
© 2013 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified, or distributed in whole or in part without the express consent of Amazon.com, Inc.

ARC303 - Unmeltable Infrastructure at Scale:
 Using Apache Kafka, Twitter Storm
 and ElasticSearch on AWS
Jim Nisbet
CTO and VP of Engineering, Loggly

Philip O’Toole
Lead Developer, Infrastructure, Loggly

November 2013

What Loggly Does

•  Log Management as a service
–  Near real-time indexing of events

•  Distributed architecture, built on AWS
•  Initial production services in 2010

–  Loggly Generation 2 released in Sept 2013

•  Thousands of customers

Agenda for this Presentation

•  A bit about logging
•  Lessons learned from our first generation
•  How we leverage AWS services
•  Our use of Kafka, Storm, ElasticSearch
•  What worked well for us and what did not

Log Management
•  Everyone starts with …

–  A bunch of log files (syslog, application specific)
–  On a bunch of machines

•  Management consists of doing the simple stuff
–  Rotate files, compress and delete
–  Information is there but awkward to find specific events
–  Weird log retention policies evolve over time

Log Volume

Self-Inflicted Pain

“…hmmm, our logs are getting a bit bloated”

“…let’s spend time managing our log capacity”

“…how can I make this someone else’s problem!”

As Log Data Grows

Best Practices in Log Management
•  Use existing logging infrastructure

–  Real time syslog forwarding is built in
–  Application log file watching

•  Store logs externally
–  Accessible when there is a system failure

•  Log messages in machine parsable format
–  JSON encoding when logging structured information
–  Key-value pairs

From the Trenches…

 Admit it, we’ve all seen this kind of thing!

If you get a disk space alert, first login…

% sudo rm –rf /var/log/apache2/*!

•  Managing Applications vs. Managing Logs

–  Do not make this is an either/or proposition!

You Have Logs...

•  In this case, JVM garbage collection logs
enabled with…

2013-10-25T18:35:43.387+0000: 441.482: [GC [PSYoungGen: 2430541K->268617K(2484544K)] 7687523K-
>5660738K(8076992K), 0.3266870 secs] [Times: user=1.05 sys=0.17, real=0.33 secs]!
2013-10-25T18:35:43.714+0000: 441.809: [Full GC [PSYoungGen: 268617K->0K(2484544K)] [ParOldGen: 5392121K-
>354965K(5592448K)] 5660738K->354965K(8076992K) [PSPermGen: 44444K->44395K(83968K)], 0.9225290 secs] [Times:
user=2.22 sys=0.26, real=0.92 secs]!

-XX:+PrintGCDetails -XX:+PrintGCDateStamps -XX:+PrintGCTimeStamps

Yes, you need to search these logs

But you also need to to spot trends

Loggly Offers Logging as a Service

Loggly First Generation
•  Logging as a service

–  Near real-time searchable logs
•  Thousands of customers

–  Transmission rates from 10 events/sec to 100k events/sec
–  When customers systems are busy they send more logs
–  Log traffic has distinct bursts; bursts can last for several hours

•  AWS EC2 deployment
–  We used EC2 Instance storage

•  SOLR Cloud
–  Full power of Lucene search
–  Tens of thousands of shards (with special ‘sleep shard’ logic)

•  ZeroMQ for message queue

First Generation Lessons Learned
•  Event ingestion too tightly coupled to indexing

–  Manual re-indexing for temporary SOLR issues

•  Multiple Indexing strategies needed
–  4 orders of magnitude difference between our high volume users

and our low volume users (10 eps vs. 100,000+ eps)
–  Too much system overhead for low volume users
–  Difficult to support changing indexing strategies for a customer

Big Data Infrastructure Solutions

Real
Time Analytics Multi

tenant
Scalability SaaS

We are not alone…

•  Our challenges
–  Massive incoming event stream
–  Fundamentally multi-tenant
–  Scalable framework for analysis
–  Near real-time indexing
–  Time series index management

Apache Kafka
•  Overview

–  An Apache project initially developed at LinkedIn
–  Distributed publish-subscribe messaging system
–  Specifically designed for real time activity streams
–  Does not follow JMS Standards nor uses JMS APIs

•  Key Features
–  Persistent messaging
–  High throughput, low overhead
–  Uses ZooKeeper for forming a cluster of nodes
–  Supports both queue and topic semantics

Message Queue Performance

http://research.microsoft.com/en-us/um/people/srikanth/netdb11/netdb11papers/netdb11-final12.pdf

Storm Framework
•  Storm (open sourced by Twitter)

–  Open sourced September 2011
–  Now an Apache Software Foundation project

•  Currently Incubator Status

•  Framework is for stream processing
–  Distributed
–  Fault tolerant
–  Computation
–  Fail-fast components

Storm Logical View

Bolt

Bolt

Spout Bolt Bolt

Spouts emit source stream Bolts perform stream processing

Example Topology

Storm terminology
•  Streams, Spouts, Bolts, Tasks, Workers, Stream Groups and Topologies

Storm Resource View

ElasticSearch
•  Open source

–  Commercial support available from ElasticSearch.com
–  Growing open-source community

