Enhancing a Micro-Service
Application with mTLS

Christian Frank (#473088)
April 5, 2025

Hochschule

Workshop Cyber Defense
Gul Sabab
FOM - Hochschule fiir Oekonomie & Management
WS 2024

This paper examines mutual TLS for micro-service applications and how
to use a service mesh to enhance an existing application with encrypted
traffic. We will compare the results using Linkerd and Istio.

OMOoN

This work is licensed under the Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ or
send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Contents

List of Figures

List of Tables

List of Abbreviations

1 Introduction

1.1 Cyber Defense
1.2 Micro-Service Applications
1.3 TLSand mTLS
1.4 Kubernetes
1.5 Research Question & Method
1.6 Gender-neutral Pronouns
1.7 Climate Emergency

2 TLS & mTLS

2.1 TLS .
22 mTLS . .
2.3 Microservice Architecture
2.4 Service Mesh
2.5 Benefits of a Service Mesh
2.6 Benefitsof mTLS
2.7 Linkerd
2.8 stio . . .
2.9 Rancher
3 mTLS Exploration
3.1 Sample Voting Application
3.2 Linkerd
3.3 stio . . .
4 mTLS Analysis
4.1 Resource Consumption
4.2 Installation Timeo
4.3 EnablingmTLS
4.4 Linkerd and Istio Evaluation
45 Outlook

5 Summary

References

List of Figures

H O 00 ~NO 1~ WN -

Kubernetes 1.30 Release Logo 6
Rancher Dashboard L 14
Application Architecture 15
Voting Application Components 16
Voting Application Connections 16
Linkerd Components 17
Linkerd Application Connections 18
Istio Components 19
Istio Application Connections 20

Cluster Dashboard 21

List of Tables

1 Resource Consumption

2 Installation Time
3 Enabling mTLS

List of Abbreviations

AKS
APA
API
CLI
CNCF
EU
laC
K8s
mTLS
NIST
NIS
REST
SSL

TLS

Azure Kubernetes Service

American Psychological Association
Application Programming Interface
Command Line Interface

Cloud Native Computing Foundation
European Union

Infrastructure as Code

Kubernetes

Mutual Transport Layer Security

National Institute of Standards and Technology
Network and Information Security (Directive)
Representational State Transfer

Secure Sockets Layer

Transport Layer Security

1 Introduction

1.1 Cyber Defense

Cyber defense protects computer systems and networks from theft or damage to the
hardware, software, or electronic data and disruption or misdirection of their services. It

is a subset of cybersecurity that focuses specifically on defending against cyberattacks.®

NIS2, which stands for Network and Information Systems Directive Il, is the EU’s leg-
islative act to strengthen cybersecurity across the European Union. It sets strict require-
ments for various sectors to improve security for essential entities. These entities include
organizations in critical sectors like energy, transport, waste management, healthcare,

and digital infrastructure providers.?

One important attack vector that cyber defense must consider in this framework is
network traffic to and from an application and between different components, which

increases significantly when using a microservice architecture.

1.2 Micro-Service Applications

Microservice architecture involves building software applications structured as a collection

of small, autonomous services modeled around a business domain.

Compared to a traditional monolithic architecture, function calls within the application
can be replaced with API calls across the network. On a Kubernetes platform, this would

be network traffic within the cluster.

1.3 TLS and mTLS

Transport Layer Security (TLS) is a cryptographic protocol designed to provide secure
communication over a network. It is the successor to SSL and is widely used to secure

web traffic, email, and other Internet protocols.

mTLS enhances TLS by adding mutual authentication. This means the client and the
server must present digital certificates and verify each other’s identities before establish-

ing a secure connection.

1See Gemini (2025): What is Cyber Security. [6]
2See NIS 2 Compliant.org (2024): Comprehensive Guide to the NIS 2 Directive. [26]

1.4 Kubernetes

Kubernetes, or K8s, is an open-source system designed to automate deploying, scaling,
and managing applications built using containers. Containers package software in a
standardized unit that includes all the dependencies it needs to run, such as code,

libraries, and settings. This makes them portable and efficient.

Kubernetes helps manage these containers by grouping them logically. This makes it
easier to track and manage complex applications with many containers. The original
inspiration for Kubernetes came from Google's internal container orchestration system,

Borg.3

Kubernetes reached the 1.0 milestone in 2015 and was donated to the CNCF in 2016.
Its current release is 1.32; we will be using 1.31 in our experiment, but 1.30 was a very

special release:

"For the people who built it, for the people who release it, and for the furries who keep
all of our clusters online, we present to you Kubernetes v1.30: Uwubernetes, the cutest

release to date.”*

Figure 1: Kubernetes 1.30 Release Logo

1.5 Research Question & Method

This paper will examine whether a service mesh can enhance the encryption of intra-

application traffic in a sample micro-service application using mTLS.

