 311 328 335 336 352 378

(gd 64.75); rnd25: 432 tr 2 23 24 31 42 43 50 300 301 308 310 315 340 345 352 355 358

397 400 405 406 (gd 66.75); rnd26: 451 tr 4 5 18 72 222 237 276 313 329 355 362 363

365 368 372 373 376 377 405 (gd 68.75); rnd27: 491 tr 0 16 24 35 83 84 91 106 113 114

121 136 143 144 151 166 173 174 181 196 203 204 211 234 235 271 275 288 295 327 343

360 363 376 380 383 419 435 436 450 (gd 70.75); rnd28: 511 tr 13 51 289 300 314 332

340 361 362 403 404 413 416 417 420 421 436 450 469 481 (gd 72.75); rnd29: 534 tr 2 17

22 25 26 48 49 60 69 78 273 282 339 348 360 375 385 427 432 433 455 475 497 (gd 74.75);

rnd30: 563 tr 5 10 13 16 17 22 46 113 249 258 339 342 345 348 355 356 357 358 369 372

415 439 440 446 454 458 492 529 531 (gd 76.75); rnd31: 591 tr 0 4 10 13 29 47 48 104

130 155 223 232 277 284 309 332 359 367 368 381 383 414 425 466 471 472 473 488 (gd

78.75); rnd32: 637 tr 9 10 18 45 86 119 148 155 174 183 190 199 208 217 224 253 260

325 360 362 363 371 377 405 414 439 470 487 488 492 501 504 507 508 509 512 513 514 523

535 576 577 580 583 586 590 (gd 80.75); rnd33: 655 tr 2 13 89 394 420 425 431 434 506

509 520 523 533 534 537 563 573 597 (gd 82.75); rnd34: 670 tr 5 69 115 322 383 388 408

423 426 436 450 513 538 539 542 (gd 84.75); rnd35: 695 tr 4 10 27 119 135 324 380 398

416 423 424 428 535 540 541 545 548 554 555 558 565 575 646 658 667 (gd 86.75); rnd36:

720 tr 0 8 21 38 138 161 178 275 292 313 314 345 370 380 438 441 529 540 541 552 566

589 591 592 680 (gd 88.75); rnd37: 754 tr 12 22 50 111 168 183 206 207 222 223 244
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245 260 261 284 299 351 375 376 378 435 450 451 464 −515 515 563 568 582 602 603 608

619 −661 661 −668 668 −671 671 701 714 719 (gd 90.75); rnd38: 782 tr 11 16 33 42 93

95 96 120 390 408 453 463 464 466 484 489 490 494 502 −524 524 −533 533 −536 −543

543 −559 559 603 605 616 617 624 627 634 642 −705 705 −715 715 742 748 (gd 92.75);

rnd39: 804 tr 2 4 8 21 29 31 64 67 72 93 105 379 386 434 458 472 478 497 500 −564

607 608 613 614 627 648 652 673 −708 −711 −721 −734 (gd 94.75); rnd40: 840 tr 4 7

22 23 26 45 47 48 128 131 176 344 349 382 395 407 423 433 446 465 474 480 489 512 527

532 −559 559 −567 −572 −579 579 −584 584 −591 639 645 653 665 666 682 686 700 705

712 714 716 −729 729 −752 752 801 (gd 96.75); rnd41: 887 tr 0 11 21 33 40 43 69 85

100 145 146 167 168 192 210 229 234 271 276 313 318 336 337 380 381 399 459 481 523

531 537 544 554 645 653 666 681 689 690 695 696 719 734 739 740 752 −772 772 829 (gd

98.75); rnd42: 921 tr 11 16 51 64 69 94 102 114 137 161 164 202 203 226 269 270 313

314 381 382 389 429 526 534 550 559 564 572 −611 −622 −644 −654 696 712 719 731 732

739 758 767 768 788 −853 886 (gd 100.75); rnd43: 958 tr 2 37 61 66 76 84 206 223 254

