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   INTRODUCTION 

Mixpanel is a user analytics platform that enables our customers to analyze, learn 
and act on user behavior across their sites and apps. To help our customers better 
understand their users, we recently introduced the Impact Report. The Impact Report 
measures the effects of product or marketing launches on any KPI by leveraging 
causal inference methodologies.

The best way to understand how the Impact Report uses causal inference is to start 
with a concrete example. Suppose you are an early stage e-commerce website, and 
your front-end team recently launched a search bar on the product page of your site. 
You would assume that including a search bar will help your users find products 
faster - and therefore will improve your KPI metric - in this case, whether or not users 
added items to their carts. To measure the impact of this new feature launch, you can 
run an A/B experiment or a randomized control trial (RCT) [1] where your users are 
randomly allocated either to the old product page without the search bar (known as 
the control group) or to the new product page with the search bar (known as the 
treatment group). A/B experiments are considered the gold standard for measuring 
the causal impact of such launch events on KPI metrics. The randomized allocation 
of the treatment assignment - whether a user lands on the new or old product page 
with or without the search bar - ensures that the assignments are not confounded by 
any other factors. In this example, we can measure the causal impact of introducing 
the search bar simply by taking a difference in the number of items added to the cart 
between the treatment and the control groups.

In reality, it is not always possible to run A/B experiments. More often than not, an e-
commerce website would launch several features at the same time. Running A/B 
experiments for each feature launch may be cost-prohibitive. Other times, they might 
encounter situations where it may not be possible to run A/B experiments at all. 
Situations like this occur whenever a new version of an app is released. A major UI 
revamp or a launch event with lots of marketing around it such that we can’t show the 
change to only half of our user base can also create a similar problem. Situations like 
these, where we need to rely on retrospective observational data to measure the 
impact of a feature launch, are known as observational studies [2]. Unlike A/B 
experiments, treatment assignment in the case of observational studies is usually not 
random. When using observational data, the simple difference of a KPI metric 
between the users who used the new feature and the users who didn’t may not be 
enough to measure launch impact. 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In observational studies typical to an e-commerce setting, treatment assignments 
happen usually by means of a self-selection process in which users choose 
treatment for themselves. Imagine you released a new and improved product page 
with a search bar. Some of your users used the search bar - let’s call them adopters.  
A lot of your users didn’t use the search bar - let’s call them non-adopters. Unlike the 
control and treatment groups in A/B experiments, the adopters and non-adopters in 
observational studies suffer from self-selection bias. In our e-commerce example, 
power users of the site who land on the product page more frequently are more likely 
to encounter and use the new feature compared to less engaged users. Power users 
in general also exhibit different KPI behavior patterns than non-power users. As a 
result, taking the KPI difference between adopters and non-adopters of the new 
feature will give you a biased estimate of the actual impact. 

To obtain a more accurate estimate of the causal impact in observational studies, we 
first need to address the systematic difference between the characteristics of the 
adopters and the non-adopters. In academia, the use of propensity scores to reduce 
or eliminate self-selection bias in observational studies is widely adopted. To provide 
our customers with a more accurate and unbiased measure of the causal impact, 
Mixpanel’s Impact Report utilizes a propensity score subclassification approach 
under the hood. In this whitepaper, we aim to provide readers with an overview of the 
propensity score subclassification approach used in causal inference from 
observational data and how we built it in the Impact Report. 

The rest of this paper is organized as follows:
‣ In Section 1, we introduce the Neyman-Rubin counterfactual framework -  

the fundamental building block for many causal inference techniques. 
‣ In Section 2, we provide an overview of the assumptions required to make  

causal inference in the framework introduced  in Section 1. 
‣ In Section 3, we discuss how to calculate average causal impact conditioned  

on the assumption from Section 2. 
‣ In Section 4, we introduce the concept of propensity scores and the 

subclassification method. 
‣ Finally in Section 5, we take a closer look into how we incorporate these 

methodologies into Mixpanel’s Impact Report to provide our customers with  
an unbiased estimate of the impact of their feature launches on KPIs. 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1. NEYMAN-RUBIN COUNTERFACTUAL FRAMEWORK 

Originally proposed by Jerzy Neyman [3] and later generalized by Donald Rubin [4], the 
Neyman-Rubin counterfactual framework is based on the idea of potential outcomes, also 
known as counterfactual outcomes.  This framework is the basic building block for any 
propensity score based causal inference technique. 

