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INTRODUCTION

Mixpanel is a user analytics platform that enables our customers to analyze, learn
and act on user behavior across their sites and apps. To help our customers better
understand their users, we recently introduced the Impact Report. The Impact Report
measures the effects of product or marketing launches on any KPI by leveraging
causal inference methodologies.

The best way to understand how the Impact Report uses causal inference is to start
with a concrete example. Suppose you are an early stage e-commerce website, and
your front-end team recently launched a search bar on the product page of your site.
You would assume that including a search bar will help your users find products
faster - and therefore will improve your KPI metric - in this case, whether or not users
added items to their carts. To measure the impact of this new feature launch, you can
run an A/B experiment or a randomized control trial (RCT) [1] where your users are
randomly allocated either to the old product page without the search bar (known as
the control group) or to the new product page with the search bar (known as the
treatment group). A/B experiments are considered the gold standard for measuring
the causal impact of such launch events on KPI| metrics. The randomized allocation
of the treatment assignment - whether a user lands on the new or old product page
with or without the search bar - ensures that the assignments are not confounded by
any other factors. In this example, we can measure the causal impact of introducing
the search bar simply by taking a difference in the number of items added to the cart
between the treatment and the control groups.

In reality, it is not always possible to run A/B experiments. More often than not, an e-
commerce website would launch several features at the same time. Running A/B
experiments for each feature launch may be cost-prohibitive. Other times, they might
encounter situations where it may not be possible to run A/B experiments at all.
Situations like this occur whenever a new version of an app is released. A major Ul
revamp or a launch event with lots of marketing around it such that we can’t show the
change to only half of our user base can also create a similar problem. Situations like
these, where we need to rely on retrospective observational data to measure the
impact of a feature launch, are known as observational studies [2]. Unlike A/B
experiments, treatment assignment in the case of observational studies is usually not
random. When using observational data, the simple difference of a KPIl metric
between the users who used the new feature and the users who didn’t may not be
enough to measure launch impact.



In observational studies typical to an e-commerce setting, treatment assignments
happen usually by means of a self-selection process in which users choose
treatment for themselves. Imagine you released a new and improved product page
with a search bar. Some of your users used the search bar - let’s call them adopters.
A lot of your users didn’t use the search bar - let’s call them non-adopters. Unlike the
control and treatment groups in A/B experiments, the adopters and non-adopters in
observational studies suffer from self-selection bias. In our e-commerce example,
power users of the site who land on the product page more frequently are more likely
to encounter and use the new feature compared to less engaged users. Power users
in general also exhibit different KPI behavior patterns than non-power users. As a
result, taking the KPI difference between adopters and non-adopters of the new
feature will give you a biased estimate of the actual impact.

To obtain a more accurate estimate of the causal impact in observational studies, we
first need to address the systematic difference between the characteristics of the
adopters and the non-adopters. In academia, the use of propensity scores to reduce
or eliminate self-selection bias in observational studies is widely adopted. To provide
our customers with a more accurate and unbiased measure of the causal impact,
Mixpanel’s Impact Report utilizes a propensity score subclassification approach
under the hood. In this whitepaper, we aim to provide readers with an overview of the
propensity score subclassification approach used in causal inference from
observational data and how we built it in the Impact Report.

The rest of this paper is organized as follows:

" In Section 1, we introduce the Neyman-Rubin counterfactual framework -
the fundamental building block for many causal inference techniques.

* In Section 2, we provide an overview of the assumptions required to make
causal inference in the framework introduced in Section 1.

" In Section 3, we discuss how to calculate average causal impact conditioned
on the assumption from Section 2.

" In Section 4, we introduce the concept of propensity scores and the
subclassification method.

" Finally in Section 5, we take a closer look into how we incorporate these
methodologies into Mixpanel’s Impact Report to provide our customers with
an unbiased estimate of the impact of their feature launches on KPls.
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1. NEYMAN-RUBIN COUNTERFACTUAL FRAMEWORK
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Originally proposed by Jerzy Neyman [3] and later generalized by Donald Rubin [4], the
Neyman-Rubin counterfactual framework is based on the idea of potential outcomes, also
known as counterfactual outcomes. This framework is the basic building block for any
propensity score based causal inference technique.

For user-i, we denote W, € {0,1 }as the treatment assignment indicator. In the Impact
Report, W; = 1, when user-i is an adopter (performed the launch event), and W; = 0 when
user-i is a non-adopter (didn’t perform the launch event). X; € R s the d-dimensional
covariates or feature vectors for user-i. In the Impact Report, X; correspond to users’ past
action data or events leading up to the new feature launch event. Yi1 is the counterfactual
outcome when user-i is assigned the treatment, whereas Y 1.0 is the counterfactual outcome
whenever user-i is not assigned to the treatment. In the Impact Report, these correspond to a

user's potential metric event outcome depending on whether the user is an adopter or a non-
adopter respectively.