261 262 269 300 307 308 315 346 353 354 361 392 433 509 559 588 589 613 −684 684 742

748 750 751 757 762 778 779 794 −839 −868 903 914 915 (gd 102.75); rnd44: 994 tr 5

9 20 23 25 44 54 59 82 92 93 135 189 204 227 427 439 528 551 561 604 605 607 627 631

632 697 740 787 790 791 792 793 803 805 844 850 −872 872 −916 916 −926 (gd 104.75);

rnd45: 1025 tr 4 7 9 19 25 33 48 113 230 254 419 431 511 536 543 578 582 584 589 622

645 647 659 −730 −741 779 780 783 791 803 811 814 829 830 833 863 −960 (gd 106.75);

rnd46: 1072 tr 0 10 15 33 116 126 144 279 291 302 314 329 341 352 364 379 391 402 414

546 579 580 590 609 636 648 661 667 674 685 −703 −706 706 −712 712 −716 716 770 779

813 840 845 846 847 848 849 850 851 852 855 856 861 873 886 1022 (gd 108.75); rnd47:

1104 tr 31 94 98 104 117 136 137 177 535 608 653 654 658 668 689 691 699 704 705 −740

740 761 777 −787 829 842 871 894 895 906 929 934 944 1008 1017 1022 (gd 110.75).
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−3 −2 −1 +1 +2 +3

(a)

−3 −2 −1 0 +1 +2 +3

(b)

Figure 8: Numbering of holes between stitches in a round relative to a hole position

(gray cross) in the previous round, as used in the weaving instructions. Since new

stitches are added in front of holes, there are two cases: one stitch in front of the

hole position when no extra stitch was added (a), and two stitches in front of the

hole position when an extra stitch was added (b).

Weaving instructions

To mount the Lorenz manifold it is best to first indicate the positions of the rod and

the wires by weaving differently coloured yarn through the holes between stitches.

Start from the centre in the hole between the two stitches indicated in rnd1 below.

Then weave the yarn through holes from one round to the next, where the position of

the next hole is indicated relative to the present position as shown in Figure 8. After

weaving in the z-axis and the strong stable manifold W ss(0), fold the manifold over

along the z-axis weave. You should get a result as shown on the right of Figure 3

(c); the two branches of the W ss(0) weave should be symmetric with respect to the

z-axis weave.

Positive z-axis: rnd1: 9–0; rnd2: +2; rnd3: +1; rnd4: +1; rnd5: +1; rnd6: +1;

rnd7: +1; rnd8: +1; rnd9: +1; rnd10: +2; rnd11: +1; rnd12: +1; rnd13: +1;

rnd14: +1; rnd15: +2; rnd16: +1; rnd17: +1; rnd18: +1; rnd19: +1; rnd20: +2;

rnd21: +1; rnd22: +1; rnd23: +1; rnd24: +2; rnd25: +1; rnd26: +1; rnd27: +1;

rnd28: +2; rnd29: +1; rnd30: +1; rnd31: +1; rnd32: +1; rnd33: +1; rnd34: +1;

rnd35: +1; rnd36: +1; rnd37: +1; rnd38: +1; rnd39: +1; rnd40: +1; rnd41: +1;
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rnd42: +1; rnd43: +1; rnd44: +1; rnd45: +1; rnd46: +1; rnd47: +1;

Negative z-axis: rnd1: 4–5; rnd2: +2; rnd3: +1; rnd4: +1; rnd5: +1; rnd6: +1;

rnd7: +1; rnd8: +1; rnd9: +1; rnd10: +1; rnd11: +2; rnd12: +1; rnd13: +1;

rnd14: +1; rnd15: +1; rnd16: +1; rnd17: +1; rnd18: +1; rnd19: +1; rnd20: +1;

rnd21: +1; rnd22: +1; rnd23: +1; rnd24: +1; rnd25: +1; rnd26: +1; rnd27: +1;

rnd28: +1; rnd29: +1; rnd30: +1; rnd31: +1; rnd32: +1; rnd33: +1; rnd34: +1;

rnd35: +1; rnd36: +1; rnd37: +1; rnd38: +1; rnd39: +1; rnd40: +1; rnd41: +2;

rnd42: +1; rnd43: +1; rnd44: +1; rnd45: +1; rnd46: +1; rnd47: +1;

