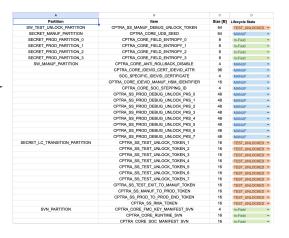


Provisioning Flows for Caliptra Subsystem

Tim Trippel, Google
Darpana Munjal, Microsoft
Willy Zhang, Google
Emre Karabulut, Microsoft
Mojtaba Bisheh-Niasar, Microsoft

Objectives

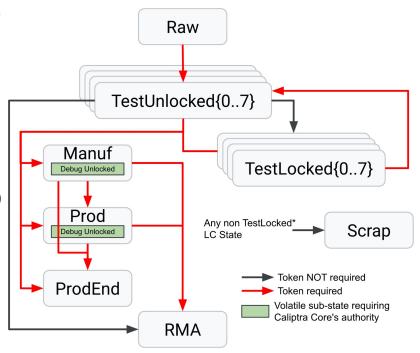
- 1. Provide guidance to SoC integrators and manufactures on how to securely provision Caliptra Subsystem fuses and identity certificates.
- 2. Be vendor and integration agnostic.



What assets are provisioned at manufacturing?

Two categories of Caliptra Subsystem assets to be provisioned:

- Fuses, defined in the <u>fuse map</u>.
 - a. Found in caliptra-ss GitHub repo and linked above.
 - b. Link above breaks down point during provisioning process each fuse should be written.
- 2. **IDevID certificate**, for which there are two key/signature types:

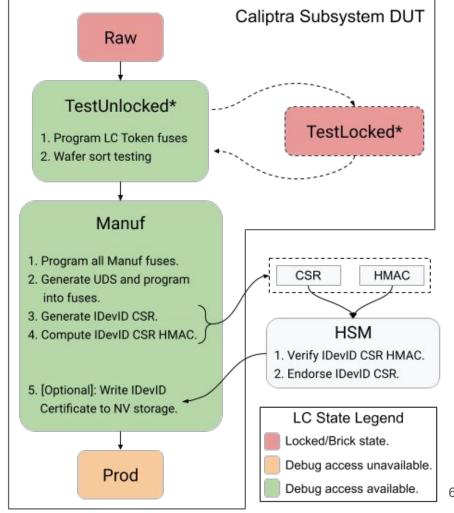

Certificate Types	Signature Size (Bytes)	
ECDSA secp384r1	96	
ML-DSA-87	4627	

Lifecycle (LC) Architecture

- Provisioning flows are enabled by Caliptra SS LC architecture.
- Caliptra SS implements a hardware FSM in the lifecycle controller (LCC) block.
 - Based on the OpenTitan lc_ctrl block.
- FSM states are fuse-backed.
 - LC states are encoded using a 48-byte monotonically incrementing counter in fuses.
 - Transitions:
 - are actuated via a dedicated JTAG TAP
 - persist across resets (except volatile states)
 - some require password-like tokens or signatures (provisioned in fuses)
- Each life cycle state state provides varying granularity of debug access.
- All devices start in Raw state (brick sate).
- Devices end in a functional state (Prod or ProdEnd) with limited debug access.
- TestUnlocked* and Manuf states aid provisioning by providing debug access.

Lifecycle States and Debug Access

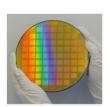
- LC states gate debug access:
 - JTAG TAP access
 - DFT access
- Three Caliptra
 Subsystem JTAG TAPs
 - Caliptra Core
 - Caliptra MCU
 - LCC (always accessible)
- Guidelines for additional Chip-Level TAP (CLTAP)
- Two DFT paths:
 - Subsystem
 - SoC


