1) Find the real solutions of the equation.
$$\sqrt{3\gamma-9} = 9$$

Solver
$$\sqrt{3}$$
 $\sqrt{3}$ $\sqrt{-9}$ = $\sqrt{9}$ $\sqrt{9}$ = $\sqrt{9}$ $\sqrt{$

- * First to get rid of the square root sign, we will square both sides.
- * When we do this, we can just remove the square root sign from the one side, and we square the other side.
- * Now we want to get X all by itself on one side, so we will move the number on the left side to the right side by doing the opposite. Since it is a subtraction, we will add it to both sides
- * Now, to get rid of the number in front of X, we will divide both sides by the number in front of X.

$$\left(\sqrt{21-4\chi}\right)^2 = (\chi)^2 < \frac{59\mu \text{ or both}}{5ides}$$

$$21 - 4\chi = \chi^2$$

$$-\chi^{2} + 21 - 4\chi = 0$$

$$-(-4) \pm \sqrt{(-4)^2 - 4(-1)(21)}$$

$$\chi = 3$$
, -7 a square root

can never equal a regative number

- * First to get rid of the square root sign, we will square both sides.
- * When we do this, we can just remove the square root from the one side and we just square the other side.
- * Now, since we have an X, that can not cancel out, we will move everything to the same side of the equal sign, so that everything will equal 0.
- * We will move the term on the right to the left by doing the opposite, add or subtract.
- * Now we have everything equal to 0.
- * Rearrange so that the x a term is first, then the s term, then the number by itself.
- * Now we will use the quadratic formula.

 * a= the number in front of X²,b= the number in front of X, and c= the number by itself.
- * Replace each letter with the number that it equals.
- * Then you will type it into your calculator.
- * The first time you will use the + sign.
- * The second time you will use the sign.
- * These will be your 2 answers.
- * However, if you tried to put each of those numbers back into the original equation, you would see that a square root could not equal a negative number, so it could not be -7.