With these notations in place,
in the Neyman-Rubin

counterfactual framework, we Individual Treatment Effect (ITE)

define the treatment to have a ITE; = Yl.1 — Yio ..o (D
causal effect on user-i if the
counterfactual outcomes of the Conditional Average Treatment Effect (CATE)

t(x) = E[Y'|X;=x] - E[Y?|X;,=x] ... (2)

users differ, ie. Yl.1 * Yl.o. The
Individual Treatment Effect
(ITE) is defined as the

differen;:e bet:/ve(eén these t;/\;o Average Treatment Effect (ATE)
counterfactuals (Equation 1). B | 0

The average causal effect, ATE = E[Y;] - E[Y7] ... (3)
usually referred to as the =E[tx)] ... 4)

Average Treatment Effect
(ATE) is the average over all
individuals’ treatment effects
(Equation 3). Conditional Average Treatment Effect (CATE) is the conditional ATE conditioned
on covariates X; (Equation 2). In practice, ATE is derived from CATE by marginalizing over
the distribution of X, (Equation 4).

Table 1 presents a sample dataset for our fictional e-commerce site. The table demonstrates
the fundamental problem of causal inference. A user can either be an adopter or a non-
adopter; consequently, we can only observe one of the two potential outcomes. This is
unfortunate because to calculate ITE or individual users’ causal effects (Equation 1), we need
both the counterfactuals. The good news is, even though we cannot calculate ITE, under
certain assumptions, we can calculate the average causal effect or ATE. In the next section,
we will describe these assumptions.
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2. CAUSAL ASSUMPTIONS

Power user?

Added item to

the cart aofter

using the

search bar?

Added item to
the cart but
didn’t use the

search bar?

vl y0
i i
treatment observed outcome covariate adopter non-adopter
counterfactual counterfactual
2 0 1 1 n/a 1
3 1 0 0 0 n/a
4 0 0 0 n/a 0
99 1 1 1 1 n/a
100 0 0 1 n/a 0

Table 1

A user can either be an adopter or a non-adopter. As a result only one of the counterfactual outcome is available for each
user here, making it impossible to calculate individual causal effect or ITE. This is the fundamental problem of Causal Inference.
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Interested readers can find more details about these assumptions in [5], [6]. To provide our
customers with an accurate estimate of the causal impact on KPIs as a result of their new
feature launches, Mixpanel’s Impact Report also relies on these assumptions. Any violations of
these assumptions will result in a biased estimate.
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Assumption 1 SUTVA

SUTVA or Stable Unit of Treatment Value Assumption actually consists of two assumptions -
no interference among the users, and consistency of treatment.

No Interference Among the Users

The treatment assignment of one user should not interfere with the outcome of another user.
In our e-commerce example, whether user-1 uses the search bar or not will only affect the
KPI outcome of user-1 and not of user-2 or any other users for that matter. While the data
sets of most Mixpanel customers comply with this assumption, there may be cases especially
with our social network clients where this assumption may be violated. In social network sites,
the behavior of one user can have a likely and measurable impact on the other users
connected to their social or professional network [7]. For example, suppose a social network
company like Twitter or Facebook decided to test whether recommending cat videos to users
will increase their engagement with the site. In this case, a control user who was not
recommended a cat video can still see the video if shared by another treatment user on their
social network who was recommended the video.

Consistency

Consistency assumes that there is only a single version of the treatment. Going back to our e-
commerce example, suppose both user-1 and user-2 used the new search algorithm.
However, in case of user-1, the placement of the search box was at the top of the page,
whereas for user-2, the placement was at the bottom of the page and the user needed to
scroll down to get to the search box. Even though both users used the search box, because
of the inconsistent placement, the consistency assumption is violated.

Assumption 2 Ignorability

The ignorability assumption is also known as the unconfoundedness assumption. We can
assume the treatment assignments as random when conditioned on the covariates or feature
vectors X; € RY. This enables us to control for self-selection bias and treat data collected
from observational studies as if the data is from a hypothetical randomized A/B experiment,
within the subset of users with the same value of the covariates.

