Chapter 6.2 Notes One-to-one Functions & Inverse Functions

- * one-to-one function: a function is not one-to-one if 2 different inputs correspond to the same output.

 * In other words, if an you cannot have a repeat in the y's.
- 1. For the following function, determine whether the function is one-to-one.

· Since there are no repeat numbers in the y's, then it is a one-to-one function.

2. For the following function, determine whether the function is one-to-one.

· Since there are no repeat numbers in the y's, then it is a one-to-one function.

- * Horizontal line test: If every horizontal line intersects the graph of a function f in at most one point, then f is one-to-one.
- 3. The graph of a function f is given. Use the horizontal-line test to determine whether f is one to one.

· Draw than iontal lines across the graph.

· If each line doesn't cross the graph
more than I time, then it's a

one-to-onc.

4. The graph of a function f is given. Use the horizontal-line test to determine whether f is one to one.

· Draw harizontal lines across the graph.

· If each line doesn't cross the graph more than I time, then it's a one-to-onc.

* Inverse function: you switch the x an y's

$$\begin{array}{ccc} ex.) & (2,3) & (3,2) \\ \uparrow & \uparrow & \longleftrightarrow & \chi & y \end{array}$$

- 5. The graph of a one-to-one function is shown to the right. Draw the graph of the inverse function f -l
 - Take each point + flip the 2 + y and the plot those points $(4, \frac{16}{19}) \rightarrow (\frac{16}{19}, \frac{14}{19})$ $(-4, -4) \rightarrow (-4, -4)$

- 6. The graph of a one-to-one function is shown to the right. Draw the graph of the inverse function f
 - · Find 2 paints on the graph

 -Then.
 - Take each point + flip the x + y and the plot those

 Paints $(2.5) \Rightarrow (5.2)$ $(0.1) \rightarrow (1.0)$

7. Find the inverse of the linear function f(x) = mx + b, where $m \neq 0$.

$$f(x) = mx + b$$

$$y = mx + b$$

$$x = my + b$$

$$y = my$$

- * Replace f(x) with y.
- * now switch the x and y in the equation.
- * Then solve for y.
 - * Move the b to the other side by doing the opposite.
 - * Then divide both sides by the number in front of y.

8. Are the functions inverses of each other?

- * Write down the first equation and replace f(x) with y.
- * now switch the x and y in the equation.
- * Then solve for y.
 - * Move the number on the right to the left by doing the opposite.
 - * Then divide both sides by the number in front of y.
- * Now since that equation looks just like the g(x) equation, then thy are inverse of each other.

9. Are the functions inverses of each other?

$$f(x) = (x-5)^{3}, x \ge 5; g(x) = (x+5)^{3}$$

$$y = (x-5)^{3}$$

$$x = (y-5)^{3}$$

Now for $\sqrt{\chi} = \sqrt{(y-5)^2}$

7 x +5 = y

No

* Look to see if this new copation is the same as the Jul equation

10. Are the functions inverse of each other?

$$f(x) = x^{3} - 4$$

$$y = x^{3} - 4$$

$$y = y^{3} - 4$$

$$y = y^{3}$$

Equation is the same as the

and equation

- * Write down the first equation and replace f(x) with y.
- * now switch the x and y in the equation.
- * Then solve for y.
- * Now since that equation does not look just like the g(x) equation, then thy are not inverse of each other.

- * Write down the first equation and replace f(x) with y.
- * now switch the x and y in the equation.
- * Then solve for y.
- * Now since that equation looks just like the g(x) equation, then thy are inverse of each other.