Heat Stress

OSHA Technical Manual

Overview

Physiology of Heat Stress Causal factors Heat Disorders & Health Effects Work-load assessment

Control

During both rest and activity, the human body tries to maintain an internal temperature of 98.6 F.

- Hot weather, heat sources, and hard work raise the body's core temperature.
 - Heated blood is pumped to the skin's surface, where body heat transfers to the environment, if cooler.
- If heat has to be shed faster, sweat carries it outside skin and evaporates to aid cooling.

- During heavy work, a body can lose 1-2 liters of water per hour.
- After 2-3 hours of fluid loss, a person is likely to:
 - Lose endurance
 - Become uncomfortable
 - Feel hot
 - Become thirsty

- The longer a body sweats, the less blood there is to carry excess heat to skin or oxygen and nutrients to muscles.
- After 3 hours, a dehydrated worker may experience:
 - Headaches
 - Muscle fatigue
 - Loss of strength
 - Loss of accuracy and dexterity
 - Heat cramps
 - Reduced alertness
 - Nausea

- Water is key to cooling body and combatting heat stress.
- Without fluid replacement during an extended period of work, the body is at risk of exhaustion.
- Untreated heat exhaustion may lead to heat stroke.

Causal Factors

Mage, weight, degree of physical fitness

Degree of acclimatization, metabolism

Use of alcohol or drugs, and a variety of medical conditions such as hypertension all affect a person's sensitivity to heat

Causal Factors

The type of clothing worn must be considered

Prior heat injury predisposes an individual to additional injury.

Heat Disorders & Health Effects

Heat Stroke
Heat Exhaustion
Heat Cramps
Heat Collapse
Heat Rashes
Heat Fatigue

Heat Stroke

Occurs when the body's system of temperature regulation fails and body temperature rises to critical levels This condition is caused by a combination of highly variable factors, and its occurrence is difficult to predict Heat stroke is a medical emergency

Stroke - Primary Signs & Symptoms

Confusion; irrational behavior; loss of consciousness; convulsions

Lack of sweating (usually); hot, dry skin; and an abnormally high body temperature, e.g., an internal temperature of 105.8°F

If body temperature is too high, it causes death

Stroke - Treatment

Professional medical treatment should be obtained immediately. The worker should be placed in a shady area and the outer clothing should be removed.

The worker's skin should be wetted and air movement around the worker should be increased to improve evaporative cooling until professional methods of cooling are initiated and the seriousness of the condition can be assessed. Fluids should be replaced as soon as possible

Heat Exhaustion

Signs and symptoms

Headache, nausea, vertigo, weakness, thirst, and giddiness

Heat exhaustion - Treatment

Removed from the hot environment and given fluid replacement

They should also be encouraged to get adequate rest

Heat exhaustion - Concerns

Heat exhaustion should not be dismissed lightly for several reasons Fainting associated with heat exhaustion can be dangerous because the victim may be operating machinery or controlling an operation

Victim may be injured when he or she faints

Heat Cramps

Caused by performing hard physical labor in a hot environment. These cramps have been attributed to an electrolyte imbalance caused by sweating

It is important to understand that cramps can be caused by both too much and too little salt

Heat Cramps

Thirst cannot be relied on as a guide to the need for water; instead, water must be taken every 15 to 20 minutes in hot environments

Heat cramps - Treatment

Under extreme conditions, such as working for 6 to 8 hours in heavy protective gear, a loss of sodium may occur

Recent studies have shown that drinking commercially available carbohydrateelectrolyte replacement liquids is effective in minimizing physiological disturbances during recovery

Heat collapse "Fainting"

In heat collapse, the brain does not receive enough oxygen because blood pools in the extremities the onset of heat collapse is rapid and unpredictable

Heat collapse - Prevention

The worker should gradually become acclimatized to the hot environment

Heat Rashes

Most common problem in hot work environments

Prickly heat is manifested as red papules and usually appears in areas where the clothing is restrictive

Heat Rashes

Prickly heat occurs in skin that is persistently wetted by unevaporated sweat,

Heat rash papules may become infected if they are not treated

In most cases, heat rashes will disappear when the affected individual returns to a cool environment.

Heat Fatigue

A factor that predisposes an individual to heat fatigue is lack of acclimatization

Heat fatigue Signs & Symptoms

The signs and symptoms of heat fatigue include impaired performance of skilled sensorimotor, mental, or vigilance jobs

Heat fatigue - Treatment

There is no treatment for heat fatigue except to remove the heat stress before a more serious heat-related condition develops.

Control

The five major types of engineering controls

- Ventilation
- Air cooling
- Fans
- Shielding
- Insulation

Engineering Controls

<u>General ventilation</u> is used to dilute hot air with cooler air (generally cooler air that is brought in from the outside) Air treatment/air cooling differs from ventilation because it reduces the temperature of the air by removing heat (and sometimes humidity) from the air

Engineering Controls

Air conditioning is a method of air cooling, but it is expensive to install and operate

Local air cooling can be effective in reducing air temperature in specific areas

Engineering Controls

Heat conduction methods include insulating the hot surface that generates the heat and changing the surface itself - Shields, can be used to reduce radiant heat,

i.e. heat coming from hot surfaces within the worker's line of sight

Administrative Controls & Work Practices

Administrative Controls & Work Practices

Dangers of using drugs, including therapeutic ones, and alcohol in hot work environments
 Use of protective clothing and equipment
 Coverage of environmental and medical surveillance programs and the advantages of worker participation in such programs

Temperature (F) versus Relative Humidity (%)											
°F	90%	80%	70%	60%	50%	40%					
80	85	84	82	81	80	79					
85	101	96	92	90	86	84					
90	121	113	105	99	94	90					
95		133	122	113	105	98					
100			142	129	118	109					
105				148	133	121					
110						135					

HI	Possible Heat Disorder:
80°F - 90°F	Fatigue possible with prolonged exposure and physical activity.
90°F - 105°F	Sunstroke, heat cramps and heat exhaustion possible.
105°F - 130°F	Sunstroke, heat cramps, and heat exhaustion likely, and heat stroke possible.
130°F or greater	Heat stroke highly likely with continued exposure.

Output & Productivity

NASA Report CR01205-1										
Temp	75	80	85	90	95	100	105			
Loss In Work Output	3%	8%	18%	29%	45%	62%	79%			
Loss In Accuracy		5%	40%	300%	700%					

Summary

- Have an Administration program in place
- Have engineering controls in place
 - Ventilation
 - Air cooling
 - Fans
 - Shielding
 - Insulation

Heat Stress Info Web Sites

OSHA Technical Manual – Heat Stress http://www.osha.gov/dts/osta/otm/otm_iii/otm_iii_4.html Heat Stress Power Point Briefing - Agriculture http://are.berkeley.edu/heat/battleheat.AZ.sept02.ppt Department of Labor – Heat Stress http://are.berkeley.edu/heat/heatadvisory.html NIOSH links on CDC's site http://www.edu.gov/niegh/terrieg/heatstress/

http://www.cdc.gov/niosh/topics/heatstress/