Chapter 6.1 Notes Composite Functions

1. Given f(x) = 3x and $g(x) = 3x^{3} + 5$, find the following expressions.

$$f(x) = 3x \qquad g(x) = 3x^2 + 5$$

a)
$$(f \circ g)(4) =$$

$$g(4) = 3\pi^{2} + 5$$

$$3(4)^{2} + 5 \leftarrow \text{Type into}$$

$$= 53$$

$$f(53) = 3\pi$$

$$3(53) \leftarrow \text{Type into}$$

$$3(3)$$

$$(59)$$

c.) fof (1) =
$$3x$$

 $3(1)$
= $3x$
 $3(3)$

b.)
$$(g \circ f)(a)$$
 $f(a) = 3 \chi$
 $3(a) \leftarrow \text{Type into}$
 $= b \quad \text{colordator}$
 $3(b)^2 + 5 \leftarrow \text{Type into}$
 $3(b)^2 + 5 \leftarrow \text{Type into}$

d)
$$g \circ g(0) = 3x^2 + 5$$

 $3(0)^2 + 5$
 $= 5$
 $3(5)^2 + 5$
 $3(5)^2 + 5$

2. Given $f(x) = 5x^{2} - 4$ and $g(x) = 5 - 1/2 x^{2}$, find the following expressions.

$$f(x) = 5x^2 - 4$$
 $g(x) = 5 - \frac{1}{2}x^2$

a.)
$$(f \circ g)(4) =$$

$$\frac{1}{3}(4) = 5 - \frac{1}{3}\chi^{2}$$

$$= 5 - \frac{1}{3}(4)^{2} \leftarrow \text{Type into}$$

$$= -3$$

$$f(-3) = 5\chi^{2} - 4$$

$$5(-3)^{2} - 4 \leftarrow \text{Type into}$$
Colculator
$$+1$$

c.)
$$(f \circ f)(1) = 5x^{2} - 4$$

$$= 5(1)^{2} - 4$$

$$= (1)^{2} = 5x^{2} - 4$$

$$= (1)^{2} = 5x^{2} - 4$$

$$= (1)^{2} = 6x^{2} - 4$$

6.)
$$(g \circ f)(a) =$$

$$f(a) = 5\chi^{2} - 4$$

$$5(a)^{2} - 4 \leftarrow \text{Type into}$$

$$coloulator$$

$$g(16) = 5 - \frac{1}{3}\chi^{2}$$

$$5 - \frac{1}{9}(16)^{2} \leftarrow \text{Type into}$$

$$coloulator$$

$$-123$$

$$d.)(g \circ g)(0) = \frac{1}{2} (0)^{2}$$

$$= 5 - \frac{1}{2} (0)^{2}$$

$$= 5 - \frac{1}{2} (5)^{2}$$

$$5 - \frac{1}{2} (5)^{2}$$

3. Given $f(x) = 6\sqrt{x}$ and g(x) = 2x, find the following expressions.

$$f(x) = b\sqrt{x}$$
 $g(x) = 2x$

a)
$$(f \circ g)(4) =$$

$$g(4) = 2x$$

$$= 2(4)$$

$$= 8$$

$$f(8) = 61x$$

$$618$$

$$= 1312$$

$$coloulator$$

$$coloulator$$

$$(016)$$

c.)
$$(f \circ f)(1) = 61\%$$

$$f(1) = 61\%$$

$$616$$

$$616$$

b.)
$$(g \circ f)(a) =$$

$$f(a) = 6 \pi$$

$$6 \pi = 2 \pi$$

$$g(a \circ f)(a) = 2 \pi$$

4. Given
$$f(x) = |x|$$
 and $g(x) = 2/x^2 + 1$, find the following expressions.

$$f(x) = |x|$$
 $g(x) = \frac{2}{x^2+1}$

a.)
$$(f \circ g)(4) =$$

$$g(4) = \frac{2}{x^2 + 1}$$

$$= \frac{2}{(4)^2 + 1}$$

b.)
$$(gof)(2) = |x|$$

= |2|
= 2

$$3(3) = \frac{3}{3} + 1$$

c.)
$$(f \circ f)(1) =$$
 $f(1) = |x|$
 $= |1|$
 $= |x|$
 $= |x|$
 $= |x|$
 $= |x|$

$$d.) (999)(0) = \frac{3}{\chi^2 + 1}$$

$$= \frac{3}{0^2 + 1}$$

$$= \frac{3}{\chi^2 + 1}$$

$$= \frac{3}{\chi^2 + 1}$$

$$= \frac{3}{\chi^2 + 1}$$

$$= \frac{3}{\chi^2 + 1}$$

5. If f(x) = x + 4 and g(x) = 3, then which of the following does $(f \circ g)(x)$ equal?

$$f(x) = \sqrt{x+4} \quad \overline{x}$$

$$g(x) = \frac{3}{x}$$

$$(f \circ g)(x) = 3$$

$$= 3$$

$$f(\frac{3}{x}) = (x+4)$$

$$\sqrt{\frac{3}{2}} + 4$$

6. Find functions f and g so that $f_{o}g = H$.

$$H(x) = \sqrt{x^2 + 17}$$

$$f \circ g = H$$

$$\Rightarrow \chi^2 + 17$$

$$\Rightarrow \chi^2 + 17$$

$$\Rightarrow \chi^2 + 17$$

$$\Rightarrow \chi^2 + 17$$

So:
$$f(x) = \sqrt{x} + 17$$

- * To go from H to f(x) and g(x) you must think backwards from what you were doing in the previous questions.
- * The expression under the € will be the g(x).
- * The will be the f(x).

* The
$$f(x)$$
 will be whote on the outside, ex. $(x)^2$, $(x)^2$

* The g(x) will be whats in side the
$$T_1 ()^2$$
, or $| | |$.

7. Find functions f and g so that $f \cdot g = H$.

$$H = (9x+1)^{6}$$

- * To go from H to f(x) and g(x) you must think backwards from what you were doing in the previous questions.
- * The expression inside the () will be the q(x).
- g(x).
 * The () ϕ will be the f(x).

So:
$$f(x) = (x)^{6}$$

$$g(x) = 9x+1$$

8. Find functions f and g so that f g = H.

$$H(x) = |9x + 2|$$

So:
$$f(x) = |x|$$

 $g(x) = 9x+2$

- * To go from H to f(x) and g(x) you must think backwards from what you were doing in the previous questions.
- * The expression inside the ∤ will be the g(x).
- * The | | will be the f(x).