Chapter 5.2 Notes **Properties of Rational Functions**

- 1. Analyze the polynomial function $f(x) = x^{3}(x-8)$.
 - a. Determine the end behavior of the graph of the function.

$$y = x^{2}(x-8)$$

$$\chi^{3} - 8\chi^{2}$$

$$\uparrow$$

$$y = \chi^{3}$$

. The end behavior is the X to the largest degree.

b. Find the x and y-intercepts of the graph of the function.

b. Find the x and y-intercepts of the graph of the function.

$$y = \chi^2(\chi - 8) \qquad \text{for } \chi \text{-intercepts}; \qquad y = \chi^2(\chi - 8) \qquad \text{for } \chi \text{-intercepts}; \qquad y = \chi^2(\chi - 8) \qquad \text{Replace } \chi \text{ with 0}$$

$$0 = \chi(\chi - 8) \qquad \text{make } y = 0 \text{ and solve for } \chi. \qquad y = 0$$

$$\chi^2 = 0 \qquad \chi - 8 = 0 \qquad \text{and solve for } \chi. \qquad y = 0$$

$$\chi^2 = 0 \qquad \chi - 8 = 0 \qquad \text{and solve for } \chi. \qquad y = 0$$

$$\chi = 0 \qquad \text{and solve for } \chi. \qquad y = 0$$

$$\chi = 0 \qquad \text{and solve for } \chi. \qquad y = 0$$

$$y = \chi^2(\chi - 8)$$
 for y-intercepts 0
 $y = 0^2(0-8)$ Replace χ with 0
 $y = 0$ and solve for y
 $y = 0$
 $y = 0$

2-intercepts = 0,8

c. Determine the zeros of the function and their multiplicity. Use this information to determine whether the graph crosses or touches the x-axis at each x-intercept.

*The zeros are the same as the x-intercepts.

The multiplicity is equal to the exponent that goes with the zero. $\chi^2 = 0$ is 2 $\chi = 8$ is 1

· If the multiplicity is even, then the graph touches the x-axis at that point + then turns.

· If the multiplicity is odd, then the graph crosses the x-axis at that point.

* The lesser zero of the function is of the multiplicity 2, so the graph of f touches the x-axsis at x = 0.

* The greater zero of the function is of multiplicity I, so the graph of f crosses the x-axis at X = 8.

d. Determine the maximum number of turning points on the graph of the function.

· To determine the maximum number of turning points, find the highest degree of the function + subtract 1.

e. Use the above information to draw a complete graph of the function. Choose the correct graph.

· Lacking for graph where touches x-axis on 0 ? crosses at 8.

. Also since the end behavior was a (t) χ^3 , the right side of the graph will point upwards.

- 2. Analyze the polynomial function $f(x) = (x + 6)(x 4)^{3}$
 - a. Determine the end behavior of the graph of the function.

$$y = (x+6)(x-4)^{2}$$

$$(x-4)(x-4)$$

$$x^{2}-4x-4x+16$$

$$(x+6)(x^{2}-8x+16)$$

$$x^{3}-8x^{2}+16x+16x^{2}-48x+96$$

$$x^{3}+8x^{2}-32x+96$$

$$y=x^{3}$$

b. Find the x and y-intercepts of the graph of the function.

b. Find the x and y-intercepts of the graph of the function.

$$y = (\chi + \ell_0)(\chi - 4)^2$$

$$0 = (\chi$$

the graph of the function.

$$(\chi + l_{e})(\chi - 4)^{2}$$

$$-0r - (\chi + l_{e})(\chi - 4)(\chi - 4)$$

$$\chi - \chi - \chi - \chi$$

$$\chi^{3} - 48\chi + 9l_{e}$$

$$\chi - \chi^{3}$$

$$\chi^{3} - \chi^{5}$$

y-intercepts = 96

c. Determine the zeros of the function and their multiplicity. Use this information to determine whether the graph crosses or touches the x-axis at each x-intercept.

*The zero are the same as the x-intercepts.

The multiplicity is equal to the exponent that goes with the zero.

om here + the 4 came from here + the exponent is 2 so ...

has multiplicity of 1 $\chi = 4$ has multiplicity of 2 - le come from here + the exponent is 1 so ... x=-6 has multiplicity of 1

- · If the multiplicity is even, then the graph touches the x-axis at that point + then turns.
- · If the multiplicity is odd, then the graph crosses the x-axis at that point.

* The greater zero of the function is of multiplicity
$$2$$
, the x-axis at biggs $x = 4$.

- d. Determine the maximum number of turning points on the graph of the function.
 - · To determine the maximum number of turning points, find the highest degree of the function of subtract 1.

e. Use the above information to draw a complete graph of the function. Choose the correct graph.

- · Looking for graph where crosses x-axis on -6 ? touches on 4
- . also since the end behavior was a (t) χ^3 , the right side of the graph will point upwards.

