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Abstract
A large selling point of Nakamoto consensus is that it can

scale elastically with the number of untrusted participants
working together to achieve consensus. This is a big advan-
tage with regards to decentralization that has evaded many
cryptocurrencies using proof-of-stake consensus protocols
to-date, especially ones based on Byzantine Fault Tolerance
(BFT) consensus. This paper outlines a novel modification to
BFT consensus, named BFTree, that increases the practical
number of validators that can be used in a BFT system from
hundreds to millions of validators, without the use of sharding
or subcommittee sampling. BFTree arranges validators into
a virtual tree, to parallelize signature aggregation between
non-byzantine nodes working to achieve consensus. When
byzantine nodes interfere with the aggregation, the roots of
all subtrees that were able to achieve agreement perform BFT
consensus to finish the round, frequently with fewer messages
than if all validators participated. By thoughtfully reorganiz-
ing the tree such that nodes that have historically been reliable
are paired with other reliable nodes, BFTree limits the impact
that a byzantine node can have. This organization strategy
allows an honest and reliable quorum of validators to quickly
aggregate the required number of signatures in a distributed
manner, allowing the algorithm to scale to large numbers of
validators.

1 Introduction

There has been a growing number of cryptocurrencies using
proof-of-stake consensus protocols [7,8,12,18] that are based
on or are moving to use Byzantine Fault Tolerance (BFT)
consensus [13]. These algorithms provide strong finality guar-
antees in that either all honest nodes will adopt a block or none
will, thus eliminating the possibility of forks and rollbacks

found in protocols based on Nakamoto consensus [15]. Un-
fortunately, existing BFT algorithms do not scale well. Most
actively used implementations scale to 100’s of participants,
with some upcoming systems aiming to scale to 1000’s of
participants with some sacrifices (e.g. increased block times).

This has led to many modern cryptocurrencies [8,12] adopt-
ing a two-class system where there is a smaller set of distin-
guished nodes that act as validators and participate in the BFT
algorithm while the common node is merely an observer and
does not participate. This design creates many complexities
in terms of rewards, and either leads to explicitly designed or
emergent delegation schemes that allow many smaller nodes
to pool their stake in order to participate in validation and
thus get rewards. The incentives of this delegation can be
tricky to get right and may lead to people getting exploited
by dishonest middlemen, or a centralization of control of the
network in the hands of a small number of delegation pools.

This paper presents a novel modification to BFT algorithms
called BFTree, designed with the goal of making BFT con-
sensus scale to millions of validators. This change can enable
a more decentralized proof-of-stake protocol by eliminating
the need for two classes of nodes and delegation to a small
number of validators. We view the goal of scaling to millions
of validators as a forcing function to create a more scalable
consensus algorithm where BFT is no longer the bottleneck
in terms of making cryptocurrencies more decentralized. In
practice, other bottlenecks, such as block sizes, may make the
ideal number of validators be tens or hundreds of thousands
of nodes for large cryptocurrencies.

To understand what will make BFTree scale, first one
should understand the bottleneck in current BFT algorithms:
the communication pattern. pBFT [4] and most widespread
variants of BFT algorithms (e.g. [3]) require all-to-all com-
munication. This all-to-all communication requires O(n2)
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messages and in the naive implementation each message is
O(n) in size (though this can be optimized). This means that
thousands of validators will generate millions of messages,
which in practice becomes the limiting factor. A more re-
cent algorithm, HotStuff BFT [20], which has shown a lot
of promise but is not yet deployed in a live cryptocurrency,
improves this communication pattern to all-to-one, requiring
O(n) messages on the critical path. This will allow BFT to
scale another order of magnitude over pBFT, but all-to-one
will not scale to millions of validators, since validating a mil-
lion signatures on a desktop CPU can takes minutes of time,
and it is not feasible without distributing the work across a
number of machines.

BFTree arranges the validator communication into a dy-
namically constructed tree structure, thus requiring O(log(n))
parallel steps to aggregate the tree in the best case (see Fig-
ure 1 for an example). The message size is fixed, and signa-
tures are combined in a distributed way as they work their
way up the tree. Nodes in the tree operate by unanimous
consent and if there is disagreement (or if a node is offline)
at any branch in the tree the two subtrees split and operate
independently as virtual validators. At the end of this tree
consolidation process there will be a much smaller number of
virtual validators each representing a larger subtree of nodes.
This set of virtual validators then run an existing BFT algo-
rithm, such as HotStuff BFT, to arrive at a final consensus.

