Rancher CNI Usage
Recommendation

Christian Frank (#473088)
April 5, 2025

Hochschule

Data Science & Security Analytics
Prof. Dr. Alexander Lutz
FOM - Hochschule fiir Oekonomie & Management
SS 2024

This paper will perform a secondary analysis of Kubernetes CNI perfor-
mance data, focusing on the CNIs available in the Rancher Kubernetes En-
gine. It aims to make a usage recommendation to support the selection of
the CNI when installing a new cluster.

OMOoN

This work is licensed under the Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ or
send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Contents

List of Figures

List of Tables

List of Abbreviations

1 Introduction

1.1 Original Article
1.2 Kubernetes
1.3 Container Network Interfaces
1.3.1 Flannel
1.3.2 Calico
1.3.3 Canal
1.3.4 Cilium,
1.4 Research Question
1.5 Gender-neutral Pronouns
1.6 Climate Emergency

2 Data Sources and Research Methods

2.1 Original Data.
2.2 DataWrangling
2.2.1 2020 and 2021 - Adding Header information
2.2.2 2024 - Data Transformation
23 What'sNotintheData
2.4 Data Exploration Method 0L
25 Tools
3 Data Exploration
3.1 Datalayout
3.2 2020
3.21 Flannel
3.22 Calico
3.23 Canal
324 Cilium
3.3 2021 . ..o
3.3.1 Flannel
3.3.2 Calico
3.3.3 Canal
334 Cilium
3.4 2024 . .
3.4.1 Flannel
3.42 Calico
3.43 Canal

34.4

4 Data Analysis

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Performance Considerations
Server CPU Usage
Server Memory Consumption
Pod-to-Pod Bandwidth
Pod-to-Server Bandwidth
Weighted Ranking
Results
Outlook

5 Summary

References

30
30
30
30
31
32
32
33
34

36
37

List of Figures

1 Kubernetes 1.30 Release Logo 5
2 2024 Flannel Results (GitHub) 10
3 Flannel Pod-to-Pod Bandwidth 18
4 Flannel Pod-to-Server Bandwidth 19

List of Tables

O ~NOOoT A~ WD

=== == O
DO NN =R O

2020 CNI Versions 11
2021 CNI Versions 12
2024 CNI Versions 12
Median Server CPU Usage, . 30
Server CPU Usage Ranking 30
Median Server Memory Consumption 31
Server Memory Consumption Ranking 31
Median Pod-to-Pod Bandwidth 31
Pod-to-Pod Bandwidth Ranking 32
Median Pod-to-Server Bandwidth 32
Pod-to-Server Bandwidth Ranking 32
Table generated by Excel2LaTeX from sheet 2020 33
Table generated by Excel2LaTeX from sheet 2021 33

Table generated by Excel2LaTeX from sheet 2024 34

VI

List of Abbreviations

APA
BGP
CNCF
CNI
CPU
Csv
eBPF
EDA
IP
K8s
KPI
LAN
MHA
MTU
NIC
NIST
RKE
TCP
TSV
UDP

VXLAN

American Psychological Association
Border Gateway Protocol

Cloud Native Computing Foundation
Container Network Interface

Central Processing Unit
Comma-Separated Values

extended Berkeley Packet Filter
Exploratory Data Analysis

RFC 791 Internet Protocol
Kubernetes

Key Performance Indicator

Local Area Network

My Hero Academia

Maximum Transmission Unit
Network Interface Card

National Institute of Standards and Technology
Rancher Kubernetes Engine
Transmission Control Protocol
Tab-Separated Values

User Datagram Protocol

Virtual Extensible LAN

1 Introduction

1.1 Original Article

In April 2024, Alexis Ducastel of InfraBuilder published their benchmark results for Ku-
bernetes network plugins.® This article continues a series of published benchmarks they
had published in the years before. | obtained permission from Alexis Ducastel to use the

historical benchmark data to explore the evolution of Kubernetes networking over time.

1.2 Kubernetes

Kubernetes, or K8s, is an open-source system designed to automate deploying, scaling,
and managing applications built using containers. Containers package software in a
standardized unit that includes all dependencies the software needs to run, like code,

libraries, and settings. This makes them portable and efficient.

Kubernetes helps manage these containers by grouping them logically. This makes it
easier to track and manage complex applications with many containers. The original
inspiration for Kubernetes came from Google's internal container orchestration system,

Borg.?

In 2015, Kubernetes reached the 1.0 milestone, and in 2016, it was donated to the
CNCEF; the current release of Kubernetes is 1.30.

"For the people who built it, for the people who release it, and for the furries who keep
all of our clusters online, we present to you Kubernetes v1.30: Uwubernetes, the cutest

release to date.”3

Figure 1: Kubernetes 1.30 Release Logo

1See Ducastel, A. (2024): Benchmark results of Kubernetes network plugins. [6]
2See Gemini (2024): What is Kubernetes. [11]
3Dsouza, A. (2024): Kubernetes 1.30. [5]

https://www.linkedin.com/in/alexisducastel/
https://infrabuilder.com/

1.3 Container Network Interfaces

CNI plugins are essential components of Kubernetes clusters and are responsible for
managing network connectivity between pods. They provide the underlying infrastructure
for pod communication within and outside the cluster. Kubernetes offers a variety
of CNI plugins, each with distinct features and performance characteristics, allowing

administrators to select the optimal solution based on specific cluster requirements.*

In this paper, we will focus on the four CNI plugins available for the SUSE Rancher

Kubernetes Engine:®
e Flannel
e Calico
e Canal

e Cilium

1.3.1 Flannel

Flannel is the oldest CNI in the list and is a well-established overlay network. It provides a
Layer 3 network fabric for Kubernetes clusters. The simple and flat nature of the overlay
network allows for easy troubleshooting. Its most commonly used transport backend is
VXLAN.®

1.3.2 Calico

Calico by Tigera uses IP routing and iptables for its data path and can create separate
networks for various workloads. Calico is not a flat network, so it uses BGP to establish
the routes between the nodes in a given Kubernetes cluster. Calico provides network

policies and supports a variety of data planes.

1.3.3 Canal

Canal, also by Tigera, combines the Calico routing and policy engine with the Flannel
transport. For RKE, Canal is the default CNI as it offers a VXLAN transport backend

and network policies.

“See Kubernetes (2024): Network Plugins. [3]
See SUSE (2024): Network Options. [20]
®See Frank, C. (2020): Behind the scenes of Flannel. [7]

https://www.suse.com/
https://github.com/flannel-io/flannel
https://www.tigera.io/project-calico/
https://docs.tigera.io/calico/latest/getting-started/kubernetes/flannel/install-for-flannel#installing-calico-for-policy-and-flannel-aka-canal-for-networking
https://github.com/cilium/cilium
https://www.tigera.io/

1.3.4 Cilium

Cilium by Isovalent and now Cisco is the newest entry in the list of available CNlIs for
RKE. Cilium uses a data plane based on eBPF and focuses on large networks and high

network throughput.

