

FOM Hochschule für Oekonomie und Management

Hochschulzentrum Köln

Wirtschaftsinformatik

Observability for Micro-

Service Architectures
Software Engineering, Salah Zayak, WS 20

Christian Frank (#473088)

November 17, 2020

ChilledCow: lofi hip hop radio - beats to relax/study to

This work is licensed under the Creative Commons Attribution 4.0 International License.

To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ or

send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

II

Table of contents

Table of contents ..II

List of Figures ...III

List of Abbreviations .. IV

1 Introduction ..5

1.1 Observability ...5

1.2 Pronouns ...5

1.3 Inclusive Naming ..5

2 Observability ..6

2.1 Logging & Tracing ..6

2.2 Monitoring ...6

2.3 Observability ...6

3 Available Tools ..8

3.1 Kubernetes ..8

3.2 Syslog ..9

3.3 Splunk, Icinga, Nagios ... 10

3.4 Elasticsearch, FluentD, FluentBit, FireLens.. 10

3.5 Prometheus, Loki, Tempo ... 10

3.6 AWS Dashboards, Thundra .. 11

3.7 Dynatrace ... 11

3.8 Pixie .. 11

4 Using Pixie to observe .. 12

4.1 Installing Pixie .. 12

4.2 Sample cluster telemetry data .. 12

4.3 Sample application telemetry data ... 14

5 Summary .. 17

References ... 18

III

List of Figures

Figure 1 – Kubernetes Cluster ... 8

Figure 2 – Pixie Node Stats ... 13

Figure 3 – Pixie Http Data .. 14

Figure 4 – Wordpress Application Stats ... 15

Figure 5 – Wordpress Inbound Traffic .. 15

Figure 6 – Wordpress Slow Requests .. 16

IV

List of Abbreviations

AWS Amazon Web Services
CNCF Cloud Native Computing Foundation
ELT Extract, Load, Transform
ETL Extract, Transform, Load
HTTP Hypertext Transfer Protocol
ITIL Information Technology Infrastructure

Library
ITOM IT Operations Management
K8s Kubernetes
REST Representational State Transfer
SIEM Security Information and Event

Management
stdout Standard Output (Unix, Linux)

5

1 Introduction

1.1 Observability

As software architecture transitions more and more from monoliths to a distributed

model, based on micro services, the ability to trace and observe the state of an

application across multiple instances and components becomes more and more

important. Traditional approaches, such as logging to a file, become more difficult if you

do not have a single place anymore to look for messages, but potentially hundred

different places all over the underlying platform.

In this paper, we want to look at observability for micro-service architectures and start

with a general introduction to observability itself.

1.2 Pronouns

In time of a global pandemic, it is especially important to be mindful about hate speech

and other forms of offensive communication – this includes taking care about gender

inclusivity. "The universal singular they is inclusive of people who identify as male,

female or nonbinary."1 Throughout this text, I will make an attempt to use gender neutral

language. To quote Jane Roper on WBUR, “They Is Here to Stay. Get Over It.”2 Also,

should you ever misgender a person, One Medical has some simple advice: Apologize

and correct theyself.3

1.3 Inclusive Naming

In addition to this, effort is underway to remove offensive language from code, the

beginning of a word list4 is available and will be discussed in more detail within CNCF

at the upcoming conferences.

1 Saguy, Abigail and Williams, Juliet (Scientific American, 2019) Why we should all use they/them pronouns
2 Roper, Jane (WBUR, 2019): They Is Here to Stay. Get Over It.
3 See One Medical (Instagram, 2020): Navigating Pronouns 101
4 See Inclusive Naming (Inclusive Naming Initiative, 2020): Word replacement list

6

2 Observability

2.1 Logging & Tracing

Logging, in its most simple form involves writing activity records to stdout. As an

example, an application that reads a record from a database could log these activities:

• Database opened

• Record queried and retrieved

• Database closed

This would allow an external observer to watch what the application is doing and, in case

of an error, check where the error might have occurred. To further this, the application

could increase its verbosity by including trace information, such as the SQL query string

in the example above, usually toggled by a flag. In micro-service architectures, this

simple form of logging has made a resurgence and is now the standard behavior for

containerized applications.