For user-i, we denote as the treatment assignment indicator. In the Impact 
Report, , when user-i is an adopter (performed the launch event), and  when 
user-i is a non-adopter (didn’t perform the launch event).   is the d-dimensional 
covariates or feature vectors for user-i. In the Impact Report,  correspond to users’ past 
action data or events leading up to the new feature launch event.  is the counterfactual 
outcome when user-i is assigned the treatment, whereas  is the counterfactual outcome 
whenever user-i is not assigned to the treatment. In the Impact Report, these correspond to a 
user's potential metric event outcome depending on whether the user is an adopter or a non-
adopter respectively.

With these notations in place, 
in the Neyman-Rubin 
counterfactual framework, we 
define the treatment to have a 
causal effect on user-i if the 
counterfactual outcomes of the 
users differ, ie. .  The 
Individual Treatment Effect 
(ITE) is defined as the 
difference between these two 
counterfactuals (Equation 1). 
The average causal effect, 
usually referred to as the 
Average Treatment Effect 
(ATE) is the average over all 
individuals’ treatment effects 
(Equation 3). Conditional Average Treatment Effect (CATE) is the conditional ATE conditioned 
on covariates  (Equation 2). In practice, ATE is derived from CATE by marginalizing over 
the distribution of  (Equation 4).

Table 1 presents a sample dataset for our fictional e-commerce site. The table demonstrates 
the fundamental problem of causal inference. A user can either be an adopter or a non-
adopter; consequently, we can only observe one of the two potential outcomes. This is 
unfortunate because to calculate ITE or individual users’ causal effects (Equation 1), we need 
both the counterfactuals. The good news is, even though we cannot calculate ITE, under 
certain assumptions,  we can calculate the average causal effect or ATE. In the next section, 
we will describe these assumptions. 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i … (1)

τ(x) = 𝔼[Y1
i |Xi = x] − 𝔼[Y 0

i |Xi = x] … (2)

ATE = 𝔼[Y1
i ] − 𝔼[Y 0

i ] … (3)
= 𝔼x[τ(x)] … (4)



2. CAUSAL ASSUMPTIONS 

Table 1
A user can either be an adopter or a non-adopter. As a result only one of the counterfactual outcome is available for each 

user here, making it impossible to calculate individual causal effect or ITE. This is the fundamental problem of Causal Inference.

Interested readers can find more details about these assumptions in [5], [6]. To provide our 
customers with an accurate estimate of the causal impact on KPIs as a result of their new 
feature launches, Mixpanel’s Impact Report also relies on these assumptions. Any violations of  
these assumptions will result in a biased estimate.
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1 1 1 1 1 n/a
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...
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Assumption 1 SUTVA
SUTVA or Stable Unit of Treatment Value Assumption actually consists of two assumptions - 
no interference among the users, and consistency of treatment.

No Interference Among the Users
The treatment assignment of one user should not interfere with the outcome of another user. 
In our e-commerce example, whether user-1 uses the search bar or not will only affect the 
KPI outcome of user-1 and not of user-2 or any other users for that matter. While the data 
sets of most Mixpanel customers comply with this assumption, there may be cases especially 
with our social network clients where this assumption may be violated. In social network sites, 
the behavior of one user can have a likely and measurable impact on the other users 
connected to their social or professional network  [7]. For example, suppose a social network 
company like Twitter or Facebook decided to test whether recommending cat videos to users 
will increase their engagement with the site. In this case, a control user who was not 
recommended a cat video can still see the video if shared by another treatment user on their 
social network who was recommended the  video. 

Consistency
Consistency assumes that there is only a single version of the treatment. Going back to our e-
commerce example, suppose both user-1 and user-2 used the new search algorithm. 
However, in case of user-1, the placement of the search box was at the top of the page, 
whereas for user-2, the placement was at the bottom of the page and the user needed to 
scroll down to get to the search box. Even though both users used the search box, because 
of the inconsistent placement, the consistency assumption is violated. 