1.4 Research Question

This paper will use data exploration techniques to guide which CNI to select for RKE2
based on current and historical performance data.” To deliver guidance, we will focus

on bandwidth, CPU usage, and memory consumption.

1.5 Gender-neutral Pronouns

Our society is becoming more open, inclusive, and gender-fluid, and now | think it's time
to think about using gender-neutral pronouns in scientific texts, too. Two well-known
researchers, Abigail C. Saguy and Juliet A. Williams, both from UCLA, propose to use
the singular they/them instead: " The universal singular they is inclusive of people who
identify as male, female or nonbinary.”® The aim is to support an inclusive approach in

science through gender-neutral language.

We'll attempt to follow this suggestion in this paper, and | invite all our readers to do

the same for future articles. Thank you!

If you're not sure about the definitions of gender and sex and how to use them, have a

look at the definitions® by the American Psychological Association.

1.6 Climate Emergency

As Professor Rahmstorf puts it: " Without immediate, decisive climate protection mea-
sures, my children currently attending high school could already experience a 3-degree
warmer Earth. No one can say exactly what this world would look like—it would be too
far outside the entire experience of human history. But almost certainly, this earth would

be full of horrors for the people who would have to experience it."°

"See Tukey, J.W. (1977): Exploratory data analysis. [21]

8Saguy, A. (2020): Why We Should All Use They/Them Pronouns. [18]
9See APA (2021): Definitions Related to Sexual Orientation. [1]

0 Rahmstorf, A. (2024): Climate and Weather at 3 Degrees More. [17]

https://isovalent.com/
https://www.cisco.com/
https://ebpf.io/

2 Data Sources and Research Methods

2.1 Original Data

For this paper’'s data analysis and visualization, we will use raw benchmark data from
the original author's Github pages for the years 2024, 2021, and 2020 and perform a
secondary data analysis.!* We will use the previously collected measurements instead of

gathering new data to answer our research question.

In their 2024 article, Alexis Ducastel posed the same question and recommended Cil-
ium as the preferred CNI for RKE2. Their conclusion was based on a combination of

functionality and performance.

2.2 Data Wrangling

To support the secondary analysis, we had to convert the original raw data into a standard
format. The CSV format is widely supported in statistical analysis, so we chose this as
our target format; most major programming languages (e.g., Python, R) and tools (e.g.,
Tableau, Excel) support CSV natively.

2.2.1 2020 and 2021 - Adding Header information

The original raw data for 2020 and 2021 are in tab-separated files without headers, split
by CNI; they do not contain header information.

From the spreadsheets with overall aggregated results that are available on the author’s
Github, we added the following headers to the TSV Files and subsequently converted
the data files to CSV format:

e smem - "Server Memory (MB)"

e scpu - "Server CPU (%)”

e cmem - " Client Memory (MB)”

e ccpu - "Client CPU (%)”

e tcpbw - "TCP Pod to Pod Bandwidth (Mbit/s)"
e tcpsm - " Server Memory (MB)”

e tcpsc - "Server CPU (%)"

1See Jillier, W. (2021): A Guide To Secondary Data Analysis. [12]

https://github.com/InfraBuilder/benchmark-k8s-cni-2024-01
https://github.com/InfraBuilder/benchmark-k8s-cni-2021-05
https://github.com/InfraBuilder/benchmark-k8s-cni-2020-08

tcpem - Client Memory (MB)”

tcpec - " Client CPU (%)”

udpbw - "UDP Pod to Pod Bandwidth (Mbit/s)"
udpsm - " Server Memory (MB)”

udpsc - " Server CPU (%)"

udpcm - " Client Memory (MB)”

udpcc - " Client CPU (%)"

tcpebw - " TCP Pod to Service Bandwidth (Mbit/s)"
tcpesm - " Server Memory (MB)”

tcpesc - " Server CPU (%)”

tcpecm - " Client Memory (MB)”

tcpecc - " Client CPU (%)”

udpebw - "UDP Pod to Service Bandwidth (Mbit/s)"
udpesm - " Server Memory (MB)”

udpesc - " Server CPU (%)"

udpecm - " Client Memory (MB)”

udpecc - " Client CPU (%)"

We also removed the discovered MTU size from the measurements, as it was a constant

value across observations and was not present in the 2024 data.

2.2.2 2024 - Data Transformation

The original raw data for 2024 is formatted as Prometheus gauges, and the data sets

are also split by CNI.

https://prometheus.io/docs/concepts/metric_types/#gauge

10

Figure 2: 2024 Flannel Results (GitHub)

= O InfraBuilder / benchmark-k8s-cni-2024-01

Q Type Otosearch - 0ne@

<> Code (O Issues 1 1 Pullrequests (® Actions [0 Projects (@ Security |~ Insights
[D Files benchmark-k8s-cni-2024-01/ results / flannel / results.prom (&
& oxln Gl 4 AlexisDucastel Add flannel for reference as simple CNI 8469146 months age XD History
Q Gotofile e

| code | Blame 222 1lines (222 loc) - 21.8 KB Raw D & 2 - @

[sum-server.stdout
benchmark_cpu_seconds{id="flannel”, run="1", test="idle", role="client",mode="systen"} 6.913800 1764667200000

[sum.results 1
2 benchmark_cpu_seconds {1d="flannel”, run="1", test="1dle", role="client",mode="user"} ©.818666 1704067200600
O sus-client.cmd benchmark_mem_bytes{id="flannel", ru ,test="idle",role="client"} 1220890298 1704067200000
4 benchmark_cpu_seconds {1d="flannel”, run="1", test="1dle", role="server", mde="systen"} 8.014333 1704067260000

server”,mode="user"} ©.020999 1704267200000
Server”} 1256172917 1704067208000
Llient”,mode="systen"} 0.333208 1704067200000

[sus-client.prom
1", test="idle", rol
, test="1dle", rol

1%, test="dts", role:

benchmark_cpu_seconds{id="Flannel", ru
benchmark_mem_bytes{id="flannel", ru
benchmark_cpu_seconds{id="Flannel", ru

3 sus-client.stderr

[sus-client.stdout

8 benchmark_cpu_seconds {id="Flannel", run="1", test="dts", role="client" mode="user"} 0.018193 1704067200000
[sus-server.cmd o benchnark_mem_bytes{id="flannel", run="1", test="dts", role="client"} 1240497088 1704967200000

10 benchmark_cpu_seconds{id="Flannel”, run="1", tes erver”,mode="systen"} 0.525176 1704067200000
[3 sus-server.prom 11 benchmark_cpu_seconds {id="flannel", run="1", tes erver”, mod: ser"} 0.023829 1704067200000
D susserverstderr 12 benchmark_mem bytes{id="flannel”,run="1", test="dts”, role="server"}) 1209808788 1704667200000