To do this, we will perform an Experiment with a Kubernetes cluster and cross-check

the findings of two Service-Mesh installations.®

3See Gemini (2025): What is Kubernetes. [7]
“Dsouza, A. (2024): Kubernetes 1.30. [4]
5See Genau, L. (2020): Ein Experiment in Deiner Abschlussarbeit Durchfiihren. [10]

The goal is to establish whether Linkerd or Istio can add mTLS to an existing application

and determine which uses fewer resources.

1.6 Gender-neutral Pronouns

Our society is becoming more open, inclusive, and gender-fluid, and now | think it’s time
to think about using gender-neutral pronouns in scientific texts, too. Two well-known
researchers, Abigail C. Saguy and Juliet A. Williams, both from UCLA, propose to use
the singular they/them instead: " The universal singular they is inclusive of people who
identify as male, female or nonbinary.”® The aim is to support an inclusive approach to

science through gender-neutral language.

| will follow this suggestion in this paper and invite all my readers to do the same for

future articles. Thank you!

If you're not sure about the definitions of gender and sex and how to use them, look at

the American Psychological Association's definitions.’

1.7 Climate Emergency

As Professor Rahmstorf puts it: " Without immediate, decisive climate protection mea-
sures, my children currently attending high school could already experience a 3-degree
warmer Earth. No one can say exactly what this world would look like—it would be too
far outside the entire experience of human history. But almost certainly, this earth would

be full of horrors for the people who would have to experience it.”2

6Saguy, A. (2020): Why We Should All Use They/Them Pronouns. [33]
"See APA (2021): Definitions Related to Sexual Orientation. [1]
8Rahmstorf, A. (2024): Climate and Weather at 3 Degrees More. [29]

https://linkerd.io/
https://istio.io/

2 TLS & mTLS

2.1 TLS

TLS stands for Transport Layer Security.® It's a critical internet security protocol that
encrypts the connection between a user’'s computer and their website or service. TLS
scrambles the data sent between the computer and the service, turning it into an unread-
able code. This prevents hackers from intercepting and stealing information (passwords,
credit card details, personal data, etc.). TLS also verifies that the service is legitimate
and not a fake one trying to steal information; it ensures that the data sent between

computers and services has not been tampered with or altered during transmission.°

TLS is the foundation of secure online communication. Without it, data would be vul-
nerable to interception and theft. TLS helps keep online activity private, preventing
eavesdropping and unauthorized access to information. TLS certificates, or SSL certifi-
cates, are a sign of confidence. Websites with TLS encryption display a padlock icon in

the browser, reassuring users that their connection is secure.

TLS uses a combination of symmetric and asymmetric cryptography. Symmetric cryp-
tography encrypts the data, while asymmetric cryptography authenticates the server and

exchanges the symmetric encryption key.!!

TLS is an essential part of internet security. It helps to protect sensitive information from
being intercepted and stolen. SSL was the predecessor to TLS, which is more modern
and secure. While the terms are sometimes interchangeable, TLS is the more modern

protocol.

TLS is essential for protecting privacy and security online. Its technology allows for

secure online transactions, browsing, and communication.

2.2 mTLS

Mutual TLS (mTLS) is a type of authentication that requires both the client and the
server to authenticate each other. This contrasts with traditional TLS, which only

requires the server to authenticate itself to the client.!?

mTLS provides additional protection by ensuring that the client and the server are who

they claim to be. This can help prevent man-in-the-middle attacks and other security

9See NIST (2011): Glossary. [27]

19See Internet Society (2025): TLS Basics. [15]

11See ENTRUST (2025): What is TLS. [5]

12See Google Cloud (2025): Mutual TLS overview. [11]

threats. mTLS can authenticate users and devices, which can be helpful in various
situations, such as accessing sensitive data or applications. mTLS can also help protect

the confidentiality of user data by ensuring that only authorized parties can access it.

mTLS is very important in securing APIs by ensuring only authorized clients can access
them. It can also protect sensitive data, such as financial or medical information, and

authenticate users and devices when they access sensitive resources.

mTLS is a valuable security tool for protecting sensitive data and applications. It is
beneficial when high levels of security and authentication are required, such as when the

NIS2 requirements need to be met.

2.3 Microservice Architecture

Microservice architecture is a software development approach in which an application
is structured as a collection of small, autonomous services modeled around a business
domain. It can be compared to a bustling city comprising specialized districts (aka
services) that work together to make the city function. Each district has its infrastructure,

team, and way of doing things, but they all contribute to the overall city experience.!3

Each microservice is designed to perform a specific business function in a micro-service
application. They are small enough to be developed, deployed, and maintained indepen-
dently. Microservices operate independently. A failure in one service does not bring down
the entire application. Microservices can also be updated or deployed without affecting

other services.

They are decentralized, with no central database or monolithic code base. Each mi-
croservice can choose the technology stack (programming language, database, etc.)

best suited for its specific task, allowing for greater flexibility and innovation.