Assumption 2 Ignorability
The ignorability assumption is also known as the unconfoundedness assumption. We can 
assume the treatment assignments as random when conditioned on the covariates or feature 
vectors . This enables us to control for self-selection bias and  treat data collected 
from observational studies as if the data is from a hypothetical randomized A/B experiment, 
within the subset of users with the same value of the covariates. 

In our e-commerce site example, power users of the site are more likely to be adopters than 
non-power users.  In Table 1, we have a single covariate  indicating whether a user is a 
power user or not. When including both power and non-power users, we cannot infer causal 
impact simply by taking the KPI difference between the adopters and the non-adopters. 
However, if we only include the subset of power users (or the subset of non-power users), ie. 
we condition on the covariate , we satisfy the ignorability assumption. We can then 
compare the KPI difference between adopter and non-adopter power users to infer the causal 
impact among the subset of power users. The same holds when we only include non-power 
users. In Mixpanel’s Impact Report, we satisfy this assumption by conditioning on past user 
event data.

Xi ∈ ℝd

Xi

Xi
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Assumption 3 Overlap
Also known as positivity, this assumes that any user has a positive probability of receiving all 
values of the treatment. In a randomized A/B test, positivity holds because we assign users at 
random with equal probability between the treatment and the control group. However, due to 
self-selection bias, this assumption can be violated in observational studies. 

In our e-commerce example, suppose all of the power users are adopters of the new feature. 
In that case, we won’t be able to infer the causal impact among the power users - simply 
because we don’t have any corresponding non-adopter data.

The ignorability and overlap assumptions together are known as strong ignorability assumption 
[8] and are central to any propensity score based causal inference method.

 
3. ATE CALCULATION  

The   causal assumptions described in the previous section enable us to reformulate CATE in 
Equation 5 (see appendix for details). The two terms on the right hand side of Equation 5 are 
the mean observed outcomes for adopters and non-adopters respectively. We can get these 
values from the observed outcome column in Table 1. 
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Figure 1

In Mixpanel’s Impact Report, if the overlap assumption is violated, instead of providing a
biased estimate, we warn our customers with the error message shown above.

Conditional Average Treatment Effect (CATE) 
τ(x) = 𝔼[Yi |Xi = x, Wi = 1] − 𝔼[Yi |Xi = x, Wi = 0] … (5)



This is great news, because we can now calculate CATE from Table 1.   In contrast, in the 
original definition in Equation 3, we require the mean of the adopter counterfactual and the 
non-adopter counterfactual columns from Table 1. Not all of the counterfactuals are defined, 
making it impossible to calculate CATE. 

For power users, CATE is the difference of the means of the outcome column between the 
adopters (ie. rows with treatment  and covariate ) and the non-adopters (ie. rows 
with treatment  and covariate ). We can similarly calculate CATE for non-power 
users from the rows with covariate . By averaging over the marginal distribution of , 
we can calculate ATE from these two CATE.

 

4. PROPENSITY SCORE 

Propensity scores are a solution to the curse of dimensionality problem which arises from too 
many covariates or confounding factors in the calculation of CATE. In our example from the last 
section, we only have one covariate, namely whether or not user-i is a power user. In practice, 
many participants may have many factors that influence their likelihood of using a new feature. 
As the number of covariates increases, the curse of dimensionality kicks in and it becomes 
prohibitively expensive to compare all covariates in the CATE calculation using the above 
mentioned method [9]. As an example, with  binary covariates, there will be  possible 
combinations to compare - that’s over a million possible values for when . Propensity 
score simplifies this problem by calculating a one dimensional score ranging from [0, 1] for 
each user indicating their propensity to use the new feature from all of the covariates. We can 
then group both adopters and non-adopters into buckets with similar scores, and calculate the 
ATE from adoption comparing only users that are similar to each other. 