13 benchmark_iperf bandwidth bits_per second{id="flannel’,run="1",test="dts"} 10587401486.345478 1704067200000

ts_count{id="flannel", run="1", test="gts"} 10138 1704067209000
ysten'} 1.222100 1704967200000
lient",mode="user"} 0.035371 1784067200000

, test="dtm", role="client"} 1259813248 1704867200000

1", test="dtn", role="server",mode="systen"} 1.738071 1704067200000
1", test="dtn", role="server",mode="user"} 0.053181 1784067200000

, test="dtn", role="server"} 1255309904 1704067200000

1", test="dtn"} 38956107752.5739 1704067200000
dtn"} 336925 1704067200000

[sus-server.stdout 14 benchmark_iperf retransmi
benchmark_cpu_seconds {id="flannel", ru
benchmark_cpu_seconds {id="flannel",
benchmark_mem_bytes{id="flannel", ru
benchmark_cpu_seconds {id="flannel", ru
benchmark_cpu_seconds {id="flannel", ru
20 benchmark_mem_bytes{id="flannel", run='
benchmark_iperf_bandwidth_bits_per_second{
flannel™, run="1", te:

[sus.results

> 2

> 3

[results-spreadsheet.csv
I="flannel", ru

| O results.prom benchmark_iperf_retransmits_count{i
s B kubeovn benchmark_cpu_seconds {1d="rlannel", ru Lient”,mode="systen"} 0.314508 1704067206000
benchmark_cpu_seconds {1d="rlannel", ru Lient”,mode="user"} ©.038514 1704067200060
> M kuberouter-all benchmark_mem_bytes{id="flannel", run="1", test="dus" role="client"} 1219350744 1704667260000
benchmark_cpu_seconds {id="Flannel”, run="1", test="dus", role="server",mode="systen"} 0.833423 1704067200600
’ kuberouter benchmark_cpu_seconds {id="Flannel", run="1", test="dus", role="server", mode="user"} 0.008667 1704067200000
[.gitkeep benchmark_mem_bytes{id="flannel”, run="1", test="dus®, role="server"} 1264998395 1704667200000
benchmark_iperf _bandwidth bits_per second{id="flannel",run="1",test="dus"} 7730439568.4480534 1704067200000
4 setup benchmark_iperf_jitter_milliseconds{id="flannel",run="1", test="dus"} ©.6091691713750670564 1704067200000
[gitignore benchmark_iperf lost_percent {id="flannel”,run="1", test="dus"} 0.49458530032345035 1704067206000
benchmark_cpu_seconds {1d="Flannel", run="1", test="dun", role="c1ient", mode="systen"} 1.999771 1704967200800

1%, test="dun", role="client",mode="user"} 0.218282 1704067200000

benchmark_cpu_seconds {1d="Flannel", ru
, test="dun", role="client"} 1309555328 1704867200000

[Dockerfile
benchmark_mem_bytes{id="flannel", rur

D makefile benchmark_cpu_seconds{id="flannel", run="1", test="dun", role="server",mode="systen"} 3.829850 1704067206000
[README.md benchmark_cpu_seconds{id="Flannel", ru iser”} 0.300976 1704067200000 .

As the 2024 data format vastly differs, we converted the Prometheus gauges for easier
handling. The 2024 data also has many more data points, so we mapped the gauges
to the most appropriate fields and adjusted the scale where necessary (e.g., Bytes to

Megabytes).

server - idle”

e smem - "benchmark_mem_bytes

server - idle”

e scpu - "benchmark_cpu_seconds

client - idle”

e cmem - "benchmark_mem _bytes

client - idle”

e ccpu - "benchmark_cpu_seconds
e tcpbw - "benchmark_iperf_bandwidth_bits_per_second - dts”
e tcpsm - "benchmark_mem_bytes - server - dts”
e tcpsc - "benchmark_cpu_seconds - server - dts”
e tcpcm - "benchmark_mem_bytes - client - dts”
e tcpcc - "benchmark_cpu_seconds - client - dts”

e udpbw - "benchmark_iperf_bandwidth_bits_per_second - dus”

11

e udpsm - "benchmark_mem_bytes - server - dus”

e udpsc - "benchmark_cpu_seconds - server - dus”

e udpcm - "benchmark_mem_bytes - client - dus”

e udpcc - "benchmark_mem _bytes - client - dus”

e tcpebw - "benchmark_iperf_bandwidth_bits_per_second - sts”
e tcpesm - "benchmark_mem _bytes - server - sts”

e tcpesc - "benchmark_cpu_seconds - server - sts”

e tcpecm - "benchmark_mem _bytes - client - sts”

e tcpecc - "benchmark_cpu_seconds - client - sts”

e udpebw - "benchmark_iperf_bandwidth_bits_per_second - sus”
e udpesm - "benchmark_mem_bytes - server - sus”

e udpesc - "benchmark_cpu_seconds - server - sus”

e udpecm - "benchmark_mem_bytes - client - sus”

e udpecc - "benchmark_mem_bytes - client - sus”

2.3 What’s Not in the Data

The benchmark data was initially recorded with the author’'s k8s-bench-suite. Their
test suite uses iPerf3 for measurements and provides a convenient shell interface for
data collection. iPerf3 is a tool for active measurements of the maximum achievable

bandwidth on IP networks and is most suitable for measuring CNI bandwidth.

The data itself does not contain information on the infrastructure setup and the software

versions used, so we record the information here:

e The 2020 setup was three Supermicro bare-metal servers connected through a
Supermicro 10Gbit switch, running Ubuntu 18.04 LTS and Kubernetes 1.19.0.

Table 1: 2020 CNI Versions

Flannel | Calico Canal | Cilium
v0.12.0 | v3.16.1 | v3.16.1 | v1.8.2

e The 2021 setup was three Supermicro bare-metal servers connected through a
Supermicro 10Gbit switch, running Ubuntu 20.04 LTS and Kubernetes 1.21.0.

https://github.com/InfraBuilder/k8s-bench-suite
https://iperf.fr/
https://github.com/InfraBuilder/benchmark-k8s-cni-2020-08/blob/master/PROTOCOL.md
https://www.supermicro.com/en/
https://ubuntu.com/server
https://github.com/InfraBuilder/benchmark-k8s-cni-2021-05/blob/main/PROTOCOL.md

12

Table 2: 2021 CNI Versions

Flannel | Calico Canal Cilium
v0.15.1 | v3.19.2 | v3.19.2 | v1.11.2

e For 2024, the test infrastructure consisted of three Supermicro bare-metal servers
connected through a Supermicro 40Gbit switch, running Ubuntu 22.04 LTS and
Kubernetes 1.26.12.12

Table 3: 2024 CNI Versions

Flannel | Calico | Canal | Cilium
v0.24.3 | v3.27.2 | v3.27.2 | v1.15.2

2.4 Data Exploration Method
We will analyze the data sets using the Exploratory Data Analysis (EDA) method.

John Tukey has promoted EDA since 1977 to encourage data scientists to explore data

and formulate hypotheses that could lead to new data collection and experiments.!3

EDA uses statistical methods to analyze and visualize the data, understand key charac-

teristics, and identify patterns and relationships.