Microservices communicate with each other through well-defined APls, often using
lightweight protocols like REST or message queues. This loose coupling minimizes
dependencies between services, making them more independent. Microservices can be
deployed and scaled independently. For example, if one service is experiencing high

traffic, it can be scaled to increase its capacity without scaling the entire application.

Microservices are a good fit for large, complex applications. They can break down com-
plexity into smaller, manageable parts and application parts that can scale independently.

They are also well-suited for applications with varying workloads.

13See Google Cloud (2025): What Is Microservices Architecture. [13]

10

Microservices generally follow an API-first design. They communicate through well-
defined APIs, which act as contracts between services and ensure interoperability. A
common choice is RESTful APIs using HTTP.

Microservices offer a powerful approach to building complex applications but require
careful planning and execution. Understanding the trade-offs and challenges are crucial

for successful implementation.

2.4 Service Mesh

A service mesh is an infrastructure layer between application services and the underlying
network. It is designed to make communication between microservices easier, more
reliable, and secure and has a dedicated traffic management and security layer. It handles
all the complexities of inter-service communication, allowing the application code to focus

on business logic.'*

A Service Mesh controls how traffic flows between services. This includes routing, load
balancing, retries, timeouts, and fault injection (testing resilience). It can intelligently
route requests based on various criteria, such as versioning, A/B testing, or canary
deployments. It secures communication between services. This includes mutual TLS
(mTLS) authentication, authorization, and encryption, which we will analyze later. With
mTLS, it ensures that only authorized services can communicate with each other and

that all communication is encrypted.

A Service Mesh also provides insights into the behavior of microservices. This includes
metrics, tracing, and logging. It allows for monitoring the health and performance of all

services in the mesh and quickly identifying any issues.

A service mesh typically uses a “sidecar” proxy pattern. This means a small proxy (the
sidecar) is deployed alongside each microservice instance in the container. All traffic
to and from the microservice flows through this sidecar proxy, which is managed by a

control plane configuring the mesh and collecting telemetry data.

A service mesh is a powerful tool for managing and securing communication between
microservices. It can simplify development, improve security and resilience, and enhance
observability. However, it also adds complexity to the application landscape, so it's

essential to carefully consider the trade-offs before implementing one.

14See Hamilton, C. (2024): What is a service mesh. [14]

11

2.5 Benefits of a Service Mesh

Microservices often need to communicate with each other, which can involve intricate
tasks like service discovery, load balancing, and handling network issues. A service mesh
abstracts these complexities away, allowing developers to focus on the core logic of their
microservices. It provides a uniform way for services to communicate, regardless of the
language or framework in which they are written. This ensures consistency and simplifies

development.!®

A service mesh can enforce mTLS, encrypting communication between services and veri-
fying the identity of both the client and the server. This significantly strengthens security
and prevents unauthorized access. It also allows for defining and enforcing security poli-
cies across the entire microservices ecosystem from a central point, simplifying security

management.

A service mesh provides detailed insights into the behavior of the microservices, includ-
ing metrics, tracing, and logging. This makes it easier to monitor their health and

performance and identify issues.

Service meshes offer features like circuit breaking, retries, and timeouts, which make
microservices more resilient to failures. This helps prevent cascading failures and ensures

your application remains available even when some services are down.

Thus, a service mesh acts as a dedicated infrastructure layer for the microservices land-
scape, handling the complexities of inter-service communication, security, observability,
and resilience. This allows developers to focus on building great applications while op-

erations teams can effectively manage and monitor the microservices ecosystem.

2.6 Benefits of mTLS

Microservices often communicate over a network, making them vulnerable to interception
and eavesdropping. mTLS enforces a “zero trust” model, where every service must
authenticate itself regardless of its location within the network. This is critical in a
microservice environment where services might be deployed across different environments

or clouds.1®

mTLS verifies the digital certificates of the client and server to ensure that they are
who they claim to be. This prevents unauthorized services from impersonating legiti-

mate ones, a key concern in a distributed microservice system. mTLS also encrypts all

15See Gemini (2025): What are Microservices. [8]
16See Patil, K. (2023): Why Mutual TLS is critical. [28]

12

communication between services, protecting sensitive data from being intercepted and
read. This is paramount in microservices, as data might travel through various network

segments.

mTLS establishes a straightforward and automated way for services to trust each other.
No complex key management or manual configuration is needed for each service inter-
action. The service mesh (or other infrastructure) handles certificate distribution and
validation. Each service will have a verifiable identity. This simplifies auditing, logging,

and access control.

mTLS makes Man-in-the-Middle attacks significantly harder. To intercept communica-
tion, an attacker would need to possess the private key of a legitimate service. Also,
because each service is authenticated, it's much more challenging for a malicious service

to “spoof” or impersonate a legitimate one.

Many industries have strict data security and privacy regulations. mTLS can help or-
ganizations meet these requirements by providing strong authentication and encryption
of inter-service communication. This is increasingly important as microservices handle

increasingly sensitive data.