Introduced in [8], the propensity score for user-i is the conditional probability of assignment to 
treatment  given a vector of observed covariates  (Equation 6). In [8], it is also proved 
that, under strong ignorability conditions, the difference between the mean observed outcome 
for the adopters and the non-adopters for a given value of propensity score is equal to ATE at 
that value (Equation 7). Similar to Equation 4, we can derive ATE from Equation 7 by 
marginalizing over the distribution of . 

Wi = 1 Xi = 1
Wi = 0 Xi = 1

Xi = 0 Xi

p 2p

p = 20

Wi = 1 Xi

e(xi)
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Propensity Score 
       

ATE conditioned on Propensity Score

e(xi) = P(Wi = 1 |Xi = x) … (6)

= 𝔼[Yi |e(xi), Wi = 1] − 𝔼[Yi |e(xi), Wi = 0] … (7)



To estimate propensity scores, we first fit a binary logistic regression model [10] with the 
treatment indicator  used as the label data, and the vector of observed covariates  used as 
feature data. The model estimates a vector of regression parameters . The estimated 
propensity score for user-i is then the output score of this model when covariates  is used as 
input.

Once we estimate the propensity score 
using the logistic regression model fit, 
we can create subclasses or strata of 
users based on their propensity scores. 
In Figure 2, we present   a typical 
overlap plot of the distribution of 
estimated propensity scores between 
adopters (top) and  non-adopters 
(bottom). We can group adopters and 
non-adopters with similar propensity 
scores into bins, with each bin as a 
subclass in the propensity score subclassification method (bins interval are of equal size here; 
in the subclassification method however, the interval ranges of the bins are calculated based 
on the quantiles of propensity scores). Within each bin, the propensity scores between the 
adopters and the non-adopters are very similar - in other words both adopters and non-
adopters in the bin have comparable self-selection bias and we can assume strong ignorability 
and use Equation 7 to determine the conditional causal effect or CATE for the bin.

Wi Xi
βi

Xi
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       Propensity Score Estimation from  
Logistic Regression Model 

       ẽ(xi) =
1

1 + exp(−xT
i βi)

… (8)



 

Figure 2

Estimated propensity score overlap plot between the adopters and non-adopters. 
The propensity scores for the adopters and the non-adopters within the same bin are similar and therefore, 

ignorability assumption holds within each bin enabling us to calculate CATE within each bin.



 
Few things are of interest here. First, the distribution of adopters is right skewed towards higher 
values of propensity scores and the distribution of non-adopters is left skewed towards lower 
values. This is typical and indicates the self-selection bias present in observational studies. 
Second, the extreme left bins and the extreme right bins may only contain non-adopters and 
adopters respectively, thereby violating the overlap assumption which will result in an incorrect 
estimate. In Mixpanel’s Impact Report, we address this problem in two different ways - first, we 
used the methodologies described in [11] and only consider the set of users with propensity 
scores within the range [0.1, 0.9]. Second, if the violation is severe, rather than showing our 
customers incorrect estimates, we throw the error condition shown in Figure 1. 

Once we calculate the CATE for each bin, the average causal effect can be estimated by taking 
the weighted average across all subclasses. Rosenbaum, Rubin [8] proved that if the 
propensity scores of the users within each subclass are very close to each other, the weighted 
average across the subclasses will provide an unbiased estimate of the ATE. The interested 
reader can find a step-by-step breakdown of the propensity score subclassification approach in 
the appendix. 

 

5. MIXPANEL IMPACT REPORT 

Readers can find instructions on how to use Mixpanel’s Impact Report in our help 
documentation [12]. QBQ - our community page also contains a best practice guide [13]. In this 
section, we will focus on the machine learning specific implementation details of the report. 
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Figure 3
 

Customer can select the Launch Event, KPI and User Cohort using 
the appropriate selectors in the Impact Report.



Customers can select their desired launch event, KPI, date range and user cohorts using the 
appropriate selectors in the report as shown in Figure 3. Every time a customer uses the 
Impact Report, we train a logistic regression model under the hood to calculate the estimated 
propensity scores for all the users in the user cohort. To train the logistic regression model, we 
first generate labels and features for the model training from the user events stored in 
Mixpanel’s database.

