Intro to College Math: Chapter 12.2 Quadratic Formula

$$\chi = -b \pm \sqrt{b^2 - 4ac}$$

1. Solve the equation using factoring or quadratic formula.

$$\chi^{2} - 10 \chi + 16 = 0$$

$$\chi^{2} - 10 \chi + 16 = 0$$
 $\uparrow \qquad \uparrow \qquad \uparrow$
 $\alpha = 1 \qquad b = -10 \qquad c = 16$

$$\gamma = 8, 2$$

* make Sure it "=0", then...

$$\alpha z + in$$
 front of x^2
 $b = + in$ front of x
 $c = + by$ itself.

* Replace each letter in the quadratic formula with it's corresponding #.

To type into calculator

- 1) Press fraction butter []
- 3 Press negative button (-)
- 3 Press parenthesis button [
- 1 Type in # for "b"
- 3 Press close parenthesis button)
- @ Press plus sign +
- Press 2nd button then no button for 1
- 8 Press open parenthesis [], type in # for "b", press close parenthesis [], then Press [x²].
- 9 Press minus button, then #'s for "a" + "c" in parenthesis.
- 10 Go down a type 2 + number for 'a" in ()

$$\chi^2 - 6\chi + 5 = 0$$

$$\chi^{2} - l_{0}\chi + 5 = 0$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$0=1 \qquad b=-6 \qquad c=5$$

* make Sure it "=0", then...

$$0 = 0$$
, then...
 $0 = 0$, then...

$$-(-6) \pm \sqrt{(-6)^2 - 4(1)(5)}$$

$$\chi = \begin{bmatrix} 5, 1 \end{bmatrix}$$

3. Solve the equation using factoring or quadratic formula.
$$\alpha^{2} - Q_{\alpha} = 0$$

$$0^{2} - 90 = 0$$

$$0 = 0$$

$$0 = 0$$

* make Sure it "=0", then...

$$0 = 0$$
, then...
 $0 = 0$, then...

$$\frac{-(-9) \pm \sqrt{(-9)^2 - 4(1)(0)}}{2(1)}$$

5x2 +4x =0 4. Solve the following.

$$5x^{4} + 4x = 0$$

A 1

0=5

b=4

C=0

Guadratic { -b + \(\bar{b}^2 - 4ac} \)

* make Sure it "=0", then ... az # in front of x2 b = # in front of x C = # by itself.

* Since there is no # by itself, "C=0".

* Replace each letter in the quadratic formula with it's corresponding #.

. Then type into calculator.

To type into calculator

- 1) Press fraction butter []
- 3 Press negative button (-)
- 3 Press parenthesis button [
- 9 Type in # for "b"
- 3 Press close parenthesis button)
- @ Press plus sign [+]
- 1 Press 2nd button then 20 button for 1
- 8 Press open parenthusis [], type in # for "b", press close parenthesis D, then Press [x2]
- 9 Press minus button, then #'s for "a" + "c" in parenthesis.
- 10 Go down a type 2 + number for "a" in ()

$$(z-2)^2 = 36$$

$$Z^{2} - 2z - 2z + 4 = 36$$

$$= =$$

$$Z^{2} - 4z - 30 = 0$$

$$b = \#$$
 in Front of χ

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 Quadratic

$$-(-4) + \sqrt{(-4)^{2} - 4(1)(-32)}$$

$$-(1)$$

$$\chi = \left(8, -4 \right)$$

6. Solve the equation.
$$(\gamma - 2)^3 = 9$$

$$(\gamma-2)^2=9$$

$$\chi^{2} - 2\chi - 2\chi + 4 = 9$$
 * combine like terms

$$\chi^{2} - 4\chi + 4 = 9$$

$$\chi^{2} - 4\chi - 5 = 0$$

 $-(-4) \pm \sqrt{(-4)^{3} - 4(1)(-5)}$

2(1)

1st set of () by each term in 2nd set of

. Then type into calculator.

7. Solve by the quadratic formula. List the solutions, separated by a comma. $-4 \chi^2 = -18 \chi + 20$

$$-442+18x = 20$$

$$-4\chi^{2}+18\chi-20=0$$

$$X = 2, \frac{5}{2}$$

*more everything on the right side to the

Now Since it
$$=0$$
;
 $0 = 0$;
 $0 = 0$;
 $0 = 0$;
 $0 = 0$;

c = # by itself.

* Replace each letter in the quadratic formula with its corresponding #.

Then type into calculator.

$$15\chi^2 = 7\chi + 2$$

$$-7\chi - 7\chi$$

$$15\chi^2 - 7\chi = 2$$

$$-2 - 2$$

$$\frac{-(-7) \pm \sqrt{(-7)^{3} - 4(15)(-2)}}{2(15)}$$

$$\chi = \left(\frac{2}{3}, -\frac{1}{5}\right)$$

* more everything on the right side to the left side by adding I subtracting.

$$0 = \# \text{ in front of } x^2$$

 $b = \# \text{ in front of } x$
 $c = \# \text{ by itself.}$

9. Find all solutions of the equation by using the quadratic formula.

$$\frac{-(-6) \pm \sqrt{(-6)^2 - 4(1)(36)}}{2(1)} \leqslant$$

* make Sure it "=0", then...

$$0 = 0$$
 , then...
 $0 = 0$, then...

* If you type it all in to calculator, you get a "domain error"; so we must solve it differently.

* Type into calculator every under T.

* Since there is a (-) under the T, it comes out + becomes on "i"

* Type T and # into calculator

* Now Separate into 2 fractions, with the same denominator.

$$\frac{6}{3} \pm \frac{6\sqrt{3}}{3}i$$

* Simplify each fraction.

* For computer, must write down the equation twice, with (t) in 1st one, and (-) in 2nd one. Separate with a commo.

10. Find all solutions of the equation by using the quadratic formula.
$$4k^3 - 3k + 11 = 7$$

$$\frac{4k^{2}-3k+11=7}{-7-7}$$

$$\frac{4k^{2}-3k+4=0}{4k^{2}-3k+4=0}$$

$$\frac{1}{4k^{2}-3k+4=0}$$

$$\frac{1}{4k^{2}-3k+4=0}$$

* First move number on right to left by adding or subtracting so that it all
$$"=0"$$
.

$$\frac{-(-3)\pm\sqrt{(-3)^{2}-4(4)(4)}}{2(4)}$$

- * Type into cabulator every under T.

* If you type 155 into calculator, it doesn't simplify

$$\frac{3}{8} + \frac{\sqrt{55}}{8}i$$
, $\frac{3}{8} - \frac{\sqrt{55}}{8}i$