- 3. Graph the polynomial function f(x) = x(3-x)(7-x).
 - a. Determine the end behavior of the graph of the function.

$$y = x(3-x)(7-x)$$

$$(3x-x^{2})(7-x)$$

$$21x-3x^{2}-7x^{2}+x^{3}$$

$$21x-10x^{2}+x^{3}$$

$$x^{3}-10x^{2}+21x$$

$$- \text{or} - \frac{\chi^3}{(\chi) \cdot (-\chi)} \cdot (-\chi)$$

$$- \text{or} - \frac{\chi}{(\chi)} \cdot (-\chi) \cdot (-\chi)$$

b. Find the x and y-intercepts of the graph of the function.

$$y = \chi(3-\chi)(7-\chi)$$
 for χ -intercepts:
 $0 = \chi(3-\chi)(7-\chi)$ make $y = 0$ and
 $\chi = 0$ $3-\chi = 0$ $7-\chi = 0$
 $\frac{+\chi}{3-\chi}$ $\frac{+\chi}{7-\chi}$ $\frac{+\chi}{7-\chi}$

$$y = \chi(3-\chi)(7-\chi)$$
 Replace χ with 0
 $y = O(3-O)(7-O)$ and solve for y .
 $y = O$

2-intercepts = 0,3,7

y-intercepts = 0

c. Determine the zeros of the function and their multiplicity. Use this information to determine whether the graph crosses or touches the x-axis at each x-intercept.

*The zero are the same as the x-intercepts.

$$x=0$$
, $x=3$, $x=7$ The zero's of f are $0,3,7$

- The multiplicity is equal to the exponent that goes with the zero. $\chi=0$ is 1 $\chi=3$ is 1 $\chi=7$ is 1
- · If the multiplicity is even, then the graph touches the x-axis out that paint + then turns.
- · If the multiplicity is odd, then the graph crosses the x-axis at that point.

- * The smallest zero is a zero of multiplicity [], so the graph of f crosses the x-axis at x = 0.
- # The middle zero is a zero of multiplicity I, so the graph of f Crosses the x-axis at x = 3
- * The largest zero is a zero of multiplicity $[\]$, so the graph of f crosses the x-axis at x=7
- d. Determine the maximum number of turning points on the graph of the function.
 - · To determine the maximum number of turning points, find the highest degree of the function of subtract 1.

e. Use the above information to draw a complete graph of the function. Choose the correct graph.

- · Looking for graph where crosses x-axis on 0,3,+
- . Olso since the end behavior was a (+) χ^3 , the right side of the graph will point upwards.

4. Graph the polynomial function $f(x) = (x + 3)^{3}(x - 4)^{2}$

a. Determine the end behavior of the graph of the function.

$$y = (x+3)^{2}(x-4)^{2} - 0R - 4 + 3(x+3)(x+3)(x-4)(x-4) \\
y = (x^{2}+3x+3x+9)(x^{2}-4x-4x+6) \\
y = (x^{2}+6x+9)(x^{2}-6x+16) \\
y = x^{4}-8x^{3}+16x^{2}+6x^{3}-48x^{2}+96x+9x^{2}-72x+144 \\
y = x^{4}-2x^{3}-23x^{2}+24x+144 \qquad y = x^{4}$$

b. Find the x and y-intercepts of the graph of the function.

$$y = (x+3)^{2} (x-4)^{2}$$
 for x-intercepts:
 $0 = (x+3)^{2} (x-4)^{2}$ make $y = 0$ and
 $x+3 = 0$ $x-4=0$
 $x = -3$ $x = 4$

aption #2

The function.

$$-OR - (x+3)^{2}(x-4)^{2}$$

$$(x+3)(x+3)(x-4)(x-4)$$

$$(x) \cdot (x) \cdot (x) \cdot (x)$$

$$-9x^{2}-72x+144$$

$$y = x^{4}$$

 $y = (x+3)^{2}(x-4)^{2}$ $y = (0+3)^{2}(0-4)^{2}$ $y = (0+3)^{2}(0-4)^{2}$ and solve for y. y = 1004-144

y-intercepts = 144

c. Determine the zeros of the function and their multiplicity. Use this information to determine whether the graph crosses or touches the x-axis at each x-intercept.

*The zero are the same as the X-intercepts. x=-3 x=4 The zero's of f arc (-3,4)

The multiplicity is equal to the exponent that goes with the zero. ν= -3 is 2 ν= 4 is 2

· If the multiplicity is even, then the graph touches the x-axis at that point + then turns.

· If the multiplicity is odd, then the graph crosses the x-axis at that point.

* The lesser zero of the function is of the multiplicity 2, so the graph of f touches the x-axsis at x = -3

* The greater zero of the function is of multiplicity ∂ , so the graph of f touches the x-axis at X = H.

d. Determine the maximum number of turning points on the graph of the function.

· To determine the maximum number of turning points, find the highest degree of the function + subtract 1.

e. Use the above information to draw a complete graph of the function. Choose the correct graph.

· Looking for graph where touches x-axis on -3+4.

· Olso since the end behavior was a (t) x4, so both sides of the graph will point upwards.