We will use summary statistics, such as mode, mean, and median, to understand the
data and augment this with data visualization, e.g., histograms. We have already cleaned
up the data and converted the data sets to a common format. EDA should help us to
make informed decisions about how to proceed with our analysis and draw meaningful

conclusions from the data.'*

We will not use the data to predict performance gains in future releases of the CNIs or
through improved network speeds; instead, we will focus on our research question and

attempt to arrive at a recommendation for CNI usage.

2.5 Tools

We performed most of the initial data wrangling with Bash and vi, and Microsoft Excel

to support operations on columns and the final weighted ranking.

12See Ducastel, A. (2024): Benchmark results of Kubernetes network plugins. [6]
13See Tukey, J.W. (1977): Exploratory data analysis. [21]
14See Gemini (2024): Exploratory Data Analysis. [9]

https://www.gnu.org/software/bash/
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/vi.html
https://www.microsoft.com/en-us/microsoft-365/excel

13

For the subsequent data exploration, we will mainly use R and RStudio.

version

platform x86_64-wb64-mingw32
arch x86_64

0s mingw32

crt ucrt

system x86_64, mingw32
status

major 4

minor 2.3

year 2023

month 03

day 15

svn rev 83980

language R

version.string R version 4.2.3 (2023-03-15 ucrt)

nickname Shortstop Beagle

https://www.r-project.org/
https://posit.co/download/rstudio-desktop/

14

3 Data Exploration

3.1 Data Layout
The data consists of twelve datasets overall, one per year (3) and one per CNI (4).

After our data wrangling, all datasets now contain the following five blocks of metrics

in a single row per observation:

e Idle server memory and CPU consumption

TCP Pod-to-Pod bandwidth, memory, and CPU consumption

UDP Pod-to-Pod bandwidth, memory, and CPU consumption

TCP Pod-to-Server bandwidth, memory, and CPU consumption

UDP Pod-to-Server bandwidth, memory, and CPU consumption

In our data, as defined by the original measurement setup, Pod-to-Pod traffic refers to
traffic between Pods in the same cluster, and Pod-to-Server traffic refers to traffic from

a Pod to an outside application.

The individual metric names are derived from each dataset’s first row and are consistent

across all sets.

3.2 2020
3.2.1 Flannel

The first data set we will look at is the 2020 data set for Flannel, which we will read

using R’s built-in read.csv function.

main <—- "."

cni <- read.csv(here (main, "data","2020-flannel.csv"))

In the next step, we will have a look at the structure of our data and visually inspect

the measurements.

str(cni)

"data.frame’: 3095 obs. of 24 variables:

$ smem : num 593 596 590 591 588

$ scpu : num 0.682 0.679 0.662 0.642 0.728
$ cmem : num 588 595 591 587 592

ccpu
tcpbw
tcpsm
tcpsc
tcpcm
tcpcc
udpbw
udpsm
udpsc
udpcm

udpcc

w0 v v n W »n N U »n W »nr - »r 1 A »r U A\ »r

Ur

The various values for memory consumption (MB), CPU usage (Percentage), and band-

width (MBit/s) look fine at first glance and in line with our expectations.

For further analysis, we will inspect the values a bit more closely, starting with memory

consumption. First, we'll look at the values for an idle server and get:

median (cni$smem)

tcpebw:
tcpesm:
tcpesc:
tcpecm:
tcpecc:
udpebw :
udpesm:
udpesc:
udpecm:

udpecc:

num

num

num

num

num

num

num

num

num

num

num

num

num

num

num

num

num

num

num

num

num

[1] 592.8159

mean (cniS$smem)

[1] 593.1625

min (cni$smem)

[1] 585

max (cniSsmem)

[1] 606

15

0.572 0.601 0.54 0.517 0.579
9675 9757 9693 9689 9773
590 589 593 592 593

5.16 5.16 5.18 5.2 5.12
593 591 591 593 593

5.17 5.1 5.02 5.04 5.23
9845 9842 9842 9841 9840
591 590 592 594 589

5.49 5.47 5.44 5.42 5.5
608 611 608 613 614

12.9 12.9 12.9 12.9 13
9831 9828 9827 9826 9838
589 596 591 590 589

4.92 5.07 5.08 5.03 5.14
595 601 595 595 593

5.47 5.55 5.46 5.52 5.29
9823 9833 9818 9818 9833
594 596 594 593 597

5.25 5.3 5.34 5.41 5.23
601 601 603 604 600

12.6 12.7 12.7 12.7 12.6

16

Comparing the idle memory consumption with the other measurements for memory con-
sumption (TCP and UDP, and Pod-to-Pod and Pod-to-Server), we get a fairly consistent

picture:

median (cni$tcpsm)

[1] 591.2724

median (cniSudpsm)

[1] 591.5915

median (cniStcpesm)

[1] 590.1462

median (cniSudpesm)

[1] 594.3655

Next, we will check CPU consumption, starting again with idle values:

median (cniS$scpu)

[1] 0.6546849

mean (cnis$scpu)

[1] 0.6695833
min (cni$scpu)
[1] O.06
max (cniSscpu)
[1] 0.82

When we validate this with the other measurements for CPU consumption, we get again
fairly consistent values across the measurements, but with a clear differentiation to the

idle values as we would expect:

median (cniStcpsc)

[1] 5.162688

median (cniSudpsc)

[1] 5.483832

17

median (cniS$tcpesc)

[1] 5.055657

median (cniSudpesc)

[1] 5.30168
Idle CPU consumption does not seem to be a good overall performance indicator.

As the Median is more robust against outliers and works better with data that might be

skewed, we'll concentrate on the median values going forward.!®

The final data point we want to look at is bandwidth, the core performance metric for

a network:®

median (cniStcpbw)

[1] 9705.809

median (cni$udpbw)

[1] 9843.559

median (cniStcpebw)

[1] 9828.35

median (cniSudpebw)

[1] 9822.046

With the majority of the internet traffic being TCP, we will focus on the measurements

for TCP for analysis and comparison and leave the UDP bandwidth values aside.’

