re'lnvent

ARC303 - Unmeltable Infrastructure at Scale:
Using Apache Kafka, Twitter Storm

and ElasticSearch on AWS

- -

LI
w5 amazon

AP webservices

© 2013 Amazon.com, Inc. and its affiliates. All rights reéerved. May not be copied, modified, or distributed in whole or in part witheut the express consent of Amazon.com, Inc.

What Loggly Does

* Log Management as a service
— Near real-time indexing of events

* Distributed architecture, built on AWS

* |nitial production services in 2010
— Loggly Generation 2 released in Sept 2013

 Thousands of customers |
loggly

re'lnvent

Il

Agenda for this Presentation

* A bit about logging

* Lessons learned from our first generation
 How we leverage AWS services

* QOur use of Kafka, Storm, ElasticSearch

« What worked well for us and what did not

re'lnvent

Log Management

* Everyone starts with ...
— Abunch of log files (syslog, application specific)
— On a bunch of machines

« Management consists of doing the simple stuff
— Rotate files, compress and delete

— Information is there but awkward to find specific events
— Weird log retention policies evolve over time

re'lnvent

“...how can | make this someone else’s problem
“...let’s spend time managing our log capacity”

“...hmmm, our logs are getting a bit bloated”

—

Log Volume

ured pajdIjul-}I9s

!” |

relnvent

Best Practices in Log Management

» Use existing logging infrastructure
— Real time syslog forwarding is built in
— Application log file watching

« Store logs externally
— Accessible when there is a system failure

* Log messages in machine parsable format
— JSON encoding when logging structured information
— Key-value pairs

re'lnvent

From the Trenches...

« Managing Applications vs. Managing Logs
— Do not make this is an either/or proposition!

& If you get a disk space alert, first login...
—

l % sudo rm —rf /var/log/apache2/

Admit it, we've all seen this kind of thing!

re'lnvent

You Have Logs...

2013-10-25T18:35:43.387+0000: 441.482: [GC [PSYoungGen: 2430541K->268617K(2484544K)] 7687523K-

>5660738K(8076992K), 0.3266870 secs] [Times: user=1.05 sys=0.17, real=0.33 secs]
2013-10-25T718:35:43.714+0000: 441.809: [Full GC [PSYoungGen: 268617K->0K(2484544K)] [ParOldGen: 5392121K-

>354965K(5592448K)] 5660738K->354965K(8076992K) [PSPermGen: 44444K->44395K(83968K)], 0.9225290 secs] [Times:
user=2.22 sys=0.26, real=0.92 secs]

* |n this case, JVM garbage collection logs
enabled with...

-XX:+PrintGCDetails -XX:+PrintGCDateStamps -XX:+PrintGCTimeStamps

relnvent = ;

Yes, you need to search these logs

Q Search B Aers D Sour

mesponse Time + New

jard Field
B ¢ B @ Trenss >
o R - W MINUTER -
o7 SR 4 AR TMINUTES "
. ™ - a5
Freld
6040, 6515460000
- NE of 1 s .
. fallure

Mtp / 10 8.0, 135: 1981/ solr/adwin/ cores T enddt MO FMINUTER S ¢ L el dut imes tampll | ded 11883
SMINUTE SR TMINUTE

RAALS A48T ARARFI

re'lnvent

But you also need to to spot trends

Major GC Time Secs - Minor GC Time Secs o B4
2 0.5
L5
@
S
21
>
0.5
0 19:15 19:20 19:25 19:30 19:35 19:40 19:05 19:10 19:15 19:20 19:25 19:30 19:35 19:40 19:45 19:50
| @ javagc.timeTakenSecs | @ javagc.timeTakenSecs |
Minor GC Heap Details o~
10M
7.5M
“
s
2 sm
>
2.5M
M 15'0a 19:06 19:08 19:10 19:12 19:14 19:16 19:18 19:20 19:22 19:24 19:26 19:28 19:30 19:32 19:34 19:36 19:38 19:40 19:42 19:44 19:46 19:48

| ® javagc.heapSizeAfterkB Jjavagc.heapSizeBeforeKB javagc.totalHeapSizeKB |

© 2013 Loggly Inc., All Rights Reserved. Support Press Pricing Legal Blog

ey Y4,

relnvent = - il ,

Loggly Offers Logging as a Service

re'lnvent

Loggly First Generation

* Logging as a service
— Near real-time searchable logs

 Thousands of customers
— Transmission rates from 10 events/sec to 100k events/sec
— When customers systems are busy they send more logs
— Log traffic has distinct bursts; bursts can last for several hours