Lifecycle State	JTAG Access	DFT Access
Raw	LCC	None
TestUnlocked[0-7]	LCC, CLTAP*, MCU, Core	SS, SoC
TestLocked[0-7]	LCC	None
Manuf	LCC, CLTAP*	None
Manuf Debug Unlock	LCC, CLTAP*, MCU, Core	SoC*
Prod	LCC	None
Prod Debug Unlock	LCC, CLTAP*, MCU, Core	SoC*
ProdEnd	LCC	None
RMA	LCC, CLTAP*, MCU, Core	SS, SoC
Scrap	LCC	None

^{*} Integration Configurable

Provisioning Flow

- All device start in "Raw" LC state.
- March through LC states, performing provisioning operations along the way.
- End in a "Prod[End]" LC state.
- Each LC state gates chip functionality for security.
 - **Brick states**
 - Debug access enabled states
 - Debug access disabled states
- TestUnlocked*
 - Program token fuses
 - Debug access enables wafer testing
- Manuf
 - program most fuses
 - generate/endorse IDevID certificate


IDevID Provisioning Scenarios

	Scenario	UDS Provision	IDevID CSR Harvesting	IDevID Cert Endorsement	Device Delivery
	1) Vendor and owner are the same	Owner ATE	Owner	- Endorsed + stored in HSM - Sent to secure database for later endorsement	Owner manages provisioning infra
	2) Vendor builds for owner	Vendor ATE	Vendor, securely sent to Owner	Owner endorses CSR at ingestion	Shipped with UDS only (no endorsed IDevID cert)
	3) Vendor builds for open market	Vendor ATE	Vendor	Vendor PKI endorses	Shipped fully provisioned (only field entropy programmed later)

IDevID Certificate Provisioning and DOT

Scenario 1 & 2

Wafer Probe

 Program Serial number or SoCID used for lookup

OSAT: Packaged Parts Final Test / System Level Test

- Test program to pgm UDS
- Test program to extract IDEVID CSR (GET IDEVID CSR)
- · Test program to get LDEVID cert (GET LDEVID CERT)
- CSR & LDEVID cert stored in test database paired with S/N
- pass SN list to L5/L10 w/ shipment
- Push IDEVID CSR and LDEVID CERT to HKMS in sideband, batch mode

HKMS

L10 stage

- Complete testing
- Pull IDEVID CA certificate by S/N & pgm in fuses
- Move to production image

L11 stage

Datacenter / dock

Microsoft contract process

- · Program field entropy fuses, Ownership transfer process
- · Push enrollment blob to **HKMS** {nonce, LDEVID after field entropy, Alias FMC CSR}
- · Get enrollment certificates from HKMS
- Provision endorsed Certs → LDEVID (MSFT PKI), Alias FMC (MSFT EG key), DOT blob

IDevID Certificate Provisioning and DOT

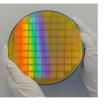
Scenario 3

Vendor database S/N, IDEVID & LDEVID (before field entropy)

IDEVID cert rooted in 3P vendor CA

- Out of band dump of identities for parts owner received
- · Cross-check with actual devices received

HKMS


CSS (confidential signing service) opensource ledger

Datacenter / dock

3P Vendor managed

Wafer Probe

OSAT: Packaged Parts Final Test / System Level Test

Local Database

- Complete testing
- · Move to production image
- · Program field entropy, Ownership transfer
- get LDEVID cert after field entropy.
- Get Alias_{EMC} CSR
- · Store in local database & push LDEVID cert, Alias_{EMC} CSR to HKMS in batch mode

L11 stage

- Pull endorsed Alias_{EMC} cert by S/N
- Provision Alias_{FMC} cert
- If available (dependent on signing infra changes), provision LDEVID cert endorsed by owner PKI

In Field Fuse Programming

Purpose:

Enable owners to update select fuse partitions after manufacturing for security actions like key rotation or invalidation.

- Enter a production (Prod/ProdEnd) lifecycle state.
- Only designated in-field programmable partitions can be updated.
- Each fuse word remains one-time programmable. (No erased)
- Partition lock fuses (block all further writes unless zeroization is supported.)

Questions