The user timeline diagram showed in Figure 4 will help us demonstrate the label and and 
feature data generation process. Here, Day 0 is the release date - the first day when the new 
feature is launched. To collect the label data, we look within a launch window - [day 0,  day 15] 
is the default launch window in the Impact Report. The report also allows our customers to 
adjust the window to their desired range using the date range selector. In this example, user A, 
B and C performed the launch event one or multiple times within this launch window whereas 
user D didn’t perform the launch event. In our ML model, we assign   label-1 to users A, B and 
C; we assign label-0 to user D. 

To calculate the feature data for our model training, we use past activities of users leading up 
to day 0 of the launch event. We collect features and labels data from disjoint time windows to 
prevent any potential label leakage. At Mixpanel, we track a substantial amount of events or 
user action data for our customers. The recency and frequency of these events performed by 
the users leading up to the launch event can be a good indicator of users’ propensity to 
perform the launch event. All of these events are used as features in our ML model. We use a 
statistical significance based feature selection stage before the model training stage in order to 
reduce the number features for model training. To measure the goodness of fit of the trained 
model, we perform a 5-fold cross validation. 
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Figure 4

User timeline diagram above indicates two disjoint time ranges used to generate label and feature data.  
Whether a user performed the launch event or not within [day 0, day 15] is used to generate label data.  All 

of users activities leading up to day 0 within [day-15, day-1] are used to generate feature data.



After model fit, we calculate the estimated propensity scores, perform subclassification on the 
propensity scores and estimate causal effect within each subclass. In the report, in addition to 
the average causal effect, we also present the subclass level causal effect information to 
provide our customers with more insight  into different subgroups of their user-base based on 
the propensity to perform the launch event (Figure 5). 

For average causal effect, we provide our customers with two sets of metrics - ATE and ATT. In 
the previous sections, we discussed the concept of ATE in detail. ATT (Average Treatment 
Effect on the Treated) indicates causal impact of performing the launch event on the KPI metric 
only among the adopters.  In a randomized A/B experiment, ATE and ATT are generally equal. 
However, in observational studies, these two metrics can be different due to self-selection bias. 

ATT can provide additional insights especially in an e-commerce setting, where power users 
tend to be the adopters. Power users often generate more revenue and may be worth more 
from an LTV perspective. Product managers are often interested in understanding how a new 
feature launch affects their product's power users. ATT can be a good proxy to measure that in 
this setting.

In addition to the point estimate of average causal effect, we also provide the 95% confidence 
interval of the estimate using an error bar plot (Figure 6). Customers can infer statistical 
significance of the estimate from this plot by observing whether the interval crosses zero or not 
and how wide or narrow the interval is.  
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Figure 5 

Mixpanel’s Impact Report provides both subclass level and average causal effect.



Figure 6

Error bar indicating the ATE estimate and 95% confidence interval of the estimate. 
If the bar does not contain zero, the result is considered to be statistically significant.



CONCLUSION 

This whitepaper provides readers with an overview of how to measure the impact of a product 
launch on KPIs from observational data using causal inference. We discussed how matching 
adopters and non-adopters based on their propensity scores for performing a launch event can 
reduce confounding and self-selection bias inherent  in observational data and can therefore 
provide an unbiased estimate of the  average causal effect. We also provided an under the 
hood look of how Mixpanel’s Impact Report uses the propensity score subclassification 
approach to calculate impact. 

The inclusion of the propensity score method in the Impact Report makes it a powerful tool that 
enables our customer to assess the impact of both their new and past product launches on 
important KPIs with ease. If you haven’t already, try the new Impact Report and let us know 
what you think!
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APPENDIX 

Average Causal Effect Equations 

Using the causal assumptions from Section 2, we can rewrite Conditional Average Treatment 
Effect (CATE) from Equation 2 as follows:

Above, the ignorability assumption enables us to go from Equation (i) to Equation (ii). We 
made use of the consistency assumption to get Equation (iii) from Equation (ii). The overlap 
assumption ensures that both the terms of Equation (iii) is defined for all values of covariate  
and treatment . 