« AWS EC2 deployment

— We used EC2 Instance storage

 SOLR Cloud

— Full power of Lucene search
— Tens of thousands of shards (with special ‘sleep shard’ logic)

« ZeroMQ for message queue

re'lnvent

First Generation Lessons Learned

* Event ingestion too tightly coupled to indexing
— Manual re-indexing for temporary SOLR issues

* Multiple Indexing strategies needed

— 4 orders of magnitude difference between our high volume users
and our low volume users (10 eps vs. 100,000+ eps)

— Too much system overhead for low volume users
— Difficult to support changing indexing strategies for a customer

re'lnvent

Big Data Infrastructure Solutions

We are not alone... ——

Analytics

Scalabilit .
Y Time tenant SaaS

* Qur challenges
— Massive incoming event stream
— Fundamentally multi-tenant
— Scalable framework for analysis
— Near real-time indexing
— Time series index management

AWS

relnvent

Apache Kafka

* Overview
— An Apache project initially developed at LinkedIn
— Distributed publish-subscribe messaging system

— Specifically designed for real time activity streams
— Does not follow JMS Standards nor uses JMS APls

 Key Features
— Persistent messaging
— High throughput, low overhead
— Uses ZooKeeper for forming a cluster of nodes §€Kafka
— Supports both queue and topic semantics

re'lnvent

Message Queue Performance

—activemq —Kafka (batch 50) ——Kafka (batch 1) =™ rabbitmq —activemq —Kafka —rabbitmq
500000 25000
400000 & 20000
: I V :
E 300000 ¥ % 15000
% &
2] b
g 200000 £ 10000
& £
10000 0 A
0 -mmm ‘ 0 - ‘
10 500 990 1480 1970 10 500 990 1480 1970
accumulated produced messages in MB accumulated consumed messages in MB

Figure 4. Producer Performance Figure 5. Consumer Performance

http://research.microsoft.com/en-us/um/people/srikanth/netdb11/netdb11papers/netdb11-final12.pdf

re'lnvent

Storm Framework

« Storm (open sourced by Twitter)
— Open sourced September 2011

— Now an Apache Software Foundation project
» Currently Incubator Status

 Framework is for stream processing
— Distributed
— Fault tolerant
— Computation
— Fail-fast components

re'lnvent

Storm Logical View

Example Topology |

DO

Bolts perform stream processing

Spouts emit source stream

Storm terminology
» Streams, Spouts, Bolts, Tasks, Workers, Stream Groups and Topologies

re'lnvent

Storm Resource View

: Worker Node
| ZooKeeper Java process executing a
subset of topology
Nimbus ZooKeeper : Worker Process |
Master Daemon
FrOCess: . Executor Task 1
« distributes code ZooK ; i
» assigns tasks —— £LOOKeeper ; p
* monitors failures
Storing Java thread spawned Component (spout / bolt)
Overational by Worker, runs tasks instance, performs the
Cr:lster State of same component. actual data processing.

Daemon listening for work
assigned to its node

re'lnvent

ElasticSearch

« Open source
— Commercial support available from ElasticSearch.com
— Growing open-source community

 Distributed search engine

* Fully exposes Lucene search functionality
 Built for clustering from the ground-up

* High availability

* Multi-tenancy

re'lnvent

ElasticSearch In Action

» Add/delete nodes dynamically
« Add indices with REST API

* Indices and Nodes have attributes
— Indices automatically moved to best Nodes

* |ndices can be sharded
» Supports bulk insertion of events
* Plugins for monitoring cluster

re'lnvent

Elastic Clu

ster

Our Second Generation

re'lnvent

Generation 2 — The Challenge

* Always accept log data
— Never make a customer’s incident worse

* Never drop log data
— A single log message could be critical

* True Elasticity

re'lnvent

Perfect Match For Real Time Log Events
* Apache Kafka

— Extremely high-performance pub-sub persistent queue

« Consumer tracks their location in queue
— A good fit for our use cases

* Multiple Kafka brokers

— Good match for AWS

« Multiple brokers per region
 Availability Zone separation

re'lnvent

Real Time Event Processing

* Twitter Storm
— Scalable real-time computation system

« Storm used as a “pull” system
— Provisioned for average load, not peak load

— Input from Kafka queue
« Worker nodes can be scaled dynamically

» Elasticity is key
— Another good match for AWS
* Able to scale workers up and down dynamically