Microservices' distributed nature increases their attack surface and mTLS helps secure
the many communication points between services. Microservices are often deployed and
scaled dynamically, and mTLS provides an automated way to handle security in this fluid
environments. Microservices rely heavily on each other. If one service is compromised, it
can potentially expose others, and mTLS limits a compromised service's “blast radius”

by ensuring that communication with other services is always secured.

mTLS is a fundamental security practice for microservice architectures. It provides strong
authentication and encryption and simplifies security management, making it an essential
tool for protecting sensitive data and ensuring the integrity of inter-service communi-
cation. When integrated with a service mesh, mTLS becomes even more powerful and

easier to manage.

2.7 Linkerd

Linkerd is a lightweight and straightforward service mesh designed for Kubernetes. It
manages and secures communication between microservices, providing a dedicated traffic

management and security layer without the complexity associated with service meshes.!”

Linkerd's minimalist design focuses on providing essential service mesh functionalities

17See Linkerd (2025): Why Linkerd. [24]

13

without unnecessary complexity. This makes installing, configuring, and operating easier
than other service meshes. Linkerd is known for its straightforward installation process

and user-friendly CLI.8

Linkerd uses a purpose-built, ultra-lightweight proxy written in Rust and is designed to
have a minimal performance impact on the applications. It aims to be as efficient as

possible, adding little overhead to service communication.

Linkerd enables mTLS by default, which encrypts communication between services and
ensures that only authorized services can communicate. It promotes a zero-trust security
model in which every service must authenticate itself regardless of its location within the

network.!®

Linkerd is a service mesh focusing on simplicity, performance, and security. It's a good
option for teams that want a lightweight and easy-to-use service mesh for their Kuber-

netes deployments.

2.8 lIstio

Istio is a popular, open-source service mesh that sits atop a container orchestration
platform like Kubernetes. It helps connect, secure, control, and observe microservices;

it is a smart infrastructure layer that manages communication between services.?°

Istio offers fine-grained control over traffic flow between your microservices. This includes

Routing, Load Balancing, Fault Injection, and Traffic Splitting.

Istio provides robust security features, such as Mutual TLS (mTLS), Authorization and
Authentication. Istio also allows you to define and enforce policies across all microser-

vices, such as Rate Limiting and Quota Management.?!

Istio uses a “sidecar” proxy pattern. A lightweight proxy (typically Envoy) is deployed
alongside each microservice instance. All traffic to and from the microservice flows
through this sidecar proxy. Istio's control plane manages these sidecar proxies, configur-

ing them with the desired traffic management, security, and policy rules.
Key Components of Istio:

e Pilot: The primary component for traffic management. It configures the Envoy

proxies based on the traffic rules you define

18See Gemini (2025): What is Linkerd. [8]

19See Morgan, W. (2024): Zero trust network security in Kubernetes. [25]
0See Google Cloud (2025): What Is Istio. [12]

21See Istio (2025): Security. [19]

14

e Citadel: Handles security, including certificate management for mTLS
e Galley: Manages Istio’s configuration.

Istio is most beneficial for complex microservices architectures and applications that

require high levels of security and resilience.

Istio is a powerful and feature-rich service mesh that can significantly simplify the man-
agement and security of microservices. However, it also adds complexity to the infras-

tructure, so it's important to consider whether it's the right solution.

2.9 Rancher

To easily manage the service mesh installation on a Kubernetes cluster, we can turn to
SUSE Rancher.

What is Rancher? The Rancher Labs website states it is "[...] a complete software stack
for teams adopting containers. It addresses the operational and security challenges of
managing multiple Kubernetes clusters while providing DevOps teams with integrated

tools for running containerized workloads.” 22

Using a user-friendly GUI, Rancher provides a management platform for centrally manag-
ing multiple Kubernetes clusters in Enterprise IT. It also offers application development
integration tools and robust enterprise-grade security and governance features. For op-
erations, Rancher provides integrated solutions for logging, monitoring, and auditing, as

well as many other features, such as CIS scans or a built-in service mesh.

Figure 2: Rancher Dashboard

= . SUSE o]
= e o
Welcome to Rancher ’
Lear the impre d new bilities in this version.

@
£
3
3
<
B

Kubernetes Version CPU Memory Pods

V1266 7.72 cores 25GiB 51/220

v1268 12 cores 46GiB 79/210

V1242 4 cores 23GiB 18/70

22Rancher Labs (2025): Enterprise Kubernetes Management. [32]

15

3 mTLS Exploration

3.1 Sample Voting Application

To evaluate mTLS and service mesh, we will use a simple application, the example-voting-
app from the official Docker Samples; it's a simple distributed application running across
multiple Docker containers, and we will follow Sathish Kumar's excellent post about

deploying it on Kubernetes using slightly modified deployment files.?3

The application has the following architecture:*

Figure 3: Application Architecture

voting-app result-app
Python Node.js
redis db
Redis PostgreSQL
worker
NET

It consists of the following components:
e A front-end web app

e A Redis database collecting new votes

BSee Kumar, S. (2021): Deploying a sample microservices app with Kubernetes. [21]
24See Kumar, S. (2021): Ibid. [21]

https://github.com/dockersamples/example-voting-app
https://github.com/dockersamples/example-voting-app
https://github.com/dockersamples