This tree structure gives us a best case of O(log(n)2) mes-
sages per block (O(log(n)) broadcasts are needed to verify
each parties behavior), but there is the problem that Byzantine
nodes positioned strategically throughout the tree could target
the network and slow things down. We address this problem
with a key concept in BFTree: position in tree is determined
by past reliability.

The leftmost node in the tree is the most reliable with the
longest history of good behavior (being part of the consen-
sus) while the rightmost nodes are those nodes with recent
failures or new nodes joining the network. Over time this will
cause a sorting of the tree, and while a Byzantine node could
moderately slow down a single block, they could only do
that once before being repositioned in the tree and losing the
power to repeat the bad behavior. If one assumes a fixed set
of Byzantine nodes (<1/3rd of the total), eventually each of
them will act in a Byzantine way and the leftmost two thirds
of the tree will be only correctly operating nodes, at which
point the best case will happen for every subsequent block
regardless of the behavior of Byzantine nodes.

2 Related Work

A related technique to make blockchains scale is sharding [5,
14]. Sharding is especially critical for scaling the number of
transactions per seconds in a network. When sharding BFT
algorithms, there is a risk of reduced security as the attacker
only needs to compromise a quorum of a shard rather than
than all validators. OmniLeder [11] proposes novel techniques
for mitigating these security losses from sharding. Sharding
can be combined with the techniques described in this paper
to allow more validators per shard and have a network that
scales both in the number of transactions and in the number
of validators.

An alternate approach relies on committee sampling to
lower the number of validators used to validate any single
block at the expense of introducing weaker probabilistic guar-
antees [7, 9]. Such designs, and other probabilistic PoS proto-
cols (e.g. [16]) lose the strong theoretical guarantees provided
by BFT, and are therefore harder to reason about with regards
to attack resilience, especially in cases where the committee
members change infrequently, or can be predicted or manipu-
lated.

Threshold signatures [1, 2, 6] provide cryptographic primi-
tives that allow one to verify that at least N of M parties have
signed a block without revealing which parties signed the
message. Unfortunately, these systems require a distributed
setup phase where a threshold public key is generated. Re-
quiring this setup phase would not be practical in a system
with millions of validators where one would want to support
validators joining and leaving the network. Instead BFTree
only using the simpler non-threshold BLS signatures (N of
N) so that it can support frequent changes to the validator set
and no setup phase is needed.

ByzCoin/CoSi [10, 17] also use communication trees for
signature aggregation. They scale the transaction rate of Bit-
Coin by collecting many witnesses for statement using this
tree structure. ByzCoin does not replace the proof-of-work
structure of BitCoin and still requires miners with hashing
power. The main technical differences with BFTree are the
added reputation system in BFTree and the ability of BFTree
to verify the work of the tree level-by-level, thus avoiding the
fallback to a flat communication structure in ByzCoin.

3 HotStuff BFT

This section provides a brief overview of HotStuff BFT. See
the original HotStuff BFT paper [19, 20] for more thorough
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(a) Validators start by communicating with their siblings in the tree
to aggregate consensus. Red nodes show places where the children
did not agree with each other.
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(b) Next, the tree is pruned of any red nodes, so that only subtrees
that have achieved consensus remain.
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(c) The root nodes of all remaining subtrees perform weighted
HotStuff BFT consensus.
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(d) Before the next round, faulty nodes are grouped together and
moved to the right side of the tree.

Figure 1: A step by step example of how BFTree achieves consensus in the presence of faulty validators.

explanation and proofs of correctness.
The fundamental mechanism in HotStuff is the counting

of the votes of at least 2
3 n+ 1 out of n nodes. This voting

process repeats over and over, once per block. Each block has
a pointer to the last valid block, and validators decide how to
vote using the SafeNode and transaction locking rules defined
in [19]. The consensus for a transaction is chained over four
total blocks. HotStuff pipelines this process so that, assuming
no failures, a single block k containing one set of vote results
will be:

• The prepare phase for block k (itself)

• The pre-commit phase for block k−1

• The commit phase for block k−2

• The decide phase for block k−3, these transactions are
now final.

