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Abstract

This document analyzes the stability of the Celo protocol over a set of simulated market
scenarios.
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1 Introduction
The Celo protocol [5] defines a decentralized payments system in which participants use coins
pegged to a local fiat currency or a local basket of goods. In this paper, we investigate the stability
characteristics of Celo stable value assets through a series of simulations under various market
conditions. For simplicity, we focus on the case of a single stable value asset, called the Celo
Dollar, that is pegged to the US Dollar.

1.1 Stability Mechanism
The Celo protocol, at base, has two assets: Celo Dollars, an elastic-supply stable value asset, and
Celo Gold, a fixed-supply variable value asset.1

To maintain stability of Celo Dollars, the protocol continuously adjusts Celo Dollar supply to
match Celo Dollar demand at the price peg. When the market price of Celo Dollars is greater than
$1, the protocol expands the supply of Celo Dollars by creating new Celo Dollars and selling them
on the open market in exchange for Celo Gold, which it then deposits into a reserve and diversifies.
The protocol continues to expand supply in this manner until the market price reaches the $1 peg.

When the market price of Celo Dollars is less than $1, the protocol contracts the supply of Celo
Dollars by buying Celo Dollars on the open market using the assets in the reserve, and burning the
Celo Dollars that it bought. The protocol continues to contract supply in this manner until the
market price reaches the $1 peg. Section 4 gives a more detailed description of the implemented
expansion and contraction mechanism that aims to achieve the above dynamics.

1.2 Stability Risks
The primary risk to Celo Dollar stability is a scenario in which there is a contraction in demand
for Celo Dollars greater than the total value of the reserves. In such a scenario, the protocol would
be unable to contract supply enough to meet decreased demand.

A secondary risk is a scenario in which there exists enough value in the reserves to handle a
contraction in demand, but not enough market liquidity to sell the amount of crypto assets quickly
enough to handle the contraction.2

To model the likelihood of either of these risks, we would need to model the demand for Celo
Dollars, the value of the reserves, and the flows of Celo currency through the expansion and
contraction mechanism. We do so in the next three sections.

2 Demand: A Stochastic Anchor Point Model
We model demand for Celo Dollars via a two-step process, in which we use a Geometric Brownian
Motion (GBM) model to sample demand quantity Qt at a series of time points t, and then derive
full demand curves from these anchor points by modeling reasonable price elasticity parameters at
these anchor points.

2.1 Stochastic Anchor Points for the Demand Curve
We use Geometric Brownian Motion to generate stochastic demand quantities Qt for Celo Dollars
at the price of one US Dollar, using the following stochastic differential equation:

dQt = µQt dt+ σQt dWt (1)

where Wt is a Brownian Motion, µ is the drift rate and σ is the volatility parameter. The solution
to this equation is:

Qt = Q0exp
[
(µ− 1

2
σ2)t+ σWt

]
(2)

1In actuality, the Celo protocol allows for many stable value assets and many reserve assets [5]. However, the
analysis of the base case is generalizable to the multiple-asset case.

2A similar risk occurs if the protocol cannot buy crypto assets quickly enough to handle an expansion in demand.
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with t > 0 where Q0 is the starting value of the demand quantity.3 By the properties of log-normal
distributions, the expected value of E [Qt] that results from equation (2) is

E [Qt] = Q0exp (µt) (3)

which implies an average arithmetic return of

E
[
Qt
Q0
− 1

]
=

E [Qt]

Q0
− 1 = exp (µt)− 1. (4)

Because log(1 + x) ≈ x for small x, it holds that

exp(µt)− 1 ≈ µt (5)

for small µt, but in general, the average arithmetic return over a short period of length t is slightly
larger than µ.

2.2 Modeling Demand Shocks
Our base model for stochastic elements can lead to strong changes in the Celo Dollar demand
and/or extreme cryptomarket downturns over longer periods. It does not, however, generate
extreme instant movements like an instant rise in Celo Dollar demand of 20% or an instant market
drop of 20%.

We modify the base model to include demand shocks using the Merton jump diffusion model [9].
More precisely, we extend equation (2) by an additional factor that captures jumps for which the
occurrence frequency is governed by a Poisson process, i.e.

Qt = Q0exp
[
(µ− 1

2
σ2)t+ σWt

] Nt∏
j=1

exp
(
Y dj
)

(6)

where Nt is a Poisson process with an average number of jumps per annum of λd and Y d has a
normal distribution with parameters µd and σd such that

Y d ∼ N
(
µd, σ

2
d

)
. (7)

In our simulations, we choose the parameters such that jumps have a mean of zero and a
standard deviation of 10%, i.e.

