Chapter 6.3 Notes **Exponential Functions**

- * Average rate of change formula: change in y change in x } used when determining
- * Exponential function formula: f(x) = Ca Where c = constant, and a = growth factor.
- 1. Determine whether the function given by the table is linear, exponential, or neither. If the function is linear, find a linear function that models the data; if it is exponential, find an exponent entail function that models the data.

For exponential:

$$\frac{y_2}{y_1} \dots \frac{y_3}{y_2} \dots \frac{y_4}{y_3} \dots \frac{y_5}{y_4}$$
 $\frac{y_3}{y_1} = \frac{1}{12} = 12$
 $\frac{y_3}{y_2} = \frac{12}{12} = 12$
 $\frac{y_4}{y_5} = \frac{144}{12} = 12$
 $\frac{y_5}{y_4} = \frac{1728}{144} = 12$

Unless the problem tells

formula

 $f(x) = f(x) = f(x)$
 $f(x) = f(x) = f(x)$

exponent

= 1.12 x \(\text{this x is an exponent}

2. Determine whether the function given by the table is linear, exponential, or neither. If the function is linear, find a linear function that models the data; if it is exponential, find an exponent entail function that models the data.

		t(x)	
	Χ	y	
λı	-1	47	4,
¥2	0	١	y 2
Y3	1	7, 4	43
γų	3	49	44
XS	3	343	<u>+</u> 45

$$\frac{y_2}{y_1} \dots \frac{y_3}{y_2} \dots \frac{y_4}{y_3}$$

$$\frac{y_3}{y_2} = \frac{7}{4} = 7$$

formula
$$f(x) = Cax$$
unless the problem tells
$$= 1 \cdot (\frac{7}{4})^{x}$$

$$C = 1$$

$$= 1 \cdot (\frac{7}{4})^{x}$$

Harizontal asymptote:

4. Use transformations to graph the function. Determine the domain, range, horizontal asymptote, and y-intercept of the function.

Domain: (-10, 10) * Look at

Range: (2,00) of lack of y-axis from bottom to

Horizontal asymptote: (y=2) * Should be some number as in your range.

y-intercept: 2+4x-1 -> 2+4°-1 -> 2+4°-1 -> 9 * replace x with 0 and solve for y.

6. Solve the equation.

The bases are the same
$$\frac{1}{4} - x = 256$$

Then set the same $\frac{1}{4} - x = 4$

Then set the same $\frac{1}{4} - x = 4$

Then set $\frac{1}{4} - x = 4$

Then set $\frac{1}{4} - x = 4$

The each $\frac{1}{4} - x = 4$

The same $\frac{1}{4} - x = 256$

The same $\frac{1}{4} - x$

- · We want the bases the Same.
 - · Take the base on the left + See how many times you must multiply it by itself to get the number on the right.
 - · Write down that base, + make the exponent the # of times you had to multiply it together.

* Now, sinew your bases are the Same, your exponents will = each other. 7. Solve the equation.

$$5^{5x+1} = 125$$
 $5 \cdot 5 \cdot 5 = 125$
 $5 \cdot 5 \cdot 5 = 125$

- · We want the bases the Same.
 - · Take the base on the left to See how many times you must multiply it by itself to get the number on the right.
 - · Write down that base, + make the exponent the # of times you had to multiply it together.
- * Now, sinew your bases are the same, your exponents will = each other. . Then solve for X.

8. Solve the equation.

$$\begin{pmatrix} 3 \\ 3 \\ 3 \end{pmatrix}^{\times} = \begin{pmatrix} \frac{37}{8} \\ \frac{3}{9} \\ \frac$$

- · We want the bases the Same.
 - · Take the base on the left + See how many times you must multiply it by itself to get the number on the right-
 - · Write down that base, + make the exponent the # of times you had to multiply it together.
- * Now, since your bases are the Same, your exponents will = each other.

- · We must come up with a base that could be the base of both.
- . Write down that bases + the exponent. It will be multiplied by what the original exponent was.
- · Take the base on the left + See how many times you must multiply it by itself to get the number on the right.
 - · Write down that base, + make the exponent the # of times you had to multiply it together.
- * Now, since your bases are the same, your exponents will = each other.
 - · Now Salve for X.