It is possible for there to be forks less than three in length,
but once a block is four levels deep, it is locked, and one is
guaranteed that a quorum of nodes has finalized the transac-
tions in the block and will never vote for a chain not containing
those transactions. The intuition is similar to that of other BFT
algorithms. In the first vote a quorum agrees. In the second

vote a quorum knows a quorum agrees. In the third vote a
quorum knows that a quorum knows a quorum agrees, and
that a quorum has finalized those transactions so no future
vote can reverse those transactions. By pipelining these steps
across multiple blocks and adding an extra phase, HotStuff
eliminates the costly O(n2) communication found in other
pBFT protocols.

4 Assumptions and Requirements

BFTree relies on an underlying signature algorithm that sup-
ports the combination of both signatures and public keys into
aggregate signatures and public keys that use the same space
as a single signature. We assume the following methods:

• keygen() => pk1, secret1

• sign(message, secret1) => sig1

• verify(message, pk1, sig1) => boolean

• combine_public_keys(pk1, pk2) => pk3

• combine_signatures(sig1, sig2) => sig3
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The signature scheme should have the property that:
verify(message, combine_public_key(pk1, pk2),

combine_signature(sig1, sig2)) == True

Which implies: verify(message, pk1, sig1) == True

and verify(message, pk2, sig2) == True. If either of
those is false, the combined verification should fail. This
property must apply recursively so it can be used to combine
an arbitrary number of signatures into a single signature. An
example of such a signature scheme is BLS signatures [2].

We also rely on an underlying (less scalable) BFT algo-
rithm which we call at the end with the top of each subtree
as virtual validators. This underlying BFT algorithm must
support weighted votes (weighted by the total stake of the
subtree) and allow the set of virtual validators to change over
time. For the remainder of the paper, we will assume this algo-
rithm is HotStuff BFT, which can be easily modified to have
these properties, but in principle any BFT algorithm would
work. HotStuff only requires a single vote counting phase, to
use this with pBFT one would need to run the vote counting
process multiple times for each phase in pBFT.

We also make assumptions about network latency. To make
forward progress (arrive at consensus) at least 2/3rds+1 of
nodes must be both correctly behaving and have a bounded
maximum network latency to talk point to point to each other.
If this property is violated the system fails by halting progress
and minting no valid blocks until network is restored. This
network latency upper bound can be set dynamically where
it is increased when consensus is not reached and decreased
when consensus is reached especially quickly. We assume the
existence of a O(log(n)) broadcast operation, implemented
using standard algorithms, and we also assume that the point
to point communication is validated

5 BFTree Algorithm

We will first describe the high level phases in the algorithm,
and then go into detail about the algorithm that each actor
uses.

5.1 High Level Phases

• Phase 0:

The block producer (chosen through an algorithm such
as weighted round robin) generates a candidate block
and broadcasts that block along with a signed tuple of:

block_info = (block_hash, prior_block_depth, cur-
rent_block_depth)

to all nodes. Each node validates that the block is valid
(according to the HotStuff BFT rules), and that the
depths and signatures of the block producer are valid.
If so, they sign block_info, if not they sign (null, cur-
rent_block_depth) to indicate a no vote.

• Phases 1 through ceil(log(n)):

Each level of the tree in bottom up order communi-
cates with their neighboring branch to check if they
agree. Agreeing signatures are shared and combined
and the left peer operates the virtual node one level up
in the tree. Disagreeing nodes (or the root node) for-
ward (block_info, signature, first_index, last_index) to
the block producer. Where first and last index represents
the range of the subtree the signature includes.

• Phases ceil(log(n))+1 to 2*ceil(log(n)):

In each of these phases the block producer broadcasts
the partial signatures received so far. These broadcasts
are a single aggregated signature and a list of ranges
indicating the subtrees included.

Each phase represents a level of the tree in top down
order (the opposite order as before). In the correspond-
ing phase the right side branches check the work of the
left branches, they are expecting to see their combined
signature included broadcast ranges. If they do not, they
forward (block_info, signature, first_index, last_index)
to the block producer.

• Phase 2*ceil(log(n)) + 1:

In the final phase, the block producer broadcasts the final
block and signatures to everyone.

