1.)
$$\chi^{2} - 8| = 0$$

$$\frac{1}{\chi^{2}} = 8|$$

$$\chi^{2} = 8|$$

$$\chi^{2} = 8|$$

$$\chi^{2} = 8|$$

- * First, we will move the number on the left side to the right by doing the opposite. Since it was subtraction, we add it to
- * Now to get just X instead of X we will take the square root of both sides. * $\int X^{\lambda} = X$
- * Then when you take a square root of a number, it will always be a positive and a negative.

2)
$$\chi^{2} - 15\chi = 0$$

 $\chi (\chi - 15) = 0$
 $\chi = 0$
 $\chi = 0$
 $\chi = 15$

- * In this problem, both terms on the left side have something in common. The both have an X.
- * So we will factor the X out. Then we make a set of parentheses and will put in it what is left over when we factor out the X. (Basically it's like divine each term in the original equation by X.)
- * Then, since we have 2 expressions that are multiplied by each other that equal 0, we will set each expression equal to zero and then solve each for X.

3)
$$2^{3} + 2^{2} - 15 = 0$$

$$\frac{1}{a^{2}} + 2^{2} - 15 = 0$$

$$\frac{-b \pm \sqrt{b^{3} - 4ac}}{2a}$$

$$\frac{-b \pm \sqrt{b^{3} - 4ac}}{2a}$$

$$\frac{-(3) \pm \sqrt{(3)^{2} - 4(1)(-15)}}{2(1)}$$

- * we will use the quadratic formula.
 * a= the number in front of X²,b= the number in front of X, and c= the number by itself.
 * Replace each letter with the number that it equals.
- * Then you will type it into your calculator.
- * The first time you will use the + sign.* The second time you will use the sign.
- * These will be your 2 answers.

4.)
$$5\chi^2 - 24\chi - 5 = 0$$

$$\frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$
 Quadratic formula
$$-(-34) \pm \sqrt{(-24)^{2} - 4(5)(-5)}$$
 $\frac{2(5)}{2(5)}$

$$\chi = \begin{bmatrix} -\frac{1}{5}, 5 \end{bmatrix}$$

- * we will use the quadratic formula.
 * a= the number in front of X¹, b= the number in front of X, and c= the number by itself.
- * Replace each letter with the number that it equals.
- * Then you will type it into your calculator.
- The first time you will use the + sign.
- * The second time you will use the sign.
- * These will be your 2 answers.

$$\chi(\chi-13) + 42 = 0$$

$$\chi^{2} - (3\chi + 42 = 0)$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$\downarrow = -13 \qquad c = 42$$

$$\frac{-(-13) \pm \sqrt{(-13)^{3} - 4(1)(42)}}{2(1)}$$

$$\chi = 6.7$$

- First we must use the distributive property to get rid of the parentheses. Multiply the term outside the parentheses by each term inside the parentheses.
- * Now we are in the form where we can use the quadratic formula.
 - * a= the number in front of X ,b= the number in front of X, and c= the number by itself.
 - * Replace each letter with the number that it equals.
 - * Then you will type it into your calculator.
 - * The first time you will use the + sign.
 - * The second time you will use the sign.
 - * These will be your 2 answers.

(e)
$$49\chi^2 + 25 = 70\chi$$

$$-70\chi - 70\chi$$

$$49\chi^2 - 70\chi + 25 = 0$$

$$49\chi^2 - 70\chi + 25 = 0$$

$$49\chi^2 - 70\chi + 25 = 0$$

$$-5 + 56 - 40\chi$$

$$-6 + 70\chi^2 - 40\chi$$

$$-6 + 70\chi$$

$$-70\chi$$

* When you write the equation with all the terms on one side, be sure to put them in defending order according to the exponents.

* Now since they are are really bing numbers, instead of theming to factor it, we will use the quadratic equation.

* When using the equation, a= the number in front of X⁴, b= the number in front of X, and c= the number by itself. Don't forget to include the signs with the numbers.

* Then replace each letter in the equation with the number that goes with it.

* Then you will type it into your calculator.

* The first time, you will use the + sign.

* The second time you will use the - sign.

* These will be your 2 answers.

* In this example, the 2 answers were the same, so you only write it down once.

7.)
$$\chi^2 - 2\chi - 14 = 0$$

$$\frac{-(-3) \pm \sqrt{(-3)^2 - 4(1)(-14)}}{2(1)}$$

$$\sqrt{15 + 1}, -\sqrt{15 + 1}$$

* we will use the quadratic formula.

- * a= the number in front of X^{2} , b= the number in front of X, and c= the number by itself.
- * Replace each letter with the number that it equals.
- * Then you will type it into your calculator.
- * The first time you will use the + sign.
- * The second time you will use the sign.
- * These will be your 2 answers.

8.)
$$5x^{2}-13x+6=0$$

$$2, \frac{3}{5}$$

* a= the number in front of
$$X^{a}$$
, b= the number in front of X, and c= the number by itself.

- * Replace each letter with the number that it equals.
- * Then you will type it into your calculator.
 * The first time you will use the + sign.
 * The second time you will use the sign.
 * These will be your 2 answers.

9.)
$$7x^{2} = 7 - 4x$$

$$\frac{+4x}{7x^{2} + 4x} = 7$$

$$\frac{-7 - 7}{7x^{2} + 4x - 7} = 0$$

$$0 = 7 \quad b = 4 \quad c = -7$$

$$-4 \pm \sqrt{(4)^2 - 4(7)(-7)}$$

$$2(7)$$

- Then we will move the number to the left side by doing the opposite. Here it was addition, so we will subtract it from both sides.
- * When you write the equation with all the terms on one side, be sure to put them in defending order according to the exponents.
- * Now we will use the quadratic formula.
- a= the number in front of X2,b= the number in front of X, and c= the number by itself.
- Replace each letter with the number that it equals.
- * Then you will type it into your calculator.
- * The first time you will use the + sign.
- * The second time you will use the sign.
- * These will be your 2 answers.

$$\frac{\sqrt{53-2}}{7}$$
, $-\sqrt{53-2}$

$$3x^{2} + 6x = 2$$

$$-2 - 2$$

$$3x^{2} + 6x - 2 = 0$$

$$4x^{2} + 6x - 2 = 0$$

$$5x^{2} + 6x - 2 = 0$$

$$\frac{-6 + (6)^{2} - 4(3)(-2)}{2(3)}$$

- * We will begin by dg the distributive property to get rid of the parentheses.
- * We do this by multiplying the number outside the parentheses by terms inside the parentheses.
- Then we will move the number on the right side to the left by dg the opposite. Here it is added, so we will subtract it from both sides.
- * Now we will use the quadratic formula.
- a= the number in front of X, b= the number in front of X, and c= the number by itself.
- * Replace each letter with the number that it equals.
- * Then you will type it into your calculator.* The first time you will use the + sign.
- * The second time you will use the sign.
 * These will be your 2 answers.