16

e A worker consuming votes and storing them
e A Postgres database
e A Node.js web app showing the results?®

After deploying the application, these components will run inside the Kubernetes cluster,

each as an individual pod:

Figure 4: Voting Application Components

Namespace: voting
postgres:15-alpine V1 o 102440118 2K PEENAIVIG 0200755 g i
Running 78587 redis:alpine n o 10.2440.48 753 9mins
: t-6894cfb789-cSrm dockersamples/examplevotingapp_result 1 0 10.244.0.3 755 8 mins
“Running £c9469897-4it9 dockersamples/examplevotingapp_vote 7o 10244073 23800taeIe26-10200755 g ping
Running 765456c688-nrdc dockersamples/examplevotingapp_worker mn o 102441181 S-A8eNtactF26-10200755- g

The YAML files used for the application deployment are on the paper’s Github.

Using Rancher’s security component Neuvector, we can examine the network connections

of the application components:

Figure 5: Voting Application Connections
+—oaQa=sgeBE<c

db-5b8f566...
worker-765...

result-689...

redis-5bé5...

vote-6fc94...

nginx

25See Docker (2024): Example Voting App. [3]

https://github.com/chfrank-cgn/Hausarbeit-DF/tree/main/voting

17

e Qutside communication will reach the vote front-end, initially through the AKS

ingress controller
e The vote component will connect to the Redis in-memory database
e The worker component will connect to both the Redis and the Postgres database
e The result component will read from the Postgres database

The arrows indicate the direction in which the connections were established. Without any
installed service mesh, all connections are unencrypted. The observed communication

relationships match the application documentation.

3.2 Linkerd

To install Linkerd edge-25.1.2, we follow the instructions provided by SUSE?® and the

reference documentation provided by Linkerd.?’

After installation, the Linkerd control plane adds four pods to the running cluster.

Figure 6: Linkerd Components

Namespace: linkerd

-5c4fcd6698 cr.l5d.io/linkerd/proxy:edge-25.1.2 a4 0 102440151 °Ksasent 28962-81673593 16 mins

Complete 2 criSd.io/linkerd/controller:edge-25.1.2 o1 o 102441238 NS AECNIEZBIELBICIIIS 4 g,
e criSdio/linkerd/controller-edge-25.1.2 . 0 102441199 HSAECNEIBIELBIETISIF 4 L
e or-c44cciB7c- crlSdioflinkerd/proxy-edge-25.1.2 . 0 10244183 NSAECNe2BIELBIETISIE 4o L

Using the Linkerd CLI, we inject our voting application with the service mesh information.

kubectl get -n voting deploy -o yaml \
| linkerd inject - \
| kubectl apply —-f -

Linkerd will then add a proxy sidecar to each application pod to enable the service mesh

functionality and encrypt the application traffic.

26See Dayley, B. (2021): End-to-end Encryption with Linkerd. [2]
2"See Linkerd (2025): Getting Started. [22]

18

Figure 7: Linkerd Application Connections

Sst.

result-865...
vote-588ff...

nginx redis-6999...

worker-fbd...

db-7b6789b...
nodes

external

The network diagram shows that the traffic between the vote and the Redis component
is now encrypted with TLS; this is also true for all the other network connections within
the application. The changed deployment icon indicates the added sidecar container and

the new network connection inside the pod.

In the default installation, only the traffic is encrypted. Linkerd offers the capability to

encrypt the traffic and add authentication and authorization using Linkerd policies.?®

This paper will only look at mTLS encryption and leave authentication for future inves-
tigations.

3.3 lIstio

To install Istio 1.24.1, we again follow the instructions provided by SUSE.?° As with
Linkerd, enabling mTLS for applications in the mesh will be automatic.3°

Istio requires the Rancher Monitoring application or any other Prometheus deployment

to be installed on the cluster first.3!

2See Linkerd (2025): Restricting Access To Services. [23]
29See Rancher Labs (2025): Enable Istio in the Cluster. [30]
30See Istio (2025): mTLS in Istio. [18]

31See Rancher Labs (2025): Enable Monitoring. [31]

19

After installation, the Istio adds three pods to the running cluster.

Figure 8: Istio Components

Namespace: istio-system

27 48mins

is rancher/mirrored-istio-proxyv2:1.24.1-distroless ”m o 10244.1.24
rancher/mirrored-istio-pilot:1.24.1-distroless ”m o 102441116 3 73595 5 mine
rancher/mirrored-kiali-kiali:v2.1.0 171 0 10.244.1.17 7 " Smins

For Istio, we use the auto-inject feature on the application namespace to inject our voting

application with the service mesh information.