5.2 Node Algorithm

Each individual node runs the following algorithm. The inputs
are a secret key for current node, current_block_depth, and
index in the tree.

1 # Receive the candidate block info from the block

producer↪→

2 block_info_candidate = receive_from_block_producer()

3 (block_hash, prior_block_depth,

proposed_current_block_depth) = block_info_candidate↪→

4

5 # Verify the block info candidate using HotStuff

and chain rules.↪→

6 if verify_block(block_info_candidate, ...)

7 block_info = block_info_candidate
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8 else:
9 block_info = (None, current_block_depth)

10

11 signature = sign(block_info, secret)

12

13 start_index = index

14 end_index = index

15 my_level = TREE_DEPTH

16

17 # Combine signatures with siblings in the tree

18 for level_from_bottom in range(TREE_DEPTH):

19 # Once we've reached the top of the tree, send

the aggregated signatures to the block

producer.

↪→

↪→

20 if level_from_bottom == TREE_DEPTH - 1:

21 send_to_block_producer(block_info, start_index,

end_index, signature)↪→

22 my_level = level_from_bottom

23 break
24

25 # Check if this node is a virtual node at the

current tree level↪→

26 if (index % 2**(level_from_bottom + 1)) == 0:

27 # This node is a virtual node, so aggregate

itself with its sibling↪→

28 sibling_index = index + 2**level_from_bottom

29

30 # Share block info with sibling at the current

level of the tree↪→

31 (block_info2, start_index2, end_index2, signature2) =

receive_from_node(sibling_index)↪→

32 send_to_node(sibling_index, block_info, start_index,

end_index, signature)↪→

33

34 # Check if there is agreement between both

siblings and if not, short circuit by

messaging the block producer directly.

↪→

↪→

35 if verify_peer(sibling_index, block_info2,

start_index2,↪→

36 end_index2, signature2, ...):

37 end_index = end_index2

38 signature = combine_signatures(signature, signature2)

39 # Continue one level up tree

40 else:
41 send_to_block_producer(block_info, start_index,

end_index, signature)↪→

42 my_level = level_from_bottom

43 break
44 else:
45 # This node is not a virtual node, so

aggregate with its sibling but don't

continue up the tree

↪→

↪→

46 sibling_index = index - 2**level_from_bottom

47

48 # Share block info with your sibling at the

current level of the tree↪→

49 send_to_node(sibling_index, block_info, start_index,

end_index, signature)↪→

50 (block_info2, start_index2, end_index2, signature2) =

receive_from_node(sibling_index)↪→

51

52 # Check if there is agreement between both

siblings and if not, message the block

producer directly since the sibling will

likely not propagate this node's vote.

↪→

↪→

↪→

53 if verify_peer(sibling_index, block_info2,

start_index2,↪→

54 end_index2, signature2, ...):

55 # Common case, don't send anything

56 else:
57 send_to_block_producer(block_info, start_index,

end_index, signature)↪→

58

59 my_level = level_from_bottom

60 break
61

62 # Check that this node's signature made it into

the block, and if not, send it directly to

the block producer

↪→

↪→

63 for level_from_bottom in reversed(range(TREE_DEPTH)):

64 if my_level >= level_from_bottom:

65 # ranges is a list of (start, end) tuples

66 (block_info2, signature2, ranges) =

receive_broadcast_from_block_producer()↪→

67

68 # Check if my info is missing from broadcasted

ranges↪→

69 if not ranges_contains(index, ranges) and block_info

== block_info2:↪→

70 send_to_block_producer(block_info, start_index,

end_index, signature)↪→

71 else:
72 break
73

74 final_block =

receive_final_block_broadcast_from_block_producer()↪→

Each send and receive operation should verify the iden-
tity of the sender with a signature and have a timeout based
on the phase of the algorithm. For example the 5th possi-
ble receive should timeout at time 5*k after the algorithm
begins. Timed out receives should return null and fail vali-
dation. Each point to point send is allocated a timeout of k,
and each broadcast is allocated a timeout of k*log(n). Time-
outs in loop phases skipped with conditions or breaks should
be counted. So the cumulative timeouts of the first loop are
k*TREE_DEPTH and the cumulative timeouts of the second
loop are k*log(n)*TREE_DEPTH. The timeout scaling factor,
k, should be set dynamically across blocks. Failed consensus
results in increasing k by a scaling factor (up to some hard
maximum), and especially fast consensus results in decreasing
k by a scaling factor.
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5.3 Block Producer Algorithm

First the block producer creates the block according to Hot-
Stuff BFT rules. Note this typically means there just a pointer
to the previous block as the algorithm involves voting on the
prior block not the current block (the transactions for which
the block producer can gather asynchronously and publish in
the last step.