2.2 Monitoring

Monitoring on the other hand usually describes the activity of looking at available

metrics, either from the application or the operating system. Metrics could be CPU

consumption, packets sent and received, or in our example, the number of records

retrieved from the database. Unlike logging, which is an active feature of the application,

monitoring generally involves the use of an external tool to query the metrics and display

them. We will have a look at some common tools in the next chapter.

2.3 Observability

Observability in Software Engineering seems to be a rather new feature in application

design. The term itself is not new, it originated in the world of Engineering.

So, what is Observability? Peter Waterhouse defines it on the New Stack as follows:

“Basically, and as the definition states, it’s a measure of how well internal states of a

7

system can be inferred from knowledge of its external outputs. So, in contrast to

monitoring, which is something we actually do, observability (as a noun), is more a

property of a system.”5

As a property of the application itself, it is something that must be included in the

application design from the very beginning. Arun Chandrasekaran recommends for

Gartner: “Developers are more focused on the functional aspects of these application

containers than on the operational requirements of monitoring them […] Developers

should instead focus on instrumenting their applications to enable observability.”6

Instrumentation could include writing meaningful log messages, expose meaningful

metrics, and provide status information, for example from an internal state machine.

In the next chapter, we will look at a set of tools to help us with observing micro-service

applications.

5 Waterhouse, Peter (The New Stack, 2018): Monitoring and Observability
6 Chandrasekaran, Arun (Gartner,2020): Best Practices for Running Containers and Kubernetes in Production

8

3 Available Tools

3.1 Kubernetes

The most used common platform to run micro-service on is Kubernetes. Kubernetes, or

K8s in short, is an orchestrator for various container run-time systems, spread out over

several nodes. A collection of nodes under common orchestration is generally referred

to as a cluster.

Figure 1 – Kubernetes Cluster

Much like its underlying collection of nodes, Kubernetes itself is also a distributed

application. In a Kubernetes cluster we are thus looking at a distributed system

orchestrating distributed applications. Furthermore, micro-service applications tend to

be stateless and ephemeral, meaning that operational information will vanish after

execution. Charlie Fiskeaux summarizes this for the New Stack as follows: “Since

observability is the ability to infer the state of a system through knowledge of that

system’s outputs, it sure seems like Kubernetes is a system with minimal observability.”7

7 Fiskeaux, Charlie (The New Stack, 2020): Why Monitoring Kubernetes Is so Challenging

9

This is not only an issue for troubleshooting, but also for security – it is quite important

to ingest all available information from a Kubernetes cluster into your SIEM

environment.8

For the rest of this paper, we will focus on Kubernetes as the execution platform and

look at the available tools from that perspective.

3.2 Syslog

Syslog is a tool to collect log messages from applications and the underlying operating

system itself, either locally or remotely on a central syslog server. Syslog is an integral

part of all Unix and Linux systems and described in RFCs 3164 and 5424. Log messages

are transported and store as plain text. A typical syslog message for an error might look

like this:

On Kubernetes, platform logs tend to be quite verbose. An hour’s worth of logs on a

cluster without any active application can easily exceed 200 Megabytes:

8 See Cloudberry Engineering (Cloudberry Engineering, 2020): A Practical Introduction to Container Security

node_13.68.140.156_01.log: Nov 8 13:03:44 13.68.140.156 az-bff2b1: log:time="2020-11-

08T13:03:41Z" level=info msg="Received error running agent tracker loop. Retrying in 5

seconds." error="rpc error: code = Unavailable desc = last connection error: connection

error: desc = "transport: Error while dialing dial tcp 10.43.187.2:50400: connect:

connection refused""

-rw-r--r-- 1 cfrank ewscom 57718294 Nov 8 16:02 node_13.68.140.156_12.log

-rw-r--r-- 1 cfrank ewscom 43436469 Nov 8 16:01 node_40.114.115.34_12.log

-rw-r--r-- 1 cfrank ewscom 59959679 Nov 8 16:00 node_40.121.50.147_12.log

10

3.3 Splunk, Icinga, Nagios

Back in the time, when ITIL was still a thing, several ITOM tools were created to cope

with the huge amount of log data of traditional IT systems, Splunk9, Icinga10 and

Nagios11, to name a few. Goal of these tools was not only to ingest the log data, but also

store them in an accessible format and perform initial correlation between the messages,

to support automated actions (ETL principle).