Propensity Score Subclassification Method

The propensity score subclassification approach can be broken down into the following steps 
[6]: 

X
W
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CATE τ(x) = 𝔼[Y1
i |Xi = x] − 𝔼[Y 0

i |Xi = x] … (i )
= 𝔼[Y1

i |Xi = x, Wi = 1] − 𝔼[Y 0
i |Xi = x, Wi = 0] … (ii )

= 𝔼[Yi |Xi = x, Wi = 1] − 𝔼[Yi |Xi = x, Wi = 0] … (iii )

Step 1:
Estimate propensity scores   from the trained logistic regression model.

Step 2:
Using quantiles of the estimated propensity scores,  divide the users into K subclasses. In 
the Impact report, we use K=10. 
We denote as the boundary values of the subclasses; Then 
user-i belongs to subclass k if 

Step 3:
Within each subclass, calculate - the difference between the mean adopters KPI  value 
and the mean non-adopters KPI value.

Step 4:
Estimate average causal effect from the weighted average over . Denote  as the total 
number of users (adopter and non-adopters) in subclass    and  as the total number of 
users across all subclasses

e(xi)

0 = c0 < c1 < … < c10 = 1
ck−1 < e(xi) < ck

Δk

Δk nk
k N

ATE =
K

∑
k=1

nk

N
Δk



 
REFERENCE 

[1]  “Randomized controlled trial”,     Wikimedia Foundation, Inc. [Online]. 
Available: https://en.wikipedia.org/wiki/Randomized_controlled_trial

[2] “Observational study”, Wikimedia Foundation, Inc.  [Online]. 
Available: https://en.wikipedia.org/wiki/Observational_study

[3] J. Splawa-Neyman, D. M. Dabrowska, and T. P. Speed, “On the Application of Probability Theory to 
Agricultural Experiments. Essay on Principles. Section 9”, Statistical Science, vol. 5, no. 4. pp. 465–472, 1990.

[4] D. B. Rubin, “Estimating causal effects of treatments in randomized and nonrandomized studies,” Journal 
of Educational Psychology, vol. 66, no. 5. pp. 688–701, 1974.

[5] “coursera.org” [Online]. 
Available: https://www.coursera.org/lecture/crash-course-in-causality/causal-assumptions-f5LPB

[6] S. Guo and M. W. Fraser, Propensity Score Analysis: Statistical Methods and Applications. SAGE 
Publications, 2014.

[7] James D. Wilson and David T. Uminsky, “The power of A/B testing under interference”, arXiv 1710.03855, 
2017.

[8] P. R. Rosenbaum and D. B. Rubin, “The Central Role of the Propensity Score in Observational Studies for 
Causal Effects” 1981.

[9] P. R. Rosenbaum, “Design of Observational Studies”, Springer Series in Statistics. 2010

[10] “Logistic regression”, Wikimedia Foundation, Inc. [Online]. 
Available: https://en.wikipedia.org/wiki/Logistic_regression

[11] R. K. Crump, V. J. Hotz, G. W. Imbens, and O. A. Mitnik, “Dealing with limited overlap in estimation of 
average treatment effects”, Biometrika, vol. 96, no. 1. pp. 187–199, 2009.

[12] “Impact Report,” Mixpanel Help Center. [Online]. 
Available: http://help.mixpanel.com/hc/en-us/articles/360034129112-Impact-Report

[13] “Impact Report Best Practices | Mixpanel Community.” [Online]. 
Available: https://community.mixpanel.com/announcements-6/impact-report-best-practices-3887

ACKNOWLEDGEMENT 
The author would like to thank the following for their feedback and review: 
Zach Wener-Fligner, Brandon Skerda, Wonja Fairbrother, Iris McLeary, Sam Chow, Krishna 
Vuppala, Tiffany Qi, Adam Kinney and Harsh Patel.

15

https://en.wikipedia.org/wiki/Randomized_controlled_trial
https://en.wikipedia.org/wiki/Observational_study
https://www.coursera.org/lecture/crash-course-in-causality/causal-assumptions-f5LPB
https://en.wikipedia.org/wiki/Logistic_regression
http://help.mixpanel.com/hc/en-us/articles/360034129112-Impact-Report
https://community.mixpanel.com/announcements-6/impact-report-best-practices-3887