We visualize both the TCP Pod-to-Pod and Pod-to-Server traffic bandwidth using his-

tograms:

15See Orn, A. (2023): Means and Medians: When To Use Which. [15]
16See Solarwinds (2024): What are Network Performance Metrics? [19]
17See Quian, L. (2012): A flow-based performance analysis of TCP and TCP applications. [16]

18
gf_-histogram(~“tcpbw, data =

= cni)

Figure 3: Flannel Pod-to-Pod Bandwidth

200-

count

100-

1 1
9600 9650

97b0
Pod-to-Pod TCP Bandwidth

1 1
9750 9800

19

gf_histogram(tcpebw, data = cni)

Figure 4: Flannel Pod-to-Server Bandwidth

300-

200-

count

100 -

98I‘l 5 98I20 98I25 98I30 98I35 98I40
Pod-to-Server TCP Bandwidth

The data distribution supports our choice to use the median values as key indicators for
TCP bandwidth.

Following the results of a scientific coin toss,'® we will use the TCP Pod-to Server values

for CPU usage and memory consumption for further analysis.

From the 2020 Flannel dataset, we will thus use the following values:

median (cniStcpesm)

[1] 590.1462

median (cni$tcpesc)

[1] 5.055657

18See Kim, S.E. (2024): Scientists Destroy lllusion That Coin Toss Flips Are 50-50. [14]

20

median (cniStcpbw)

[1] 9705.809

median (cniStcpebw)

[1] 9828.35

3.2.2 Calico

We will now read the 2020 data set for Calico.

main <- "."

cni <- read.csv (here (main, "data","2020-calico.csv"))

In the next step, we will examine the structure of our data and visually inspect the

measurements.
str (cni)
"data.frame’ : 3091 obs. of 24 wvariables:
S smem : num 667 665 666 669 665
S scpu : num 1.64 1.64 1.62 1.64 1.63
S cmem : num 666 666 666 653 666
$ ccpu : num 1.27 1.27 1.31 1.3 1.29
S tcpbw : num 8879 8885 8884 8882 38884
$ tcpsm : num 660 664 662 664 660

Then, we'll extract the key metrics for further analysis:

median (cniStcpesm)

[1] 659.3846

median (cniStcpesc)

[1] 6.44727

median (cniStcpbw)

[1] 8882.457

median (cniS$tcpebw)

[1] 8675.868

21

3.2.3 Canal

We will now read the 2020 data set for Canal.

main <—- "."

cni <- read.csv(here (main, "data","2020-canal.csv"))

In the next step, we will examine the structure of our data and visually inspect the

measurements.
str (cni)
"data.frame’ : 3076 obs. of 24 variables:
S smem : num 662 659 663 663 663
$ scpu : num 1.43 1.56 1.49 1.47 1.43
S cmem : num 663 663 660 666 659
S ccpu : num 1.97 2.01 1.98 1.99 1.96
$ tcpbw : num 8490 8586 8635 8647 8648
$ tcpsm : num 659 656 655 657 657

Then, we'll extract the key metrics for further analysis:

median (cniStcpesm)

[1] 655.4456

median (cniS$tcpesc)

[1] 6.697056

median (cniStcpbw)

[1] 8634.413

median (cniStcpebw)

[1] 8576.709

3.2.4 Cilium

We will now read the 2020 data set for Cilium.

main <- "."

cni <- read.csv (here (main, "data","2020-cilium.csv"))

22

In the next step, we will examine the structure of our data and visually inspect the

measurements.
str (cni)
"data.frame’ : 3082 obs. of 24 wvariables:
S smem : num 859 867 863 857 863
$ scpu : num 3.95 3.68 2.63 3.32 3.53
S cmem : num 867 872 871 868 864
$ ccpu : num 1.78 1.74 1.69 1.73 1.76
S tcpbw : num 9445 9547 9467 9449 9466
$ tcpsm : num 861 867 864 864 864

Then, we'll extract the key metrics for further analysis:

median (cniS$tcpesm)

[1] 866.5502

median (cniStcpesc)

[1] 13.2222

median (cniStcpbw)

[1] 9475.213

median (cniStcpebw)

[1] 9673.348

3.3 2021
3.3.1 Flannel

We will now read the 2021 data set for Flannel.
main <- "."

cni <- read.csv(here (main, "data","2021-flannel.csv"))

In the next step, we will examine the structure of our data and visually inspect the

measurements.

23

str(cni)

"data.frame’: 3112 obs. of 24 variables:
$ smem : num 591 596 599 593 599

scpu : num 0.67 0.665 0.699 0.654 0.699
cmem : num 596 592 591 589 580

ccpu : num 0.539 0.502 0.546 0.554 0.55

$
$
$
$ tecpbw : num 9657 9737 9680 9755 9689

Then, we'll extract the key metrics for further analysis:

median (cniStcpesm)

[1] 590.5901

median (cniStcpesc)

[1] 5.015945

median (cniStcpbw)

[1] 9695.797

median (cniS$tcpebw)

[1] 9825.204

The difference between the measurements in the 2020 and 2021 data sets is not that big;
the data was taken only a couple of months apart, and the CNI versions were relatively

close to each other.

3.3.2 Calico

We will now read the 2021 data set for Calico.

main <—- "."

cni <- read.csv(here (main, "data","2021-calico.csv"))

In the next step, we will examine the structure of our data and visually inspect the
measurements.

str (cni)

"data.frame’ : 3103 obs. of 24 variables:

24

tcpbw : num 8868 8875 8873 8867 8880
tcpsm : num 664 665 663 659 663

S smem : num 663 669 663 665 667

$ scpu : num 1.56 1.56 1.64 1.6 1.61
$ cmem : num 666 664 665 669 667

S ccpu : num 1.25 1.24 1.25 1.27 1.24
$

$

Then, we'll extract the key metrics for further analysis:

median (cniStcpesm)

[1] 661.9909

median (cniS$tcpesc)

[1] 6.366529

median (cniStcpbw)

[1] 8876.478

median (cniStcpebw)

[1] 8763.889

3.3.3 Canal

We will now read the 2021 data set for Canal.

main <- "."

cni <- read.csv (here (main, "data","2021-canal.csv"))

In the next step, we will examine the structure of our data and visually inspect the

measurements.
str (cni)
"data.frame’ : 3115 obs. of 24 wvariables:
S smem : num 657 661 660 663 656
$ scpu : num 1.49 1.51 1.47 1.51 1.51
S cmem : num 653 658 666 656 651
$ ccpu : num 1.99 1.86 1.94 2.01 2.01
S tcpbw : num 8638 8636 8627 8639 8605

25

S tcpsm : num 652 653 659 659 656

Then, we'll extract the key metrics for further analysis:

median (cniS$tcpesm)

[1] 659.3958

median (cniStcpesc)

[1] 6.66032

median (cni$tcpbw)

[1] 8612.275

median (cniStcpebw)