1 ranges = []

2 signature = None

3 finished = False

4 block_info = (block_hash, prior_block_depth,

current_block_depth)↪→

5

6 # Broadcast the candidate block info

7 broadcast(block_info)

8

9

10 def thread1():

11 while not finished:

12 # Process received messages with a priority

queue (based on total stake):↪→

13 (block_info2, start_index, end_index, signature2) =

receive_by_priority()↪→

14

15 # Validate the received signatures

16 if (block_info == block_info2 and
17 valid_new_ranges([start_index, end_index],

ranges)↪→

18 verify(block_info, get_public_key(start_index,

end_index), signature2):↪→

19 new_ranges = append_and_merge(ranges, [start_index,

end_index])↪→

20 new_signatures = combine_signatures(signature,

signature2)↪→

21 with lock:

22 ranges = new_ranges

23 signature = new_signatures

24

25

26 def thread2():

27 for level in range(TREE_DEPTH):

28 wait_for_phase(ceil(log2(num_validators)) + level + 1)

29 with lock:

30 broadcast(block_info, signature, ranges)

31

32

33 # Start threads

34 t1 = threading.Thread(target=thread1)

35 t2 = threading.Thread(target=thread2)

36 t1.start()

37 t2.start()

38

39 wait_for_phase(2 * ceil(log2(num_validators)) + 1)

40

41 finished = True

42 # Cause receive_by_priority() to exit with Nones

43 terminate_receive_by_priority_queue()

44

45 # Stop and join the two threads

46 t1.join()

47 t2.join()

48

49 # Broadcast the final block, ranges, and

signatures.↪→

50 broadcast(block_info, ranges, signature)

5.4 Tree Reshuffling

Between each block (or n blocks), the tree is changed with
the goal of moving more reliable nodes left and less reliable
nodes right. Tree reshuffling is run on every node and the
result included in the block in the form of a merkle tree.
Reshuffling is done by looking over a sliding window of the
last W valid blocks and counting how many infractions each
validator has where an infraction is either:

1) Not being part of a consensus

2) Two nodes that should have combined signatures in a
tree instead send their signatures to the block producer
directly. (The block producer includes a proof of this in
the form of the two signed messages in the block body.)

Each of these infractions is given a different weight, then
the infraction count is summed up for each validator over the
sliding window. The top R validators with non-zero infraction
counts sorted by infraction count descending and tree position
are removed from the tree and re-inserted at the right side of
tree in a random order.

This has the effect of creating large subtrees on the left that
consist of the most reliable nodes and the unreliable nodes will
be on the right side of the tree. The block producer can then
preferentially chose to process messages coming from the left
side of the tree where a 2/3rds+1 vote can be accumulated
quickly in just a few messages.

This tree reshuffling phase also includes both adding and
removing validators from the tree. New validators are added
at the rightmost side and retiring validators are removed.

5.5 Signature Verification

These algorithms require the ability to get the combined pub-
lic key of all nodes between a given start_index and end_index
quickly. While this naively takes O(n) work, by precomputing
the tree of public keys (and including this as merkle tree in the
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block) one can reduce the cost of generating these public keys
and verifying signatures to O(log(n)) for an arbitrary range
and constant time for the branches in the tree. The cost of
initially generating this public key tree can be amortized over
many blocks, and in our tests an unoptimized implementation
on a Core i9 processor took under three minutes to generate
a tree for one million validators. Updating a public key tree
after a reshuffle can be done in O(r*log(n)) time, where r is
the number of nodes moved. There is also a lot of room for
optimization here, as any one node only needs a small subset
of the tree and the tree need not always be perfectly balanced.

6 Optimizations and performance.

This basic algorithm can be optimized for speed to reduce the
total number of phases required.

1) Increase the branching factor to be larger than 2.

2) Remove the top few levels of the tree (which are unlikely
to agree) and skip their phases.