In our e-commerce site example, power users of the site are more likely to be adopters than
non-power users. In Table 1, we have a single covariate X; indicating whether a user is a
power user or not. When including both power and non-power users, we cannot infer causal
impact simply by taking the KPI difference between the adopters and the non-adopters.
However, if we only include the subset of power users (or the subset of non-power users), ie.
we condition on the covariate X;, we satisfy the ignorability assumption. We can then
compare the KPI difference between adopter and non-adopter power users to infer the causal
impact among the subset of power users. The same holds when we only include non-power
users. In Mixpanel’s Impact Report, we satisfy this assumption by conditioning on past user
event data.



Assumption 3 Overlap

Also known as positivity, this assumes that any user has a positive probability of receiving all
values of the treatment. In a randomized A/B test, positivity holds because we assign users at
random with equal probability between the treatment and the control group. However, due to
self-selection bias, this assumption can be violated in observational studies.

In our e-commerce example, suppose all of the power users are adopters of the new feature.
In that case, we won’t be able to infer the causal impact among the power users - simply
because we don’t have any corresponding non-adopter data.

£ 15 days before and atter = [ Causal Impact ~

There is not enough overlap between adopters and non-adopters of Used Search. Try filtering to just your power users.

Figure 1

In Mixpanel’s Impact Report, if the overlap assumption is violated, instead of providing a
biased estimate, we warn our customers with the error message shown above.

The ignorability and overlap assumptions together are known as strong ignorability assumption
[8] and are central to any propensity score based causal inference method.

3. ATE CALCULATION

The causal assumptions described in the previous section enable us to reformulate CATE in
Equation 5 (see appendix for details). The two terms on the right hand side of Equation 5 are
the mean observed outcomes for adopters and non-adopters respectively. We can get these
values from the observed outcome column in Table 1.

Conditional Average Treatment Effect (CATE)

() = E[Y,| X, = x, W, = 1] —E[Y;| X, = x, W, = 0] ... (5)
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This is great news, because we can now calculate CATE from Table 1. In contrast, in the
original definition in Equation 3, we require the mean of the adopter counterfactual and the
non-adopter counterfactual columns from Table 1. Not all of the counterfactuals are defined,
making it impossible to calculate CATE.

For power users, CATE is the difference of the means of the outcome column between the
adopters (ie. rows with treatment W; = 1 and covariate X; = 1) and the non-adopters (ie. rows
with treatment W; = 0 and covariate X; = 1). We can similarly calculate CATE for non-power
users from the rows with covariate X; = 0. By averaging over the marginal distribution of X;,
we can calculate ATE from these two CATE.

4. PROPENSITY SCORE
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Propensity scores are a solution to the curse of dimensionality problem which arises from too
many covariates or confounding factors in the calculation of CATE. In our example from the last
section, we only have one covariate, namely whether or not user-i is a power user. In practice,
many participants may have many factors that influence their likelihood of using a new feature.
As the number of covariates increases, the curse of dimensionality kicks in and it becomes
prohibitively expensive to compare all covariates in the CATE calculation using the above
mentioned method [9]. As an example, with p binary covariates, there will be 27 possible
combinations to compare - that’s over a million possible values for when p = 20. Propensity
score simplifies this problem by calculating a one dimensional score ranging from [0, 1] for
each user indicating their propensity to use the new feature from all of the covariates. We can
then group both adopters and non-adopters into buckets with similar scores, and calculate the
ATE from adoption comparing only users that are similar to each other.

Introduced in [8], the propensity score for user-i is the conditional probability of assignment to
treatment W, = 1 given a vector of observed covariates X; (Equation 6). In [8], it is also proved
that, under strong ignorability conditions, the difference between the mean observed outcome
for the adopters and the non-adopters for a given value of propensity score is equal to ATE at
that value (Equation 7). Similar to Equation 4, we can derive ATE from Equation 7 by
marginalizing over the distribution of e (x;).

Propensity Score

ex)=PW,=1|X;,=x) ... (6)

ATE conditioned on Propensity Score

= E[Y;|e(x), W; = 1] - E[Y;|e(x), W; = 0] ... (7)




To estimate propensity scores, we first fit a binary logistic regression model [10] with the
treatment indicator W; used as the label data, and the vector of observed covariates X; used as
feature data. The model estimates a vector of regression parameters f3;. The estimated
propensity score for user-i is then the output score of this model when covariates X is used as
input.

Once we estimate the propensity score
using the logistic regression model fit,
we can create subclasses or strata of Propensity Score Estimation from
users based on their propensity scores.
In Figure 2, we present a typical
overlap plot of the distribution of
estimated propensity scores between
adopters (top) and non-adopters
(bottom). We can group adopters and
non-adopters with similar propensity
scores into bins, with each bin as a
subclass in the propensity score subclassification method (bins interval are of equal size here;
in the subclassification method however, the interval ranges of the bins are calculated based
on the quantiles of propensity scores). Within each bin, the propensity scores between the
adopters and the non-adopters are very similar - in other words both adopters and non-
adopters in the bin have comparable self-selection bias and we can assume strong ignorability
and use Equation 7 to determine the conditional causal effect or CATE for the bin.