Left branch of W ss(0): rnd1: 1–2; rnd2: +1; rnd3: +1; rnd4: +2; rnd5: +2; rnd6:

+2; rnd7: +2; rnd8: +1; rnd9: +2; rnd10: +3; rnd11: +2; rnd12: +1; rnd13: +3;

rnd14: +1; rnd15: +2; rnd16: +3; rnd17: +2; rnd18: +2; rnd19: +2; rnd20: +2;

rnd21: +3; rnd22: +2; rnd23: +2; rnd24: +3; rnd25: +3; rnd26: +3; rnd27: +2;

rnd28: +3; rnd29: +3; rnd30: +3; rnd31: +3; rnd32: +3; rnd33: +5; rnd34: +5;

rnd35: +4; rnd36: +4; rnd37: +5; rnd38: +6; rnd39: +5; rnd40: +6; rnd41: +5;

rnd42: +7; rnd43: +7; rnd44: +5; rnd45: +5; rnd46: +5; rnd47: +5;

Right branch of W ss(0): rnd1: 7–8; rnd2: +2; rnd3: +2; rnd4: +2; rnd5: +1;

rnd6: −1; rnd7: −1; rnd8: −1; rnd9: +1; rnd10: −1; rnd11: −1; rnd12: +1;

rnd13: −1; rnd14: −1; rnd15: −1; rnd16: −1; rnd17: −1; rnd18: −1; rnd19: −1;

rnd20: −1; rnd21: −1; rnd22: −1; rnd23: −1; rnd24: −2; rnd25: −1; rnd26: −1;

rnd27: −2; rnd28: −2; rnd29: −1; rnd30: −3; rnd31: −2; rnd32: −3; rnd33: −2;

rnd34: −4; rnd35: −3; rnd36: −5; rnd37: −4; rnd38: −3; rnd39: −5; rnd40: −4;

rnd41: −5; rnd42: −5; rnd43: −5; rnd44: −5; rnd45: −4; rnd46: −4; rnd47: −5;

Mounting instructions

Weave the unbendable thin rod of 0.9m length through the manifold by following the

z-axis weave; we used a 5mm carbon fibre rod used in kiting, which is leightweight

and very stiff for its diameter. Starting from the top of the z-axis, weave a 2.70m

length of the bendable wire through the outer crocheted round of the manifold until
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you reach the bottom of the z-axis. Repeat the procedure with the second length

of 2.70m around the other half of the outer crocheted round of the manifold, again

starting from the top of the z-axis. Try to spread the stitches evenly over the wire;

you will find that this introduces twist into the rim wire. Make sure the twisting is

clockwise near the z-axis in the direction of increasing z, so that you get a right-

handed helix, just like a cork screw.

Cut two single electrical wire connectors from a bar and strip them of their

isolating plastic cover. The stripped connectors are now unsuitable for electrical

connections, but ideal for connecting the bendable wires. Connect the two 2.70m

pieces of wire at the top and bottom with the connectors by sliding in both ends

and tightening the screws.

Make a mark 0.1m from each end of the 1.45m length of bendable wire; the

middle piece of 1.25m is the length of W ss(0). Starting from the rim, weave this

wire through the manifold following the marking yarn. Using the plyers make two

small loops at both ends where you made the mark and cut off the excess wire. Sow

the ends in place with light blue yarn.

Finally, remove the differently coloured yarn. The Lorenz manifold should now

be recognisable. With the help of the figures in this paper, tuck and bend it into

its final shape, making sure that the bendable wires are nice and smooth, that

is, without noticable kinks. This may take some time depending on your level of

perfectionism. Good luck!
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