3) Have the block producer end the algorithm without wait-
ing for stragglers if 2/3rds+1 votes are collected. (We
recommend block rewards give a small bonus for over-
signing a block to balance this.) Potentially most of the
broadcast phases could be skipped in the common case.

4) The block producer’s thread1() could be parallelized
further.

Naively one million validators would take 42 total phases
to complete, of which 22 would require a broadcast. Using
a 32-way branching factor would reduce that to 10 phases
(6 broadcasts), then removing the top 2 levels of the tree
would further reduce this to 6 phases (4 broadcasts). 32-way
branching would work by having all nodes send their signa-
tures to the leftmost node in the branch, then that leftmost
node would internally simulate the combining logic in the bi-
nary tree. Finding the optimal branching factor would require
performance testing.

The absolute performance would depend a lot on what the
network timeout is set to. In a cryptocurrencies that slashes
validators for not being part consensus repeatedly (being of-
fline) there is a strong incentive to run validators in data cen-
ters and well connected networks. A validator with a network
far slower than the 2/3rd+1th percentile of other validators
may get slashed for being too slow to be included in con-
sensus for a series of blocks. We show results from detailed
simulations in section 10.2.

7 Correctness

Theorem 1. For a sufficiency large network timeout K,
BFTree will reach consensus if 2/3rds+1 of nodes and the
block producer are honest and vote for the block.

Proof. Set the network timeout K such that no messages from
functional nodes timeout and all messages to the block pro-
ducer are processed. By contradiction, assume that consensus
is not reached. Then there must exist some node Q that is
honest and votes for the block, but is not included in the tal-
lied votes by the block producer. Then in the second loop of
the algorithm, on line 47, Q would send its vote to the block
producer and that would have been included, resulting in a
contradiction.

Following the rules of HotStuff BFT (and the correspond-
ing proofs), this correct vote tallying property in Theorem
1 establishes that BFTree is no worse than HotStuff BFT in
terms of correctness and given a large enough timeout.

8 Tree Sortedness

Much of the performance of the algorithm will depend on
the ability of the tree to sort the reliable and unreliable nodes
correctly. It is based on an intuition that future reliability of
nodes is correlated to past reliability of nodes. In the extreme
case where a set of nodes A is perfectly reliable and another
set of nodes B is Byzantine, one would expect the tree to
eventually become sorted as only the Byzantine nodes would
incur infractions that reinsert them into the tree to the right and
correct nodes would not. At the other extreme, if Byzantine
behavior is uncorrelated between blocks and a random set of
nodes act out each block, then this tree based reputation score
would be defeated. We believe that in reality we will be closer
to this first scenario than the latter.

9 Potential Attacks

One attack is a network based attack where the block pro-
ducer (or some node) is flooded with fraudulent messages
that prevent legitimate messages from being processed due
to CPU or network bottlenecks. This attack is not unique
to BFTree, and it is something HotStuff and others are also
vulnerable to. One possible mitigation is to try to keep the net-
work addresses of participants secret using techniques such
as an onion router. This unfortunately has high overheads, so
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it may not be practical. The mitigation we suggest is process-
ing messages in a priority queue order, where lower priority
messages are either ignored or blocked by a firewall. The
block producer can prioritize messages by total stake size and
position in the tree, which can be verified through signatures.
Individual nodes communicate point to point where they can
verify the public key of the message sender. One could imag-
ine adding a network address reputation system on top of this
where participants track the addresses generating both valid
and invalid messages and then prioritize checking signatures
of messages from addresses that generate the highest fraction
of valid messages.

Another attack vector involves a Byzantine node trying to
manipulate the tree structure. This can be done with a type 2
infraction, where a node refuses to combine signatures with
their partner in the tree and both sides send their signature
directly to the block producer. In this case, both the Byzan-
tine node and their partner in the tree would incur the same
infraction points so there is a cost to this type of manipulation.
This type of manipulation is also limited by tree position.
After doing this once, a Byzantine node would be pushed
to the right of the tree where they would only be partnered
with other unreliable nodes and could not affect the reliable
nodes on the left side of the tree. Concerns about this type
of manipulation are what motivated randomizing the order
that misbehaving nodes are added to the right side of the tree.
This randomization makes is harder for a possible attacker
to control who they are paired with. We have not yet come
up with an effective way for an attacker to profit from this
manipulation.