Logistic Regression Model

1
14+ exp(—x/ ;)

(8)

e(x;)

B adopters
I non-adopters

Example of overlap between
adopters and non-adopters.
CATE calculation possible within
this subclass of users

Number of Users

CATE calculation not possible in /

these regions due to non-overlap
between adopters and non-adopters

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Propensity Score

Figure 2

Estimated propensity score overlap plot between the adopters and non-adopters.
The propensity scores for the adopters and the non-adopters within the same bin are similar and therefore,
n‘nxponel ignorability assumption holds within each bin enabling us to calculate CATE within each bin.
@ o - 9



Few things are of interest here. First, the distribution of adopters is right skewed towards higher
values of propensity scores and the distribution of non-adopters is left skewed towards lower
values. This is typical and indicates the self-selection bias present in observational studies.
Second, the extreme left bins and the extreme right bins may only contain non-adopters and
adopters respectively, thereby violating the overlap assumption which will result in an incorrect
estimate. In Mixpanel’s Impact Report, we address this problem in two different ways - first, we
used the methodologies described in [11] and only consider the set of users with propensity
scores within the range [0.1, 0.9]. Second, if the violation is severe, rather than showing our
customers incorrect estimates, we throw the error condition shown in Figure 1.

Once we calculate the CATE for each bin, the average causal effect can be estimated by taking
the weighted average across all subclasses. Rosenbaum, Rubin [8] proved that if the
propensity scores of the users within each subclass are very close to each other, the weighted
average across the subclasses will provide an unbiased estimate of the ATE. The interested
reader can find a step-by-step breakdown of the propensity score subclassification approach in
the appendix.

5. MIXPANEL IMPACT REPORT
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Readers can find instructions on how to use Mixpanel’'s Impact Report in our help
documentation [12]. QBQ - our community page also contains a best practice guide [13]. In this
section, we will focus on the machine learning specific implementation details of the report.

LAUNCH EVENT Treatment / Launch Event Selector ~

ACTED EVENT Launch Campaign Date Range Selector A

Outcome / KPI Event Selector

_______________

User Cohort Selectors

9% Filter

Figure 3

Customer can select the Launch Event, KPl and User Cohort using
the appropriate selectors in the Impact Report.
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Customers can select their desired launch event, KPI, date range and user cohorts using the
appropriate selectors in the report as shown in Figure 3. Every time a customer uses the
Impact Report, we train a logistic regression model under the hood to calculate the estimated
propensity scores for all the users in the user cohort. To train the logistic regression model, we
first generate labels and features for the model training from the user events stored in
Mixpanel’s database.

The user timeline diagram showed in Figure 4 will help us demonstrate the label and and
feature data generation process. Here, Day O is the release date - the first day when the new
feature is launched. To collect the label data, we look within a launch window - [day 0, day 15]
is the default launch window in the Impact Report. The report also allows our customers to
adjust the window to their desired range using the date range selector. In this example, user A,
B and C performed the launch event one or multiple times within this launch window whereas
user D didn’t perform the launch event. In our ML model, we assign label-1 to users A, B and
C; we assign label-0 to user D.

Features Labels
&3 $3 User A
&5 User B
$3 User C
User D
15 3 -2 -1 0 1 2 15

Days from Launch

Figure 4
User timeline diagram above indicates two disjoint time ranges used to generate label and feature data.
Whether a user performed the launch event or not within [day 0, day 15] is used to generate label data. All
of users activities leading up to day 0 within [day-15, day-1] are used to generate feature data.

To calculate the feature data for our model training, we use past activities of users leading up
to day O of the launch event. We collect features and labels data from disjoint time windows to
prevent any potential label leakage. At Mixpanel, we track a substantial amount of events or
user action data for our customers. The recency and frequency of these events performed by
the users leading up to the launch event can be a good indicator of users’ propensity to
perform the launch event. All of these events are used as features in our ML model. We use a
statistical significance based feature selection stage before the model training stage in order to
reduce the number features for model training. To measure the goodness of fit of the trained
model, we perform a 5-fold cross validation.
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After model fit, we calculate the estimated propensity scores, perform subclassification on the
propensity scores and estimate causal effect within each subclass. In the report, in addition to
the average causal effect, we also present the subclass level causal effect information to
provide our customers with more insight into different subgroups of their user-base based on
the propensity to perform the launch event (Figure 5).