3.4 Elasticsearch, FluentD, FluentBit, FireLens

With distributed systems, the amount of log data increased dramatically. At the same

time, a new discipline emerged, Data Science. Applied to the management of log data,

this means that we would first ingest all log data in an unstructured way and perform the

analysis and correlation afterwards (ELT principle). The most used data lake for log data

is Elasticsearch12, and log data ingest can be performed with FluentD13, FluentBit14 or

FireLens15.

3.5 Prometheus, Loki, Tempo

Applying the same big data techniques for monitoring data and metrics led to the use of

time-series database for storage. The most prominent tool in that category is

Prometheus16, which has become the de-facto standard for monitoring Kubernetes

clusters. Recently, the ingestion of log files has been added to the time-series database

and a new Tool, Tempo, was created to support correlation.17

Efforts are underway to establish an open standard for metrics, based on Prometheus.18

9 See Splunk (Splunk, 2020): The Data-to-Everything Platform
10 See Icinga (Icinga, 2020): Inspect your Entire Infrastructure
11 See Nagios (Nagios, 2020): The Industry Standard in IT Infrastructure Monitoring
12 See Elasticsearch (Elasticsearch BV, 2020): The heart of the free and open Elastic Stack
13 See FluentD (FluentD Project, 2020): Build Your Unified Logging Layer
14 See FluentBit (Treasure Data, 2020): Cloud Native Log Forwarder
15 See FireLens (Amazon Web Services, 2020): Custom Log Routing
16 See Prometheus (Prometheus, 2020): From metrics to insight
17 See Hahn, Silke (Heise Medien GmbH & Co. KG, 2020): Grafana … neuem Tool Tempo und mit Loki 2.0
18 See OpenObservability (OpenObservability, 2020): Evolving the Prometheus format into a standard

11

3.6 AWS Dashboards, Thundra

One way of visualizing application state information is with operational dashboards19.

One example of such a Dashboard on AWS would be the Thundra Application

Observability and Security Platform.20

3.7 Dynatrace

Another tool targeted at Enterprise IT is Dynatrace, it combines metrics, logs and traces

with topology information and AI-based analysis.

3.8 Pixie

A fairly new tool for observability is Pixie, which bills itself as “Instantly troubleshoot your

applications on Kubernetes. No instrumentation. Debug with scripts. All inside

Kubernetes.”21 Pixie aims to combine log data with telemetry (monitoring) data.

In addition to all other data inputs, telemetry plays an important role in distributed

tracing.22

In the following chapter we will focus on Pixie and have a look at a couple of sample

telemetry screenshots.

19 See Campbell, Matt (InfoQ, 2020): AWS Publishes Best Practices Guide for Operational Dashboards
20 See Thundra (Amazon Web Services, 2020): Mastering Observability on the Cloud
21 Pixie Labs (Pixie Labs,2020): Instantly troubleshoot your applications on Kubernetes
22 See Parker, Austin and Spoonhower, Daniel (O’Reilly Media, 2020): Distributed Tracing in Practice

12

4 Using Pixie to observe

4.1 Installing Pixie

Pixie is currently in public Beta, there is not yet any information available on pricing and

licensing options.

Pixie runs on Kubernetes; it can be co-located with the application that should be

observed and will be installed via Helm:

After installation, these pods should be running:

Pixie’s vizier will communicate with the Pixie Labs cloud servers, from where the user

interface can be accessed.