10 Simulated Performance

In this section, we share a number of findings from detailed
simulations of the BFTree protocol.

10.1 Impact of Byzantine Nodes

The block producer will quickly become the bottleneck as
failures spread throughout the tree since failures will result in
validators sending signatures directly to the block producer,
who will then have to aggregate the signatures themselves.
Figure 2 shows simulated results for how many messages
a block producer will need to process, at various levels of
validator reliability. In the worst case of 0% past downtime
correlation, we draw a random set of nodes to be down for
each block with a binomial distribution, such that downtime
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Figure 2: Simulated count of block producer messages re-
quired to reach the 2

3 +1 vote threshold with 1,000,000 total
validators each with equal stake. Aggregate validator reliably
is the fraction of validators operating correctly in the average
block. Error correlation is the correlation of current downtime
to past downtime or the chance that a byzantine validator
in the current block was also acting maliciously in the prior
block.

is not correlated with past performance. Without correlated
downtime, tree reorganization provides no benefit. The other
lines in the graph show increasingly correlated downtime,
where if is node down in block N there is a 50, 90, or 99%
chance that it was also down in block N− 1. We observe a
clear benefit where as the correlation of error increases, the
message count drops.

The raw performance and block rate depends on how many
messages per second the block producer can process. Our
testing shows the single-threaded BLS12-381 signature val-
idation/merging can run at approximately 5,000 signatures
per second on a Core i7-8086K processor, however actual
performance will vary greatly with implementation, network
overheads, and optimization level. In a very rough estimate,
these results indicate that consensus can be achieved in a num-
ber of seconds in most cases, assuming the network exhibits
more than 90% reliability with relatively low error correlation.
Encouraging such availability can be achieved by instituting
liveness incentives or even slashing conditions such as the
ones used by Cosmos [12].

10.2 Signature Aggregation Performance

Figure 3 shows the simulated performance of aggregating
signatures using latencies typical in a worldwide network
(300ms mean with a 100ms standard deviation and 50ms
minimum). In the expected case where unreliable nodes are
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Figure 3: Simulated latency for aggregating signatures by
number of validators participating in the tree, shown for vari-
ous tree branching factors.

grouped together, TreeBFT can achieve consensus with just
one broadcast and one tree aggregation, showing that consen-
sus can be achieved in under 3 seconds when using a 32-way
tree. Note, however, that we are excluding the time needed
for block propagation and validation, and so a realistic block
period would be larger. Further testing is required to measure
real world performance.

11 Future Work

This algorithm is currently just a concept represented by this
paper, slide decks, and many discussions. It is still far from
being ready for adoption and we are releasing this in the hopes
that attention of the community and vetting by experts will
help harden the idea. The remaining work can be divided into
more theoretical analysis, simulations, and prototype imple-
mentations.

For theoretical analysis, we hope to find any flaws or new
attack vectors in this system. We would also like help coming
up with correctness and liveness proofs that make weaker
assumptions about the network. There is also room for more
statistical analysis of how the tree sortedness is affected by
different distributions of Byzantine node and other failures.

For simulations, this algorithm (and the optimized version)
include a number of parameters that need to be set. We plan
to continue expanding our simulations to help us fine tune
these parameters. One could also use a simulation to model
a wider set of malicious behaviors to see how they affect the
performance of the algorithm.

Finally, a healthy consensus algorithm should have many
independent implementations. We plan to implement a proto-
type for testing, but invite others to create independent imple-
mentations.

12 Conclusions

Part of what made the idea of Bitcoin so compelling when it
launched was that anyone could participate by running a miner
in their home. This permissionless structure is a fundamental
part of the cryptocurrency revolution. Unfortunately, as we
transition to more environmentally sustainable proof-of-stake
systems, a piece of this permissionlessness might be lost with
the latest two-tier staker/delegator systems that only allow
hundreds of people actually to participate in the consensus
protocol due to scalability limitations. While some people
might prefer to be delegators, we believe that a permissionless
protocol is more resilient if it allows anyone to join in the
consensus protocol. BFTree takes an important first step in
enabling a protocol that can scale to millions of validators in a
PoS protocol. We hope that it enables future cryptocurrencies
to maintain this compelling property.
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