re'lnvent

re'lnvent

Log Event Ingestion

Kafka Brokers

—a broker EBS partition

EBS partition Iin
collector

gﬂ az-1
e broker spureor [l

event ingestion

+100ks / second Storm
collector '
I | .

Teproppy Event Processing
EBS partition

HTTP e

a, az2 —1 broker [ess partition
EBS partition Kafka
Queue

collector
L__a broker EBSpartitionm

a, az3 EBS partition

Loggly Collector Performance

 C++ multi-threaded
« Boost ASIO framework

 Each Collector can
handle 250k+ events

per second oo
— Per m2.2xlarge instance ORI ot e B

8000 simultaneous connections

re'lnvent

re'lnvent

Processing Events

Kafka
Queue

Storm Event Processing

\ @

Acme
S3 Bucket

Kafka
Queue

Event Pipeline in Summary

« Storm provides Complex Event Processing
— Where we run much of our secret-sauce

« Kafka contains both raw and processed Events
« Snapshot the last day of Kafka events to S3

re'lnvent

From Kafka

Elastic Search Clusters Multi-Tiered

——a ES Writers

« ES Writers

e ES Writers

LB

0O

Elastic Cluster

-

o o

B

Nz

= Deferred

Events to
Kafka

o

Loggly and Index Management

* |ndices are time-series data
— Separated by customer

— Represent slices of time
« Higher volume index will have shorter time slice

» Multi-tier architecture for efficient indexing
— Multiple indexing tiers mapped to different AWS instance types

o Efficient use of AWS resources

re'lnvent

re'lnvent

Staging Pre-Production System

13-10-28 13:34:43,043(0]
13-10-28 13:32:43,50014¢
13-10-28 13:32:43,39209¢

13-10-28 13:32:43,33351¢
13-10-28 13:31:42,30087¢ Kafka Brokers
13-10-28 13:31:42,08353:

13-10-28 13:31:41,64668¢

13-10-28 13:31:41,58875¢
13-10-28 13:30:40,50750; iti _
13-10-28 13:30:40,39464¢ e

13-10-28 13:30:40,32195¢

13-10-28 13:30:40,26934¢ —a broker |ess partition
13-10-28 13:30:40,08222¢
13-10-28 13:29:38,78695¢
13-10-28 13:29:38,68692°
13-10-28 13:29:38,51649¢
13-10-28 13:29:38,37057¢
13-10-28 13:29:38,25400¢
13-10-28 13:29:38,19400¢
13-10-28 13:28:37,08896]
13-10-28 13:28:37,03179%¢
13-10-28 13:28:36,92933:
13-10-28 13:28:36,62347¢
13-10-28 13:28:36,53271%

event ngestion 1o

+100ks / second 352
04¢
syslog protocol 06t

238
(TCP/UDP) o

79
24¢
VRSOV -
13-10-28 13:25:31,73553:
13-10-28 13:25:31,51843:
13-10-28 13:25:31,27744;
13-10-28 13:25:31,20472¢
13-10-28 13:25:31,10432¢
13-10-28 13:25:31,04759:
13-10-28 13:24:30,05584¢

13-10-28 13:24:29,90087¢

13-10-28 13:24+29,84903¢ collector "

13-10-28 13:24:29,60856¢ EBS partition

13-10-28 13:24:29,58136¢

13-10-28 13:24:29,46564¢ L__a| broker |ess partition [[gkak]
13-10-28 13:24:29, 408647

13-10-28 13:23:28,33578: . -

13-10-28 13:23:28,186428 a, az3 EBS partition [kl
13-10-28 13:23:28,015357
13-10-28 13:23:27,84530¢
13-10-28 13:23:27,754621
13-10-28 13:23:27,59907¢
13-10-28 13:22:26,60505¢
13-10-28 13:22:26,50106:
13-10-28 13:22:26, 44682}
13-10-28 13:22:26,39471F
13-10-28 13:22:26, 20069

