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What Loggly Does

* Log Management as a service
— Near real-time indexing of events

* Distributed architecture, built on AWS

* |nitial production services in 2010
— Loggly Generation 2 released in Sept 2013

 Thousands of customers |
loggly
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Agenda for this Presentation

* A bit about logging

* Lessons learned from our first generation
 How we leverage AWS services

* QOur use of Kafka, Storm, ElasticSearch

« What worked well for us and what did not
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Log Management

* Everyone starts with ...
— Abunch of log files (syslog, application specific)
— On a bunch of machines

« Management consists of doing the simple stuff
— Rotate files, compress and delete

— Information is there but awkward to find specific events
— Weird log retention policies evolve over time
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“...how can | make this someone else’s problem
“...let’s spend time managing our log capacity”

“...hmmm, our logs are getting a bit bloated”

—

Log Volume

ured pajdIjul-}I9s

!” |
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Best Practices in Log Management

» Use existing logging infrastructure
— Real time syslog forwarding is built in
— Application log file watching

« Store logs externally
— Accessible when there is a system failure

* Log messages in machine parsable format
— JSON encoding when logging structured information
— Key-value pairs
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From the Trenches...

« Managing Applications vs. Managing Logs
— Do not make this is an either/or proposition!

& If you get a disk space alert, first login...
—

*l % sudo rm —rf /var/log/apache2/*

Admit it, we've all seen this kind of thing!
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You Have Logs...

2013-10-25T18:35:43.387+0000: 441.482: [GC [PSYoungGen: 2430541K->268617K(2484544K)] 7687523K-

>5660738K(8076992K), 0.3266870 secs] [Times: user=1.05 sys=0.17, real=0.33 secs]
2013-10-25T718:35:43.714+0000: 441.809: [Full GC [PSYoungGen: 268617K->0K(2484544K)] [ParOldGen: 5392121K-

>354965K(5592448K)] 5660738K->354965K(8076992K) [PSPermGen: 44444K->44395K(83968K)], 0.9225290 secs] [Times:
user=2.22 sys=0.26, real=0.92 secs]

* |n this case, JVM garbage collection logs
enabled with...

-XX:+PrintGCDetails -XX:+PrintGCDateStamps -XX:+PrintGCTimeStamps

relnvent = ;



Yes, you need to search these logs
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But you also need to to spot trends
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Loggly Offers Logging as a Service

re'lnvent



Loggly First Generation

* Logging as a service
— Near real-time searchable logs

 Thousands of customers
— Transmission rates from 10 events/sec to 100k events/sec
— When customers systems are busy they send more logs
— Log traffic has distinct bursts; bursts can last for several hours

« AWS EC2 deployment

— We used EC2 Instance storage

 SOLR Cloud

— Full power of Lucene search
— Tens of thousands of shards (with special ‘sleep shard’ logic)

« ZeroMQ for message queue
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First Generation Lessons Learned

* Event ingestion too tightly coupled to indexing
— Manual re-indexing for temporary SOLR issues

* Multiple Indexing strategies needed

— 4 orders of magnitude difference between our high volume users
and our low volume users (10 eps vs. 100,000+ eps)

— Too much system overhead for low volume users
— Difficult to support changing indexing strategies for a customer
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Big Data Infrastructure Solutions

We are not alone... ——

Analytics

Scalabilit .
Y Time tenant SaaS

* Qur challenges
— Massive incoming event stream
— Fundamentally multi-tenant
— Scalable framework for analysis
— Near real-time indexing
— Time series index management

AWS
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Apache Kafka

* Overview
— An Apache project initially developed at LinkedIn
— Distributed publish-subscribe messaging system

— Specifically designed for real time activity streams
— Does not follow JMS Standards nor uses JMS APls

 Key Features
— Persistent messaging
— High throughput, low overhead
— Uses ZooKeeper for forming a cluster of nodes §€Kafka
— Supports both queue and topic semantics
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Message Queue Performance

—activemq —Kafka (batch 50) ——Kafka (batch 1) =™ rabbitmq —activemq —Kafka —rabbitmq
500000 25000
400000 & 20000
: I V :
E 300000 ¥ % 15000
% &
2 ] b
g 200000 £ 10000
& £
10000 0 A
0 -mmm ‘ 0 - ‘
10 500 990 1480 1970 10 500 990 1480 1970
accumulated produced messages in MB accumulated consumed messages in MB

Figure 4. Producer Performance Figure 5. Consumer Performance

http://research.microsoft.com/en-us/um/people/srikanth/netdb11/netdb11papers/netdb11-final12.pdf
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Storm Framework

« Storm (open sourced by Twitter)
— Open sourced September 2011

— Now an Apache Software Foundation project
» Currently Incubator Status

 Framework is for stream processing
— Distributed
— Fault tolerant
— Computation
— Fail-fast components
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Storm Logical View

Example Topology |

DO

Bolts perform stream processing

Spouts emit source stream

Storm terminology
» Streams, Spouts, Bolts, Tasks, Workers, Stream Groups and Topologies
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Storm Resource View

: Worker Node
| ZooKeeper Java process executing a
subset of topology
Nimbus ZooKeeper : Worker Process |
Master Daemon
FrOCess: . Executor Task 1
« distributes code ZooK ; i
» assigns tasks —— £LOOKeeper ; p
* monitors failures
Storing Java thread spawned Component (spout / bolt)
Overational by Worker, runs tasks  instance, performs the
Cr:lster State of same component. actual data processing.