4.2 Sample cluster telemetry data

After installation, let us first look at some cluster-level telemetry. One important

information is the health of the overall platform:

helm repo add pixie https://pixie-helm-charts.storage.googleapis.com

helm install pixie pixie/pixie-chart --set deployKey=xxxxx-xxxxx-xxxxxx

NAME: pixie

LAST DEPLOYED: Sun Nov 8 07:27:31 2020

NAMESPACE: default

STATUS: deployed

REVISION: 1

TEST SUITE: None

NAME READY STATUS RESTARTS AGE

etcd-0 1/1 Running 0 38m

kelvin-cb5b59c6b-pxb2q 1/1 Running 3 54m

nats-operator-94865bc4d-jkw49 1/1 Running 2 54m

pl-nats-1 1/1 Running 0 54m

vizier-certmgr-55fbc6b59c-bt7wq 1/1 Running 0 54m

vizier-cloud-connector-7b57dc6d5b-dk2jk 1/1 Running 5 53m

vizier-metadata-6d4fc6cd99-5c2kt 1/1 Running 12 54m

vizier-pem-n99ct 1/1 Running 4 54m

vizier-pem-vk8nb 1/1 Running 4 54m

vizier-pem-z7xrp 1/1 Running 4 54m

vizier-proxy-8cc85b74-vfr2x 1/1 Running 0 54m

vizier-query-broker-86c79b56cf-dhmxm 1/1 Running 6 54m

13

Figure 2 – Pixie Node Stats

The cluster has the standard three-node layout, and we can easily check on the key

metrics, CPU usage, disk usage, and network traffic.

For a typical micro-service architecture, most application traffic will be based on REST,

so the next important metric to look at is the HTTP data:

14

Figure 3 – Pixie Http Data

Without any instrumentation, we can easily see platform wide GET and POST

operations, together with their results.

4.3 Sample application telemetry data

To look at sample application, we use the “Hello World” of Kubernetes and install a

vanilla WordPress instance from its official Helm chart. Again, without any

instrumentation, we immediately get a display on the state of our application:

15

Figure 4 – Wordpress Application Stats

Our application is processing HTTP requests without any error, which in this case, is not

entirely unexpected, as it was installed for demonstration purposes only. The key metrics

here are Latency and Throughput, good indicators for the state and health of our

application.

In closing, there are two metrics particularly useful for the state of a distribute application.

The first metric is the inbound traffic reaching our application, grouped by source

address and latency:

Figure 5 – Wordpress Inbound Traffic

16

The second metric is showing details about slow requests, which more often than not

are an issue for customer support:

Figure 6 – Wordpress Slow Requests

By looking at Request and Response Body, we can help identify the underlying issue by

correlating this with the corresponding log or trace messages.

17

5 Summary

We have seen that is quite important to design your application with observability in

mind. Incorporating observability into your application design from the start will greatly

benefit operations and troubleshooting in the long run and has been established as good

practice in Software Engineering.

If you have the opportunity, install a specialized tool, such as Pixie, to enable operations

to troubleshoot your application by having easy access to telemetry and application state

information.

We believe that together with the (system) logs, a tool like Pixie can answer almost all

questions you might have during troubleshooting.

Happy observing!

18

References

Campbell, Matt (InfoQ, 2020): AWS Publishes Best Practices Guide for Operational Dashboards
<https://www.infoq.com/news/2020/10/aws-dashboards/> (2020-10-31) [Access: 2020-11-14]

Cloudberry Engineering (Cloudberry Engineering, 2020): A Practical Introduction to Container
Security <https://cloudberry.engineering/article/practical-introduction-container-security/>
(2020-11-01) [Access: 2020-11-14]

Chandrasekaran, Arun (Gartner,2020): Best Practices for Running Containers and Kubernetes in
Production <https://www.gartner.com/doc/reprints?id=1-1ZNMNAKC&ct=200811&st=sb> (2020-
08-04) [Access: 2020-10-19]

Elasticsearch (Elasticsearch BV, 2020): The heart of the free and open Elastic Stack
<https://www.elastic.co/elasticsearch/> (2020) [Access: 2020-11-14]

