
OpenAPI 3.1 Cheat Sheet https://bump.sh

Document Structure
An OpenAPI document is a JSON or YAML file containing the 
following root elements:

openapi:
info:
servers:
paths:
webhooks:
security:
components:
tags:

    # The spec version

      # API and document info 

    # List of available servers  
      # List of endpoints 

   # List of webhooks

   # Authentication description


 # Reusable components ($ref)

   # Define the grouping tags

3.1
{}  

{}
{} 

{} 
{} 

{} 
{}     

General Information
info:

title:
version:
description:

 # Required

     
     
   

Your Awesome API
1.2.14

What our API does is...

servers:
url:
description:
url:

 

-                    
   
-  

https://example.org/api 
Production 

https://staging.api.example.com

API Structure
Describe the different operations that your API exposes - such as 
POST /things - with the paths statement, and the events emitted by 
your API with the webhooks statement.

paths:

/things: 

post:
operationId:
summary:
description:
requestBody:  

description:
content:

schema: 
responses: 

description:
content:

schema: 

 
    # Operation object (HTTP Verb) 
      
        
      
     
        
         
          # Content type  
            # Schema Object  
       
         
            "Created"  
             
             
                # Schema Object

url-friendly-identifier 
Name of Operation

Longer **with CommonMark!** 

Create a Thing  

application/json:
{}

  

{}

'201':

application/json:  

webhooks:  
newThing:

post:
   # Nickname for webhook 
     # Operation object (HTTP Verb)

      ... 

Data Types and Schemas 
The most important keyword is type, which should be one of:

null

boolean

object

array

integer

number

string

JSON "null" value.

JSON true or false value.

JSON object

Ordered list of instances

Integer

Base-10 decimal number 

String of Unicode code points

type:
properties:

id:  
type:
format:
readOnly:

name:  
type:
examples: 

 object  
  

  
     string  
     uuid  
     true  
  
     string  
    
      - Bert

type:
items:

type:
required:


properties:

password:

type:
writeOnly:

 array  
  

   object

  
    - password 
  
     

       string  
       true

Most tools will filter readOnly properties out of a request body, and 
writeOnly out of a response body.

Security
Define the APIs Security Schemes, then apply them globally or per 
operation using the security statement.

Define security schemes
components: 

 securitySchemes:

ApiKey:
type:
scheme:

 # Define for use later

   # Arbitrary name

    
    

http

bearer

Apply security schemes
security:

ApiKey:

paths:
/widgets:


    post:

      security:


ApiKey:

 
  -  

  

        -  

# Document’s root: apply globally 


 # Apply on this operation only


[] 



[] 

Allowed types
apiKey, http (basic or bearer), oauth2, mutualTLS,

openIdConnect

Reuse Elements
Avoid duplicating elements by defining reusable components:

components:

  securitySchemes:

  requestBodies:

  responses:

  schemas:

  ...

Use your components with the $ref keyword:

paths:

  /widgets:

    responses:


$ref:
      
         #/components/responses/404

'404':


Components can be reached:

internally: 
through a remote URL: 
on file system: 

#/components/schemas/User

https://example.com/user.yml


./user.yml#components/schemas/User

Polymorphism
Combine several schemas using polymorphism statements:

oneOf:

anyOf:

allOf:

Exactly one of the schemas (XOR)

One or more of the schemas (OR)

All the schemas (AND)

schema:

allOf:

$ref:
$ref:

   
    -  
    -  

# An admin user

#/components/schemas/User

#/components/schemas/Admin

Grouping and sorting
Group operations with metadata using tags. Define them globally 
then apply them per operation.

tags:  
name:
description:

paths:  
 /things:

tags:

  -    
       
      

    
       

Things
>

This is my thing **description**.



[Things] 

Most tools will sort your documentation endpoints according to 
your global tags written order.

https://bump.sh/?utm_source=bump&utm_medium=openapi31_cheatsheet