"kubernetes_namespace": {
"name": "voting",
"labels": {
"field.cattle.io/projectId": "p-g89g2",
"istio—-injection": "enabled",

"kubernetes.io/metadata.name": "voting"

}

Istio will then add a proxy sidecar to each application pod during deployment in this

namespace to enable the service mesh functionality and encrypt the application traffic.

20

Figure 9: Istio Application Connections

+ — 2 Q

i

@ @ B O

35
redis-ShE5..
voic-SfcPd
worker-T&5...

resdlt-689_

db-5baf566_

external

prometheus.

As with Linkerd, the network diagram now shows that the traffic between the vote and
the Redis component is encrypted with TLS. Compared to Linkerd, there are a number

of additional connections due to the requirement for metrics collection with Prometheus.

Istio, like Linkerd, also offers the option to authenticate connections.

21

4 mTLS Analysis

4.1 Resource Consumption

To evaluate the two service meshes, we will look at the following Kubernetes metrics:

e Number of pods

CPU reserved

CPU used

e Memory reserved
e Memory used

We will take the values from the Rancher cluster dashboard for each experiment iteration.

Figure 10: Cluster Dashboard
Cluster Dashboard

Terraform
Provider: Azure AKS Kubernetes Version: v1.31.3 Architecture: amdé4 Created: 1.7 hours ago T | & ‘
276 Total Resources 2 Nodes 17 Deployments
Capacity
Pods CPU Memory
Used 8.40% Reserved 51.45% Reserved 15.17%
- L
Used 4.23% Used 16.45%
a [|

Here are the tabulated results from the experiment:

Table 1: Resource Consumption

’ \ Pods \ CPU Rsvd \ CPU Used \ Memory Rsvd \ Memory Used ‘

Idle 37 3.97 cores | 0.32 cores | 3.49 GB 478 GB
App Only | 42 3.97 cores | 0.34 cores | 3.49 GB 5.1GB
Linkerd 59 3.97 cores | 0.61 cores | 3.49 GB 13 GB
Istio 61 5.93 cores | 1.02 cores | 7.14 GB 13 GB

32See Kubernetes (2023): Resource Pipeline. [20]

22

4.2 Installation Time

Installing the two service meshes was not very time-consuming. We measured the time
from the beginning of the first command until after the Helm chart was finished installing

the software.

Table 2: Installation Time

’ \ Time ‘
Linkerd | 5 min
Istio 20 min

Istio requires several prerequisites, such as a running monitoring stack, which makes the

installation significantly longer.

4.3 Enabling mTLS

The documentation made enabling mTLS for our sample application straightforward,
either from the CLI or through auto-injection. We measured the time it took to enable

mTLS on the installed sample application.

Table 3: Enabling mTLS

| | Time |
Linkerd | 5 min
Istio 5 min

There was no difference in time or effort between Istio and Linkerd regarding enabling

mTLS for our sample application.

4.4 Linkerd and Istio Evaluation
From our experiment, we can derive the following conclusions:
e Istio uses more resources and takes longer to deploy
e Istio and Linkerd both offer automatic traffic encryption
Further findings include:
e Istio enables Metrics by default and includes its own observability console, Kiali.33

e Istio uses the Envoy proxy, a well-established industry standard

33See Istio (2025): Kiali. [17]

23

e Istio is available for Kubernetes clusters but can support virtual machines and bare

metal environments
e Linkerd uses its own linkerd-2 proxy
e Linkerd focuses on Kubernetes clusters only

Istio offers very powerful traffic management capabilities, allowing for fine-grained control

over how traffic flows through the service mesh.

Linkerd, on the other hand, is designed to be easier to install, configure, and manage
than Istio. Its resource consumption above shows it's more lightweight and has a more

negligible performance overhead.

In summary, Istio offers a robust and comprehensive solution for complex microservices
architectures, while Linkerd prioritizes simplicity and ease of use for less demanding envi-
ronments. For a complex microservices architecture with demanding traffic management

and security requirements, Istio might be the better choice.

Both service meshes handle application traffic encryption equally well.

4.5 QOutlook

So far, we've only looked at application traffic encryption. Both service meshes also
allow authentication policies to restrict traffic between applications and arrive more at

a zero-trust network security model.3*

Other options to explore in a future paper include Istio’s Ingress and Egress gateways,
which allow network policies to extend across clusters and include non-Kubernetes re-

sources. Similarly to Istio, Linkerd also offers a multi-cloud feature.

Both service mesh installations that we have looked at in this paper use the sidecar
injection pattern. Istio now offers with Ambient mode an option to run a service mesh

without sidecars, which could be worthwhile to explore, too.3®

34See Gemini (2025): What is Zero-Trust Networking. [9]
35See Istio (2024): Istio's Ambient Mode. [16]

24

5 Summary

There are two ways to enable mTLS for an application. One is refactoring the application
and including mutual encryption in all API calls. The other is to use a Service Mesh,

such as Linkerd or Istio, to encrypt the intra- and inter-application traffic.

In this paper, we used a sample application with Istio and Linkerd. We found that both
service meshes provide the desired functionality, and we added mTLS to the application

without requiring application modification.