[1] 8579.366

3.3.4 Cilium

We will now read the 2021 data set for Cilium.

main <—- "."

cni <- read.csv(here (main, "data","2021-cilium.csv"))

In the next step, we will examine the structure of our data and visually inspect the

measurements.

str(cni)

"data.frame’: 3105 obs. of 24 variables:
$ smem : num 871 868 868 867 868

scpu : num 3.25 2.85 3.31 3.3 3.67
cmem : num 864 869 866 880 879

ccpu @ num 1.69 1.7 1.66 1.65 1.72
tcpbw @ num 9450 9458 9440 9532 9450
tcpsm : num 865 863 863 866 868

v U »nr O A

Then, we'll extract again the key metrics for further analysis:

26

median (cniStcpesm)

[1] 867.1192

median (cniStcpesc)

[1] 12.77646

median (cniStcpbw)

[1] 9444.988

median (cniS$tcpebw)

[1] 9679.113

3.4 2024
3.4.1 Flannel

Moving on to 2024, we will now read the 2024 data set for Flannel.

main <- "."

cni <- read.csv(here (main, "data","2024-flannel.csv"))

In the next step, we will examine the structure of our data and visually inspect the

measurements.

str(cni)

"data.frame’ : 3104 obs. of 24 wvariables:
S smem : num 1204 1210 1209 1208 1209

$ scpu : num 0.0149 0.0145 0.0146 0.0154 0.0153
S cmem : num 1187 1199 1201 1222 1219

$ ccpu : num 0.0125 0.0121 0.0122 0.0122 0.0121
S tcpbw : num 18936 19076 19206 19056 19097

Then, we'll extract the key metrics for further analysis:

median (cniStcpesm)

[1] 1175.85

27

median (cniS$tcpesc)

[1] 5.052353

median (cniStcpbw)

[1] 19166.04

median (cniStcpebw)

[1] 19942.3

We can see a significant increase in bandwidth compared to previous years. In the
years between the 2021 and 2024 measurements, we saw significant improvements in
Kubernetes and Linux kernel development, and the 2024 infrastructure setup for the

measurements had 40GBit interface cards and switches.

3.4.2 Calico

We will now read the 2024 data set for Calico.

main <- "."

cni <- read.csv(here (main, "data","2024-calico.csv"))

In the next step, we will examine the structure of our data and visually inspect the

measurements.

str (cni)

"data.frame’ : 3098 obs. of 24 wvariables:
S smem : num 1435 1413 1414 1402 1419

$ scpu : num 0.0213 0.02 0.0212 0.0213 0.0206
$ cmem : num 1377 1370 1361 1369 1364

$ ccpu : num 0.0259 0.025 0.0243 0.0265 0.0252
$ tcpbw : num 18520 18603 18600 18549 18524

$ tcpsm : num 1388 1390 1397 1394 1399

Then, we'll extract the key metrics for further analysis:

median (cniStcpesm)

[1] 1420.843

28

median (cniStcpesc)

[1] 5.446998

median (cniStcpbw)

[1] 18571.56

median (cniStcpebw)

[1] 19263.95

3.4.3 Canal

We will now read the 2024 data set for Canal.

main <- "."

cni <- read.csv (here (main, "data","2024-canal.csv"))

In the next step, we will examine the structure of our data and visually inspect the

measurements.

str (cni)

"data.frame’ : 3088 obs. of 24 wvariables:

$ smem : num 1243 1269 1269 1269 1245

scpu : num 0.0281 0.0281 0.0281 0.0281 0.0281
cmem : num 1235 1229 1228 1238 1238

ccpu : num 0.0233 0.0251 0.0228 0.0284 0.0276
tcpbw : num 16841 16843 16840 16845 16847
tcpsm : num 1260 1279 1257 1242 1233

v U U A

Then, we'll extract the key metrics for further analysis:

median (cniStcpesm)

[1] 1285.42

median (cniStcpesc)

[1] 5.647729

median (cniStcpbw)

[1] 16842.78

29

median (cniStcpebw)

[1] 16328.69

3.4.4 Cilium

We will now read the final 2024 data set, Cilium.

main <- "."

cni <- read.csv (here (main, "data","2024-cilium.csv"))

In the next step, we will examine the structure of our data and visually inspect the

measurements.

str (cni)

"data.frame’ : 3101 obs. of 24 wvariables:
S smem : num 1612 1613 1607 1605 1604
$ scpu : num 0.0111 0.0109 0.0111 0.0126 0.0121
S cmem : num 1596 1592 1603 1597 1594
$ ccpu : num 0.0118 0.0122 0.0125 0.0123 0.0122
S tcpbw : num 20929 20932 20761 20525 20675
$ tcpsm : num 1538 1538 1538 1538 1534

Then, we'll extract one last time the key metrics for further analysis:

median (cniS$tcpesm)

[1] 1521.506

median (cniStcpesc)

[1] 6.152466

median (cniStcpbw)

[1] 20709.53

median (cniStcpebw)

[1] 21758.27

We have now processed all datasets and can proceed with the analysis.

30

4 Data Analysis

4.1 Performance Considerations

In the previous chapters, we've already identified our key performance metrics: CPU

consumption, memory usage, and TCP bandwidth.

In the first step of the analysis, we will tabulate the performance metrics and, from the

results, define a ranking for each CNI within each metric and each year.

As a final step of the analysis, we will weigh the rankings to arrive at an overall ranking

for the CNI performance and guidance on which CNI to use.

4.2 Server CPU Usage

The first metric that we want to look at is server CPU usage.

Table 4: Median Server CPU Usage

Year | Flannel | Calico | Canal | Cilium

2020 | 5.05 06.44 | 6.69 | 13.22
2021 | 5.01 6.36 | 6.66 | 12.77
2024 | 5.05 544 | 564 | 6.15

We get a reasonably uniform distribution across the three measurements. In 2024, we
have a much more powerful set of hardware for our servers with more modern CPUs,

and we can see that Cilium benefits the most from the increase in CPU speed.

Overall, we get the following ranking of the CNls:

Table 5: Server CPU Usage Ranking

Year 1st 2nd 3rd 4th

2020 | Flannel | Calico | Canal | Cilium
2021 | Flannel | Calico | Canal | Cilium
2024 | Flannel | Calico | Canal | Cilium

4.3 Server Memory Consumption

The second metric we want to analyze is server memory consumption.

31

Table 6: Median Server Memory Consumption

Year | Flannel | Calico | Canal | Cilium
2020 | 590 659 655 866
2021 590 661 659 867
2024 | 1175 1420 | 1285 | 1521

We again get a reasonably uniform distribution, albeit with Canal in 2nd place instead of

Calico. The 2024 data shows that all CNIs use the more powerful hardware and consume

more memory across the board.