Event Processing
13-10-28 13:22:26,10706¢ (1/12 partitions)
13-10-28 13:21:24,89349]

13110-28 13:71:24,70038¢ 8 I —
13-10-28 13:21:24.62905:

EBS partition

collector

a 1 EBS partition Iiﬂ

| g broker EBS partition

EBS partition

Storm
Event Processing

collector

:

EBS partition

RPRRRPREPRRRRER
:—-E’
o

a, az2 —1 broker EBS partition
Kafka

Queue

EBS partition

Bulouejeg peo

_
Staging

Kafka enables Staging Architecture

 Kafka Broker doesn’t care if there are
multiple consumers

« Staging system runs pre-production code

* Pub-sub allows us to randomly index a
fraction of our production load

* A highly-effective pre-production system

re'lnvent

re'lnvent

AWS Deployment Details

AWS Deployment Instances — Collection

Collector

cl.xlarge
Compute-optimized
High-traffic ingestion points
Disk not important

re'lnvent

Kafka

m2.2xlarge
Memory-optimized
Disk buffer caching

4K Provisioned IOPs EBS

Ensures consistent IO
No noisy-neighbors
Persistent storage

Il

AWS Deployment Instances — Processing

re'lnvent

Storm
Supervisor

c1.xlarge

Compute-optimized
CPU-intensive
processing
Network |0

Storm

. ZooKeeper
Nimbus . ”

m1.xlarge
General-purpose
Configuration
Management

AWS Deployment Instances — Indexing

| Tier 1 Tier 2 P
cc2.8xlarge m2.4xlarge
4K Provisioned IOPs EBS 4K Provisioned IOPs EBS

re'lnvent

re'lnvent

A Few False Starts

ELB in front of Collector Had Limitations

 Initial testing used AWS Elastic Load Balancer for incoming
events:

—e Collector

ELB e o Collector

__ e Collector

 ELB doesn'’t allow forwarding port 514 (syslog)
 ELB doesn'’t support forwarding UDP
» Event traffic can burst and hit ELB performance limits

re'lnvent

AWS Route 53 DNS Round Robin a Win

 DNS Round Robin is pretty basic load balancing

— Not a bump in the wire

« Take advantage of AWS failover health checks

— When a collector goes out of service, it will be out of the DNS rotation

* Round Robin across multiple regions, AZs
— Latency based resolution optimizes inbound traffic

re'lnvent

Our First Plan for Log Events

« Cassandra

— Highly scalable key-value store
— Impressive write performance a good match for us
— Apache project plus commercial support with DataStax

« Use Cassandra for both our Event Queue and v

Persistent Store =
— Our strategy was to get the raw event in to Cassandra

— ...then perform workflow processing on events

re'lnvent

Design meets Reality

« Cassandra not designed to be a message queue

 Hard to track Events received out-of-order

Order of reception I o
0 A-101"Sever error* B-101 B-102 B-103 A-10: A-105
A A . oo e o v
CCCCCCC 677 ‘_._,sac'""ﬂ "~~e§j 6
/ A-10 . . © Ad0s © B0z
CPSN Order of persistence | L

« Multi-tenancy requires handling data bursts
— Collectors still needed to be able to buffer to disk
— Added complexity and became a point of failure

re'lnvent

Big Wins

« Leveraging AWS services
— Multi-Region, multi-AZ
— Provisioned IOPS for availability and scale
— Route 53 DNS support with latency resolution
— Easy to increase and decrease Storm resources

* Leveraging Open Source infrastructure
— Apache Kafka
— Twitter Storm
— ElasticSearch

* Pre-production “Staging” system

re'lnvent

The Means to an End

loggly () Dashboards Q Search B Aers @D Source Setup

Filter by Field 2,871 Events Oct 8
_s=Auini=aaisiiiniininsiiisiiiinaiiininsine
= o~ = @ Tre g

PR GC_Meap._Detads o
Apacheheguents 0 Sewchiums o

re'lnvent

Feedback

 Questions?

Jim Nisbet (niz@loggly.com)
CTO and VP of Engineering, Loggly

Philip O’Toole (philip@loggly.com)

Lead Developer, Infrastructure, Loggly

re'lnvent