•  Distributed search engine
•  Fully exposes Lucene search functionality
•  Built for clustering from the ground-up
•  High availability
•  Multi-tenancy

ElasticSearch In Action
•  Add/delete nodes dynamically
•  Add indices with REST API
•  Indices and Nodes have attributes

–  Indices automatically moved to best Nodes

•  Indices can be sharded
•  Supports bulk insertion of events
•  Plugins for monitoring cluster

Our Second Generation

Generation 2 – The Challenge
•  Always accept log data

–  Never make a customer’s incident worse

•  Never drop log data
–  A single log message could be critical

•  True Elasticity

Perfect Match For Real Time Log Events
•  Apache Kafka

–  Extremely high-performance pub-sub persistent queue

•  Consumer tracks their location in queue
–  A good fit for our use cases

•  Multiple Kafka brokers
–  Good match for AWS

•  Multiple brokers per region
•  Availability Zone separation

Real Time Event Processing
•  Twitter Storm

–  Scalable real-time computation system

•  Storm used as a “pull” system
–  Provisioned for average load, not peak load
–  Input from Kafka queue

•  Worker nodes can be scaled dynamically

•  Elasticity is key
–  Another good match for AWS

•  Able to scale workers up and down dynamically

Log Event Ingestion

Kafka
Queue

Loggly Collector Performance
•  C++ multi-threaded
•  Boost ASIO framework
•  Each Collector can

handle 250k+ events
per second
–  Per m2.2xlarge instance 1 x EC2 m2.2xlarge Collector instance

(300 byte average event size).

Processing Events

Storm Event Processing

Kafka
Queue

Acme
S3 Bucket

Kafka
Queue Rate

Determination

Classification

Summary
Statistics

Event Pipeline in Summary
•  Storm provides Complex Event Processing

–  Where we run much of our secret-sauce

•  Kafka contains both raw and processed Events
•  Snapshot the last day of Kafka events to S3

From Kafka

Elastic Search Clusters Multi-Tiered
Elastic Cluster

Loggly and Index Management
•  Indices are time-series data

–  Separated by customer
–  Represent slices of time

•  Higher volume index will have shorter time slice

•  Multi-tier architecture for efficient indexing
–  Multiple indexing tiers mapped to different AWS instance types

•  Efficient use of AWS resources

Staging Pre-Production System

Load B
alancing

Kafka
Queue

Kafka enables Staging Architecture

•  Kafka Broker doesn’t care if there are
multiple consumers

•  Staging system runs pre-production code
•  Pub-sub allows us to randomly index a

fraction of our production load
•  A highly-effective pre-production system

AWS Deployment Details

AWS Deployment Instances – Collection

c1.xlarge
•  Compute-optimized
•  High-traffic ingestion points
•  Disk not important

m2.2xlarge!
•  Memory-optimized
•  Disk buffer caching

4K Provisioned IOPs EBS
•  Ensures consistent IO
•  No noisy-neighbors
•  Persistent storage

AWS Deployment Instances – Processing

c1.xlarge
•  Compute-optimized
•  CPU-intensive

processing
•  Network IO

m1.xlarge
•  General-purpose
•  Configuration
•  Management

ZooKeeper

AWS Deployment Instances – Indexing

cc2.8xlarge!
•  4K Provisioned IOPs EBS

m2.4xlarge!
•  4K Provisioned IOPs EBS

A Few False Starts

ELB in front of Collector Had Limitations
•  Initial testing used AWS Elastic Load Balancer for incoming

events:

•  ELB doesn’t allow forwarding port 514 (syslog)
•  ELB doesn’t support forwarding UDP
•  Event traffic can burst and hit ELB performance limits

AWS Route 53 DNS Round Robin a Win
•  DNS Round Robin is pretty basic load balancing

–  Not a bump in the wire

•  Take advantage of AWS failover health checks
–  When a collector goes out of service, it will be out of the DNS rotation

•  Round Robin across multiple regions, AZs
–  Latency based resolution optimizes inbound traffic

Our First Plan for Log Events
•  Cassandra

–  Highly scalable key-value store
–  Impressive write performance a good match for us
–  Apache project plus commercial support with DataStax

•  Use Cassandra for both our Event Queue and
Persistent Store
–  Our strategy was to get the raw event in to Cassandra
–  …then perform workflow processing on events

Design meets Reality
•  Cassandra not designed to be a message queue

•  Hard to track Events received out-of-order

•  Multi-tenancy requires handling data bursts
–  Collectors still needed to be able to buffer to disk
–  Added complexity and became a point of failure

Big Wins
•  Leveraging AWS services

–  Multi-Region, multi-AZ
–  Provisioned IOPS for availability and scale
–  Route 53 DNS support with latency resolution
–  Easy to increase and decrease Storm resources

•  Leveraging Open Source infrastructure
–  Apache Kafka
–  Twitter Storm
–  ElasticSearch

•  Pre-production “Staging” system

The Means to an End

Feedback
•  Questions?

Jim Nisbet (niz@loggly.com)
CTO and VP of Engineering, Loggly

Philip O’Toole (philip@loggly.com)
Lead Developer, Infrastructure, Loggly

Follow us @loggly!