This leads us to the following ranking of the CNiIs:

Table 7: Server Memory Consumption Ranking

Year 1st 2nd 3rd 4th

2020 | Flannel | Canal | Calico | Cilium
2021 | Flannel | Canal | Calico | Cilium
2024 | Flannel | Canal | Calico | Cilium

4.4 Pod-to-Pod Bandwidth

The third metric we'll analyze will be the first bandwidth metric, TCP Pod-to-Pod traffic.

Table 8: Median Pod-to-Pod Bandwidth

Year | Flannel | Calico | Canal | Cilium
2020 | 9705 | 8882 | 8634 | 9475
2021 | 9695 | 8876 | 8612 | 9444
2024 | 19166 | 18571 | 16842 | 20709

The bandwidth distribution is slightly more varied, with Cilium gaining the most over
the years. The 2024 data shows that all CNIs use the faster NIC speed and the updated

kernel, and an overall significant increase in bandwidth can be observed.

We get the following ranking of the CNIs, with Cilium overtaking Flannel and moving

to first place:

32

Table 9: Pod-to-Pod Bandwidth Ranking

Year Ist 2nd 3rd 4th
2020 | Flannel | Cilium | Calico | Canal
2021 | Flannel | Cilium | Calico | Canal
2024 | Cilium | Flannel | Calico | Canal

4.5 Pod-to-Server Bandwidth

The fourth and final metric will be the second bandwidth metric, TCP Pod-to-Server
traffic.

Table 10: Median Pod-to-Server Bandwidth

Year | Flannel | Calico | Canal | Cilium

2020 | 9828 | 8675 | 8576 | 9673
2021 | 9825 | 8763 | 8579 | 9679
2024 | 19942 | 19263 | 16328 | 21758

The data again shows that in 2024, all CNIs use the faster NIC speed and show an

overall increase in bandwidth.

We get the same ranking for the CNls, with Cilium overtaking Flannel and again occu-

pying first place in TCP Pod-to-Server communication:

Table 11: Pod-to-Server Bandwidth Ranking

Year 1st 2nd 3rd 4th

2020 | Flannel | Cilium | Calico | Canal
2021 | Flannel | Cilium | Calico | Canal
2024 | Cilium | Flannel | Calico | Canal

4.6 Weighted Ranking

Now that we have the individual performance rankings for our key indicators, we must
identify the best overall choice. To do this, we'll use a weighted ranking of the perfor-

mance indicators to arrive at a final result.

33

The weighted ranking works by assigning a rank or score to individual items based on

multiple criteria, where each criterion is given a specific weight or importance level.®

To judge overall network performance, we'll assign the following weights to the rankings:
e CPU usage: 20%
e Memory consumption: 30%
e Pod-to-Pod Bandwidth: 25%
e Pod-to-Server Bandwidth: 25%

To calculate the weighted rankings, we'll use the reverse values for the individual rankings

of the four CNils, i.e., 4 for first place and 1 for last place, from the tables above.

We'll use Microsoft Excel to tabulate the results.?°

4.7 Results

In 2020 and 2021, the results were pretty clear:

Table 12: Table generated by Excel2LaTeX from sheet 2020

CNI CPU | Memory | P2P | P2E | Avg | Rank
Weight | 0.2 0.3]0.25|0.25

Flannel 4 4 4 4 4 1
Calico 3 2 2 2| 22 2
Canal 2 3 1 1] 1.8 4
Cilium 1 1 3 3 2 3

Table 13: Table generated by Excel2LaTeX from sheet 2021

CNI CPU | Memory | P2P | P2E | Avg | Rank
Weight | 0.2 0.3]0.25|0.25

Flannel 4 4 4 4 4 1
Calico 3 2 2 2] 22 2
Canal 2 3 1 1| 1.8 4
Cilium 1 1 3 3 2 3

19See Gemini (2024): Weighted Ranking. [10]
20See Bobbitt, Z. (2023): How to Calculate Weighted Ranking in Excel. [2]

34

Flannel comes out on top, delivering the highest bandwidth with the lowest CPU and
memory usage; Canal comes in second, and Cilium third. It is interesting to note that
Canal takes last place, even though it is, in essence, a combination of Calico and Flannel.

However, it seems to be weighed down by higher CPU and memory usage.

In 2024, though, the faster hardware and the years of development and improvement of
eBPF and Cilium are changing the picture. Cilium shows a lot of bandwidth gains and

moves up to second place, past Calico and Canal.

Table 14: Table generated by Excel2LaTeX from sheet 2024

’ CNI \ CPU \ Memory \ P2P \ P2E \ Avg \ Rank ‘

Weight 0.2 0.3]0.25|0.25

Flannel 4 4 3 3] 35 1
Calico 3 2 2 21 2.2 3
Canal 2 3 1 1] 1.8 4
Cilium 1 1 4 41 25 2

Flannel takes first place in all measurements, making it an excellent choice for using it

as the CNI in Kubernetes cluster deployments.

Looking at bandwidth alone, though, Cilium would have taken first place. Also, with all
the additional features we haven't looked at, such as a built-in load balancer and the
myriad of observability features, it does make a compelling use case for itself. However,
it comes with significantly higher CPU usage and memory consumption compared to our

overall winner, Flannel.

For real,?! | see Flannel as the best option for a CNI unless you need to implement
network policies, and |, for one, was thrilled when SUSE announced full support for

Flannel in RKE2 earlier this year.??

From the data analysis, we can now clearly guide you to select either Flannel or Cilium as
the CNI for your RKE cluster. Your choice will heavily depend on whether you need the
additional features that Cilium offers or whether you can live with Flannel’s flat overlay

network and enjoy its simplicity.

4.8 Outlook

EBPF is currently the most talked-about feature in the Linux kernel, offering the most

exciting prospects for network performance improvements. Cilium was developed on top

21See Kelly, J. (2024): Gen-Z Slang Is Revolutionizing Work Jargon. [13]
22See Frank, C. (2024): RKE2: Flannel? Flannel! [8]

35

of eBPF and will significantly benefit from future enhancements to it. It does not take

much imagination to see a significant further increase in bandwidth in the future.

On the other hand, Flannel is relatively simple and has a low overall overhead, so all
performance improvements in the Linux kernel for IP networking outside of eBPF will
also benefit Flannel's performance and bandwidth. We can also most likely look forward

to an increase in bandwidth in the future.

Both CNIs, Flannel, and Cilium, will likely remain the top choices to select as CNI for

Kubernetes clusters for the next few years.

36

5 Summary

The data analysis showed marked improvements in Kubernetes networking performance
over the last couple of years. We saw performance improvements across the board for
all four CNlIs included with SUSE's Rancher Kubernetes Engine.

The power is in the data—we were able to identify Flannel and Cilium as the two
CNlIs that will deliver the best performance and recommend them for future cluster

configurations.