FireLens (Amazon Web Services, 2020): Custom Log Routing
<https://docs.aws.amazon.com/AmazonECS/latest/developerguide/using_firelens.html> (2020)
[Access: 2020-11-14]

Fiskeaux, Charlie (The New Stack, 2020): Why Monitoring Kubernetes Is so Challenging and How to
Manage It <https://thenewstack.io/why-monitoring-kubernetes-is-so-challenging-and-how-to-
manage-it/> (2020-11-06) [Access: 2020-11-14]

FluentBit (Treasure Data, 2020): Cloud Native Log Forwarder <https://fluentbit.io/> (2020) [Access:
2020-11-14]

FluentD (FluentD Project, 2020): Build Your Unified Logging Layer <https://www.fluentd.org/>
(2020) [Access: 2020-11-14]

Hahn, Silke (Heise Medien GmbH & Co. KG, 2020): Grafana veranschaulicht Logs mit dem neuem
Tool Tempo und mit Loki 2.0 <https://www.heise.de/news/Grafana-veranschaulicht-Logs-mit-
dem-neuem-Tool-Tempo-und-mit-Loki-2-0-4939951.html> (2020-10-27) [Access: 2020-11-14]

Icinga (Icinga, 2020): Inspect your Entire Infrastructure <https://icinga.com/> (2020) [Access:
2020-11-14]

Inclusive Naming (Inclusive Naming Initiative, 2020): Word replacement list
<https://inclusivenaming.org/word-list/> (2020) [Access: 2020-11-14]

Nagios (Nagios, 2020): The Industry Standard in IT Infrastructure Monitoring
<https://www.nagios.com/> (2020) [Access: 2020-11-15]

19

One Medical (Instagram, 2020): Navigating Pronouns 101
<https://www.instagram.com/p/CBqwZzmhKWQ/?igshid=1lc9nrdjplewq> (2020-06-20) [Access:
2020-11-14]

OpenObservability (OpenObservability, 2020): Evolving the Prometheus exposition format into a
standard
<https://raw.githubusercontent.com/OpenObservability/OpenMetrics/master/OpenMetrics.md>
(2020-11-14) [Access: 2020-11-14]

Parker, Austin and Spoonhower, Daniel (O’Reilly Media, 2020): Distributed Tracing in Practice
<https://go.lightstep.com/rs/260-KGM-472/images/distributed-tracing-in-practice-lightstep.pdf>
(2020-04-13) [Access: 2020-10-08]

Pixie Labs (Pixie Labs,2020): Instantly troubleshoot your applications on Kubernetes
<https://pixielabs.ai/> (2020) [Access: 2020-11-14]

Prometheus (Prometheus, 2020): From metrics to insight <https://prometheus.io/> (2020)
[Access: 2020-11-14]

Roper, Jane (WBUR, 2019): They Is Here to Stay. Get Over It.
<https://www.wbur.org/cognoscenti/2019/08/13/gender-pronouns-jane-roper> (2019-08-13)
[Access: 2020-11-14]

Saguy, Abigail and Williams, Juliet (Scientific American, 2019): Why we should all use they/them
pronouns <https://blogs.scientificamerican.com/ voices/why-we-should-all-use-they-them-
pronouns/> (2019-04-11) [Access: 2020-05-25]

Splunk (Splunk, 2020): The Data-to-Everything Platform <https://www.splunk.com/> (2020)
[Access: 2020-11-14]

Thundra (Amazon Web Services, 2020): Mastering Observability on the Cloud: New Requirements
Require a New Approach <https://pages.awscloud.com/GLOBAL-partner-DL-thundra-ebook-2020-
learn.html> (2020) [Access: 2020-10-20]

Waterhouse, Peter (The New Stack, 2018): Monitoring and Observability — What is the Difference
and Why Does It Matter? <https://thenewstack.io/monitoring-and-observability-whats-the-
difference-and-why-does-it-matter/> (2018-04-16) [Access: 2020-11-14]