Linkerd uses less overhead than Istio, but both service meshes can easily enhance a

microservice application with mutual TLS.

Other service meshes are available, most notably the Cilium Service Mesh and Consul

by Hashicorp.

We can conclude that using a service mesh is a viable alternative to refactoring the code
to encrypt application traffic. Linkerd and Istio can add mTLS to an existing application,

and we found that Linkerd uses fewer resources.
The Terraform plan files for the Kubernetes cluster used in this paper are on my GitHub.

Happy Ranching!

https://cilium.io/use-cases/service-mesh/
https://www.consul.io/
https://www.consul.io/
https://github.com/chfrank-cgn/Rancher/tree/master/aks-cluster

25

References

[1] APA. (2021) Definitions related to sexual orientation. [Access 2021-04-06].
[Online]. Available:
https://www.apa.org/pi/lgbt/resources/sexuality-definitions.pdf

[2] B. Dayley. (2021) End-to-end encryption with linkerd. [Access 2025-02-08].
[Online]. Available: https:

/ /www.suse.com/c/end-to-end-encryption-for-your-rancher-cluster-with-linkerd /

[3] Docker. (2024) Example voting app. [Access 2025-02-08]. [Online]. Available:
https://github.com/dockersamples/example-voting-app

[4] A. Dsouza and K. Martin. (2024) Kubernetes v1.30. [Access 2025-02-08]. [Online].
Available: https://kubernetes.io/blog/2024 /04 /17 /kubernetes-v1-30-release/

[5] ENTRUST. (2025) What is tls. [Access 2025-02-08]. [Online]. Available:

https://www.entrust.com /resources/learn /what-is-tls

[6] Gemini. (2025) What is cyber security. [Access 2025-02-08]. [Online]. Available:
https://gemini.google.com

[7] Gemini. (2025) What is kubernetes. [Access 2025-02-08]. [Online]. Available:
https://gemini.google.com

[8] Gemini. (2025) What is linkerd. [Access 2025-02-08]. [Online]. Available:
https://gemini.google.com

[9] Gemini. (2025) What is zero-trust networking. [Access 2025-02-11]. [Online].
Available: https://gemini.google.com

[10] L. Genau. (2022) Ein experiment in deiner abschlussarbeit durchfiihren. [Access
2025-02-08]. [Online]. Available: https://www.scribbr.de/methodik /experiment/

[11] Google Cloud. (2025) Mutual tls overview. [Access 2025-02-08]. [Online].
Available: https://cloud.google.com/load-balancing/docs/mtls

[12] Google Cloud. (2025) What is istio. [Access 2025-02-08]. [Online]. Available:
https://cloud.google.com/learn/what-is-istio

[13] Google Cloud. (2025) What is microservices architecture. [Access 2025-02-08].
[Online]. Available:

https://cloud.google.com /learn /what-is-microservices-architecture

https://www.apa.org/pi/lgbt/resources/sexuality-definitions.pdf
https://www.suse.com/c/end-to-end-encryption-for-your-rancher-cluster-with-linkerd/
https://www.suse.com/c/end-to-end-encryption-for-your-rancher-cluster-with-linkerd/
https://github.com/dockersamples/example-voting-app
https://kubernetes.io/blog/2024/04/17/kubernetes-v1-30-release/
https://www.entrust.com/resources/learn/what-is-tls
https://gemini.google.com
https://gemini.google.com
https://gemini.google.com
https://gemini.google.com
https://www.scribbr.de/methodik/experiment/
https://cloud.google.com/load-balancing/docs/mtls
https://cloud.google.com/learn/what-is-istio
https://cloud.google.com/learn/what-is-microservices-architecture

26

[14] C. Hamilton. (2024) What is a service mesh. [Access 2025-02-08]. [Online].

Available: https://www.dynatrace.com/news/blog/what-is-a-service-mesh /

[15] Internet Society. (2025) Tls basics. [Access 2025-02-08]. [Online]. Available:
https://www.internetsociety.org/deploy360/tls/basics/

[16] Istio. (2025) Istio's ambient mode. [Access 2025-02-11]. [Online]. Available:
https://istio.io/latest/blog/2024 /ambient-reaches-ga/

[17] Istio. (2025) Kiali. [Access 2025-02-11]. [Online]. Available:
https://istio.io/latest/docs/ops/integrations/kiali/

[18] Istio. (2025) mtls in istio. [Access 2025-02-11]. [Online]. Available:
https://istio.io/latest/blog/2023/secure-apps-with-istio /#mtls-in-istio

[19] Istio. (2025) Security. [Access 2025-02-08]. [Online]. Available:
https://istio.io/latest/docs/concepts/security/

[20] Kubernetes. (2025) Resource pipeline. [Access 2025-02-10]. [Online]. Available:
https://kubernetes.io/docs/tasks/debug/debug-cluster /resource-metrics-pipeline/