Impacted Events ATE 95% Cl ATT 95% Cl Non-Adopters  Adopters Non-Adopters Avg. ~ AdoptersAvg.  Delta
‘il 1 1T
v KPI - Total | 106 1 083,129 | 102 0.79,1.26 481 209
_____ 1 [P Subclass Level Causal Effect
,—
Subclass 1 60 8 0.13 135 | 122 1
| 1
Subclass 2 60 9 0.17 2.1 | 192 1
1 1
Subclass 3 Average Causal Effect 60 9 0.24 1.36 | M2 I
across all Subclasses T |
Subclass 4 59 10 0.14 112 | 098 |
1
Subclass 5 55 14 0.18 1.25 : 1.07 |
1
Subclass 6 " 20 0.22 0.52 : 03 |
Subclass 7 49 20 0.31 0.65 I 034 :
1
Subclass 8 51 18 0.24 1.83 1 1859 :
1
Subclass 9 3 38 0.24 0.98 1 07 !
| 1
Subclass 10 7 63 0.3 1.61 1132 !
_____ 1

Mixpanel’s Impact Report provides both subclass level and average causal effect.

For average causal effect, we provide our customers with two sets of metrics - ATE and ATT. In
the previous sections, we discussed the concept of ATE in detail. ATT (Average Treatment
Effect on the Treated) indicates causal impact of performing the launch event on the KPI metric
only among the adopters. In a randomized A/B experiment, ATE and ATT are generally equal.
However, in observational studies, these two metrics can be different due to self-selection bias.

[E) 15 days before and after v & causal Impact v

Event Group Change in Average Value

1.06

KPI - Total

Figure 6
Error bar indicating the ATE estimate and 95% confidence interval of the estimate.
If the bar does not contain zero, the result is considered to be statistically significant.

ATT can provide additional insights especially in an e-commerce setting, where power users
tend to be the adopters. Power users often generate more revenue and may be worth more
from an LTV perspective. Product managers are often interested in understanding how a new
feature launch affects their product's power users. ATT can be a good proxy to measure that in
this setting.

In addition to the point estimate of average causal effect, we also provide the 95% confidence
interval of the estimate using an error bar plot (Figure 6). Customers can infer statistical
significance of the estimate from this plot by observing whether the interval crosses zero or not
and how wide or narrow the interval is.
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CONCLUSION
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This whitepaper provides readers with an overview of how to measure the impact of a product
launch on KPIs from observational data using causal inference. We discussed how matching
adopters and non-adopters based on their propensity scores for performing a launch event can
reduce confounding and self-selection bias inherent in observational data and can therefore
provide an unbiased estimate of the average causal effect. We also provided an under the
hood look of how Mixpanel's Impact Report uses the propensity score subclassification
approach to calculate impact.

The inclusion of the propensity score method in the Impact Report makes it a powerful tool that
enables our customer to assess the impact of both their new and past product launches on
important KPIs with ease. If you haven't already, try the new Impact Report and let us know
what you think!
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APPENDIX

Average Causal Effect Equations

Using the causal assumptions from Section 2, we can rewrite Conditional Average Treatment
Effect (CATE) from Equation 2 as follows:

CATE 7(x) = E[Y] | X; = x] — E[Y?| X, = x] ... (i)
=E[Y!|X;=x, W,=1]1-E[Y?|X,=x, W,=0] ... (ii)

=E[Y,|X,=x, W,=1]—E[Y,|X,=x, W,=0] ... (iii)

Above, the ignorability assumption enables us to go from Equation (i) to Equation (ii). We
made use of the consistency assumption to get Equation (iii) from Equation (ii). The overlap
assumption ensures that both the terms of Equation (iii) is defined for all values of covariate X
and treatment W.

Propensity Score Subclassification Method
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The propensity score subclassification approach can be broken down into the following steps

[6]:

Step 1:
Estimate propensity scores e(x;) from the trained logistic regression model.

Step 2:
Using quantiles of the estimated propensity scores, divide the users into K subclasses. In
the Impact report, we use K=10.
We denote 0 = ¢; < ¢; < ... < ¢jo = las the boundary values of the subclasses; Then
user-i belongs to subclass k if ¢;,_; < e(x;) < ¢;,

Step 3:

Within each subclass, calculate Ak- the difference between the mean adopters KPI value
and the mean non-adopters KPI value.

Step 4:
Estimate average causal effect from the weighted average over A,. Denote 7, as the total
number of users (adopter and non-adopters) in subclass k and N as the total number of

users across all subclasses
K
s
ATE = ) A
k=1

14
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