Cilium is the most promising new development in Kubernetes networking, and the ven-
erable Flannel is holding up well, delivering similar performance with a smaller footprint

and a smaller feature set.

We were merely able to scratch the surface with this secondary analysis, but | do hope
that you will find at least some valuable insights and pointers to start with. A big
shoutout to Alexis Ducastel of infraBuilder; none of this would have been possible without

their excellent work.
To quote Toshinori Yagi: “Next, it's your turn.”?3 - go and create your own cluster!

Happy Ranching!

2 Crunchyroll (2024): 40 My Hero Academia Quotes Worth Remembering. [4]

37

References

[1]

2]

3]

[4]

[5]

[6]

[7]

[8]

9]

[10]

[11]

[12]

APA. (2021) Definitions related to sexual orientation. [Access 2021-04-06].
[Online]. Available:
https://www.apa.org/pi/lgbt/resources/sexuality-definitions.pdf

Z. Bobbitt. (2023) How to calculate weighted ranking in excel. [Access
2024-08-07]. [Online]. Available:
https://www.statology.org/excel-weighted-ranking/

CNCF. (2024) Network plugins. [Access 2024-07-31]. [Online]. Available:
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/

network-plugins/

Crunchyroll. (2024) 40 my hero academia quotes worth remembering. [Access
2024-08-06]. [Online]. Available: https:

//www.crunchyroll.com/news/features/2024 /8 /4 /my-hero-academia-quotes

A. Dsouza and K. Martin. (2024) Kubernetes v1.30. [Access 2024-04-18]. [Online].
Available: https://kubernetes.io/blog/2024 /04 /17 /kubernetes-v1-30-release/

A. Ducastel. (2024) Benchmark results of kubernetes network plugins. [Access
2024-07-30]. [Online]. Available: https://itnext.io/
benchmark-results-of-kubernetes-network- plugins-cni-over-40gbit-s-network-2024-156f085abe

C. Frank. (2020) Behind the scenes of flannel. [Access 2024-07-30]. [Online].
Available:
https://medium.com/@chfrank_cgn/behind-the-scenes-of-flannel-307aef347f20

C. Frank. (2024) Rke2: Flannel? flannel! [Access 2024-08-08]. [Online]. Available:
https://medium.com/@chfrank_cgn/rke2-flannel-flannel-6564dd1ae49e

Gemini. (2024) Exploratory data analysis. [Access 2024-08-05]. [Online].
Available: https://gemini.google.com

Gemini. (2024) Weighted ranking. [Access 2024-08-07]. [Online|. Available:
https://gemini.google.com

Gemini. (2024) What is kubernetes. [Access 2024-04-18]. [Online]. Available:
https://gemini.google.com

W. Hillier. (2021) A guide to secondary data analysis. [Access 2024-08-04].
[Online]. Available:
https://careerfoundry.com/en/blog/data-analytics /secondary-data-analysis/

https://www.apa.org/pi/lgbt/resources/sexuality-definitions.pdf
https://www.statology.org/excel-weighted-ranking/
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins/
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins/
https://www.crunchyroll.com/news/features/2024/8/4/my-hero-academia-quotes
https://www.crunchyroll.com/news/features/2024/8/4/my-hero-academia-quotes
https://kubernetes.io/blog/2024/04/17/kubernetes-v1-30-release/
https://itnext.io/benchmark-results-of-kubernetes-network-plugins-cni-over-40gbit-s-network-2024-156f085a5e4e
https://itnext.io/benchmark-results-of-kubernetes-network-plugins-cni-over-40gbit-s-network-2024-156f085a5e4e
https://medium.com/@chfrank_cgn/behind-the-scenes-of-flannel-307aef347f20
https://medium.com/@chfrank_cgn/rke2-flannel-flannel-6564dd1ae49e
https://gemini.google.com
https://gemini.google.com
https://gemini.google.com
https://careerfoundry.com/en/blog/data-analytics/secondary-data-analysis/

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

38

J. Kelly. (2024) Gen-z slang is revolutionizing work jargon. [Access 2024-08-04].
[Online]. Available:
https://www.forbes.com /sites/jackkelly /2024 /07 /31 /gen-z-slang-at-work/

S. E. Kim, “Heads or tails?" Scientific American Magazine, vol. 330, no. 1, p. 12,
Jan. 2024.

A. Orn. (2023) Means and medians: When to use which. [Access 2024-08-05].
[Online]. Available:

https://research-collective.com/means-and-medians-when-to-use-which /

L. Qian and B. Carpenter, “A flow-based performance analysis of tcp and tcp
applications,” in A flow-based performance analysis of TCP and TCP
applications, 12 2012, pp. 41-45.

S. Rahmstorf, Climate and Weather at 3 Degrees More. Cham: Springer Nature
Switzerland, 2024, pp. 3-17.

A. Saguy and J. Williams. (2020) Why we should all use they/them pronouns.
[Access 2020-05-20]. [Online]. Available: https://blogs.scientificamerican.com/

voices/why-we-should-all-use-they-them-pronouns/

Solarwinds. (2024) What are network performance metrics? [Access 2024-08-04].
[Online]. Available:

https://www.solarwinds.com /resources/it-glossary /network-metrics

SUSE. (2024) Network options. [Access 2024-07-31]. [Online]. Available:
https://docs.rke2.io/networking/basic_network_options

J. W. Tukey, Exploratory Data Analysis. Reading, Mass.: Addison-Wesley Pub.
Co., 1977.

https://www.forbes.com/sites/jackkelly/2024/07/31/gen-z-slang-at-work/
https://research-collective.com/means-and-medians-when-to-use-which/
https://blogs.scientificamerican.com/voices/why-we-should-all-use-they-them-pronouns/
https://blogs.scientificamerican.com/voices/why-we-should-all-use-they-them-pronouns/
https://www.solarwinds.com/resources/it-glossary/network-metrics
https://docs.rke2.io/networking/basic_network_options

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Original Article
	Kubernetes
	Container Network Interfaces
	Flannel
	Calico
	Canal
	Cilium

	Research Question
	Gender-neutral Pronouns
	Climate Emergency

	Data Sources and Research Methods
	Original Data
	Data Wrangling
	2020 and 2021 - Adding Header information
	2024 - Data Transformation

	What's Not in the Data
	Data Exploration Method
	Tools

	Data Exploration
	Data Layout
	2020
	Flannel
	Calico
	Canal
	Cilium

	2021
	Flannel
	Calico
	Canal
	Cilium

	2024
	Flannel
	Calico
	Canal
	Cilium

	Data Analysis
	Performance Considerations
	Server CPU Usage
	Server Memory Consumption
	Pod-to-Pod Bandwidth
	Pod-to-Server Bandwidth
	Weighted Ranking
	Results
	Outlook

	Summary
	References