[21] S. Kumar. (2021) Deploying a sample microservices app with kubernetes. [Access
2025-02-08]. [Online]. Available:
https:/ /www.sysspace.net/post/deploying-docker-voting-app-with-kubernetes

[22] Linkerd. (2025) Getting started. [Access 2025-02-11]. [Online]. Available:
https://linkerd.io/2.17 /getting-started/

[23] Linkerd. (2025) Restricting access to services. [Access 2025-02-11]. [Online].
Available: https://linkerd.io/2.17 /tasks/restricting-access/

[24] Linkerd. (2025) Why linkerd. [Access 2025-02-08]. [Online]. Available:
https://linkerd.io/

[25] W. Morgan. (2024) Zero trust network security in kubernetes. [Access
2025-02-08]. [Online]. Available:
https://buoyant.io/zero-trust-in-kubernetes-with-linkerd

[26] NIS 2 Compliant.org. (2024) Comprehensive guide to the nis 2 directive. [Access
2025-02-08]. [Online]. Available: https://nis2compliant.org/

[27] NIST. (2011) Glossary. [Access 2025-02-08]. [Online]. Available:
https://csrc.nist.gov/glossary /term /tls

[28] K. Patil. (2023) Why mutual tls is critical. [Access 2025-02-08]. [Online].

https://www.dynatrace.com/news/blog/what-is-a-service-mesh/
https://www.internetsociety.org/deploy360/tls/basics/
https://istio.io/latest/blog/2024/ambient-reaches-ga/
https://istio.io/latest/docs/ops/integrations/kiali/
https://istio.io/latest/blog/2023/secure-apps-with-istio/#mtls-in-istio
https://istio.io/latest/docs/concepts/security/
https://kubernetes.io/docs/tasks/debug/debug-cluster/resource-metrics-pipeline/
https://www.sysspace.net/post/deploying-docker-voting-app-with-kubernetes
https://linkerd.io/2.17/getting-started/
https://linkerd.io/2.17/tasks/restricting-access/
https://linkerd.io/
https://buoyant.io/zero-trust-in-kubernetes-with-linkerd
https://nis2compliant.org/
https://csrc.nist.gov/glossary/term/tls

27

Available: https://www.appviewx.com/blogs/

why-mutual-tls-mtls-is-critical-for-securing-microservices-communications-in-a-service-mesh /

[29] S. Rahmstorf, Climate and Weather at 3 Degrees More. Cham: Springer Nature
Switzerland, 2024, pp. 3-17.

[30] Rancher Labs. (2025) Enable istio in the cluster. [Access 2025-02-11]. [Online].
Available: https://ranchermanager.docs.rancher.com/how-to-guides/

advanced-user-guides /istio-setup-guide/enable-istio-in-cluster

[31] Rancher Labs. (2025) Enable monitoring. [Access 2025-02-11]. [Online]. Available:
https://ranchermanager.docs.rancher.com/how-to-guides/advanced-user-guides/

monitoring-alerting-guides/enable-monitoring

[32] Rancher Labs. (2025) Enterprise kubernetes management. [Access 2025-02-08].
[Online]. Available: https://rancher.com/

[33] A. Saguy and J. Williams. (2020) Why we should all use they/them pronouns.
[Access 2025-02-08]. [Online]. Available: https://blogs.scientificamerican.com/

voices/why-we-should-all-use-they-them-pronouns/

https://www.appviewx.com/blogs/why-mutual-tls-mtls-is-critical-for-securing-microservices-communications-in-a-service-mesh/
https://www.appviewx.com/blogs/why-mutual-tls-mtls-is-critical-for-securing-microservices-communications-in-a-service-mesh/
https://ranchermanager.docs.rancher.com/how-to-guides/advanced-user-guides/istio-setup-guide/enable-istio-in-cluster
https://ranchermanager.docs.rancher.com/how-to-guides/advanced-user-guides/istio-setup-guide/enable-istio-in-cluster
https://ranchermanager.docs.rancher.com/how-to-guides/advanced-user-guides/monitoring-alerting-guides/enable-monitoring
https://ranchermanager.docs.rancher.com/how-to-guides/advanced-user-guides/monitoring-alerting-guides/enable-monitoring
https://rancher.com/
https://blogs.scientificamerican.com/voices/why-we-should-all-use-they-them-pronouns/
https://blogs.scientificamerican.com/voices/why-we-should-all-use-they-them-pronouns/

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Cyber Defense
	Micro-Service Applications
	TLS and mTLS
	Kubernetes
	Research Question & Method
	Gender-neutral Pronouns
	Climate Emergency

	TLS & mTLS
	TLS
	mTLS
	Microservice Architecture
	Service Mesh
	Benefits of a Service Mesh
	Benefits of mTLS
	Linkerd
	Istio
	Rancher

	mTLS Exploration
	Sample Voting Application
	Linkerd
	Istio

	mTLS Analysis
	Resource Consumption
	Installation Time
	Enabling mTLS
	Linkerd and Istio Evaluation
	Outlook

	Summary
	References