Daemon listening for work
assigned to its node
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ElasticSearch

« Open source
— Commercial support available from ElasticSearch.com
— Growing open-source community

 Distributed search engine

* Fully exposes Lucene search functionality
 Built for clustering from the ground-up

* High availability

* Multi-tenancy
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ElasticSearch In Action

» Add/delete nodes dynamically
« Add indices with REST API

* Indices and Nodes have attributes
— Indices automatically moved to best Nodes

* |ndices can be sharded
» Supports bulk insertion of events
* Plugins for monitoring cluster

re'lnvent
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Our Second Generation

re'lnvent




Generation 2 — The Challenge

* Always accept log data
— Never make a customer’s incident worse

* Never drop log data
— A single log message could be critical

* True Elasticity
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Perfect Match For Real Time Log Events
* Apache Kafka

— Extremely high-performance pub-sub persistent queue

« Consumer tracks their location in queue
— A good fit for our use cases

* Multiple Kafka brokers

— Good match for AWS

« Multiple brokers per region
 Availability Zone separation
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Real Time Event Processing

* Twitter Storm
— Scalable real-time computation system

« Storm used as a “pull” system
— Provisioned for average load, not peak load

— Input from Kafka queue
« Worker nodes can be scaled dynamically

» Elasticity is key
— Another good match for AWS
* Able to scale workers up and down dynamically
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Loggly Collector Performance

 C++ multi-threaded
« Boost ASIO framework

 Each Collector can
handle 250k+ events

per second oo
— Per m2.2xlarge instance ORI ot e B

8000 simultaneous connections
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Event Pipeline in Summary

« Storm provides Complex Event Processing
— Where we run much of our secret-sauce

« Kafka contains both raw and processed Events
« Snapshot the last day of Kafka events to S3
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From Kafka

Elastic Search Clusters Multi-Tiered

——a ES Writers

« ES Writers

e ES Writers
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Loggly and Index Management

* |ndices are time-series data
— Separated by customer

— Represent slices of time
« Higher volume index will have shorter time slice

» Multi-tier architecture for efficient indexing
— Multiple indexing tiers mapped to different AWS instance types

o Efficient use of AWS resources
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Staging Pre-Production System
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Kafka enables Staging Architecture

 Kafka Broker doesn’t care if there are
multiple consumers

« Staging system runs pre-production code

* Pub-sub allows us to randomly index a
fraction of our production load

* A highly-effective pre-production system
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AWS Deployment Instances — Collection

Collector

cl.xlarge
Compute-optimized
High-traffic ingestion points
Disk not important
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Kafka

m2.2xlarge
Memory-optimized
Disk buffer caching

4K Provisioned IOPs EBS

Ensures consistent IO
No noisy-neighbors
Persistent storage
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AWS Deployment Instances — Processing
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Storm
Supervisor

c1.xlarge

Compute-optimized
CPU-intensive
processing
Network |0

Storm

. ZooKeeper
Nimbus . ”

m1.xlarge
General-purpose
Configuration
Management




AWS Deployment Instances — Indexing

| Tier 1 Tier 2 P
cc2.8xlarge m2.4xlarge
4K Provisioned IOPs EBS 4K Provisioned IOPs EBS
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ELB in front of Collector Had Limitations

 Initial testing used AWS Elastic Load Balancer for incoming
events:

—e Collector

ELB e o Collector

__ e Collector

 ELB doesn'’t allow forwarding port 514 (syslog)
 ELB doesn'’t support forwarding UDP
» Event traffic can burst and hit ELB performance limits
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AWS Route 53 DNS Round Robin a Win

 DNS Round Robin is pretty basic load balancing

— Not a bump in the wire

« Take advantage of AWS failover health checks

— When a collector goes out of service, it will be out of the DNS rotation

* Round Robin across multiple regions, AZs
— Latency based resolution optimizes inbound traffic
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Our First Plan for Log Events

« Cassandra

— Highly scalable key-value store
— Impressive write performance a good match for us
— Apache project plus commercial support with DataStax

« Use Cassandra for both our Event Queue and v

Persistent Store =
— Our strategy was to get the raw event in to Cassandra

— ...then perform workflow processing on events
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Design meets Reality

« Cassandra not designed to be a message queue

 Hard to track Events received out-of-order

Order of reception I o
0 A-101"Sever error*  B-101 B-102 B-103 A-10: A-105
A A . oo e o v
CCCCCCC 677 ‘_._,sac'""ﬂ "~~e§j 6
/ A-10 . . © Ad0s © B0z
CPSN Order of persistence | L

« Multi-tenancy requires handling data bursts
— Collectors still needed to be able to buffer to disk
— Added complexity and became a point of failure
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Big Wins

« Leveraging AWS services
— Multi-Region, multi-AZ
— Provisioned IOPS for availability and scale
— Route 53 DNS support with latency resolution
— Easy to increase and decrease Storm resources

* Leveraging Open Source infrastructure
— Apache Kafka
— Twitter Storm
— ElasticSearch

* Pre-production “Staging” system
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The Means to an End
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Feedback

 Questions?

Jim Nisbet (niz@loggly.com)
CTO and VP of Engineering, Loggly

Philip O’Toole (philip@loggly.com)

Lead Developer, Infrastructure, Loggly
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