µd = 0 and σd = 0.1 (8)

We assume an average of one demand jump per annum (λd = 1). Figure 1 shows on a log-
arithmic scale that the stochastic process for the demand described by equation (6) leads to an
extremely wide range of simulated demand developments given the considered parameter settings.
Figure 2 and Figure 3 show what this implies on a linear scale by differentiating between cases of
positive and negative overall demand growth over the 30 year period.

3The term − 1
2
σ2 is often referred to as the “convexity adjustment" as it results from the convexity of the natural

logarithm in the derivation of the solution to the GBM SDE. Including this correction is important as the expected
value of the process at some time step t will otherwise depend not only on the drift but also on the volatility
parameter.
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Figure 1: This figure shows a random sample of simulation paths across simulated Celo Dollar
demand scenarios (-10%, 10% and 20% expected growth) on a logarithmic scale. The graph shows
that we consider an extremely wide range of Celo Dollar demand developments.

Figure 2: This figure shows simulation paths for a random sample of Celo Dollar demand scenarios
(-10%, 10% and 20% expected growth) on a linear scale that resulted in a decline in demand over
the 30 year period.

Figure 3: This figure shows simulation paths for a random sample of Celo Dollar demand scenarios
(-10%, 10% and 20% expected growth) on a linear scale that resulted in an increase in demand
over the 30 year period.
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2.3 Shape of the Demand Curve
Once we have stochastic anchor points Qt for the demand curve at 1 US Dollar as defined by
equation (6), we create the demand curve by assuming that it has a price elasticity of −γ at those
anchor points, such that a price decrease by x% leads to an approximate increase in the demand
quantity of γx%.4 Thus, the demand function is given by

qt = Qt
γ

pt
(9)

where Qt is the demand at the $1 price peg generated by the stochastic model, and qt is the
demand at price pt. This demand curve also gives the price sensitivity of Celo Dollars in our model
in cases where supply cannot match demand – see, for example, Figure 4, a scenario in which the
demand for Celo Dollars (at 1 US Dollar) at time step t is Qt = 20M , at γ = 1. If Celo Dollar
supply is 20M coins (green line), then our simulation maintains the peg. If Celo Dollar supply is
only 19M (for example due to constrained liquidity), our simulation depegs at a Celo Dollar price
of $1.05 (orange line).
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Figure 4: This Figure shows an example demand curve for Celo Dollars in our model. In this, case
a demand for Qt = 20M coins is generated via a stochastic process. The rest of the demand curve
is then constructed around this anchor by assuming the parametric form of the demand curve
described by equation (9). This setup allows us to model the price of Celo Dollars in cases where
the protocol is unable to expand or contract the supply sufficiently.

3 Supply: Pricing the Reserve
There are two constraints to adjusting Celo Dollar supply: the reserve (the supply of Celo Dollars
cannot contract by more than the value of the reserve), and market liquidity (the supply of Celo
Dollars cannot expand or contract more quickly than the market’s willingness to sell or buy reserve
assets through the expansion and contraction mechanism).

The primary risk to stability is the case in which there is a contraction in demand that is larger
in magnitude than the value of the reserves. This can only happen in cases where the price of
reserve assets dips substantially such that the reserve is undercollateralized prior to the demand
contraction. To model the probability of this, we need to model the price of the assets in reserve.

4This is an initial modeling assumption; in future work we will explore how sensitive our stability results are
with respect to changes in the elasticity of demand.
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3.1 Initial Reserve Value
The initial reserve may be bootstrapped by a limited private sale of Celo Gold. Of the proceeds
of this offering, some portion is used to purchase a basket of diversified crypto assets that get
committed to the reserve. Further, a fixed amount of Celo Gold is held back and initially committed
to the reserve.

This bootstrapping leads to an initial overcollateralization of outstanding Celo Dollars. Even
before any Celo Dollars are in existence, the reserve has both Celo Gold and non-Gold assets in
reserve from the limited private offering. Any Celo Dollars that are then purchased into existence
are additionally backed by new reserve assets used for the purchase.

For the simulations, we assume an initial non-Gold reserve size of 30mm.

3.2 Reserve Composition
The reserve consists of Celo Gold and a diversified basket of non-Gold crypto assets, and is peri-
odically rebalanced to achieve a target ratio of Celo Gold and non-Gold assets5.

For modeling purposes, we assume an equal weighting of N reserve candidates for the non-Gold
portion of the reserve, with monthly rebalancing. We chose this approach – as opposed to more
passive methods like market-cap weighted indexing, or more active methods like those described
by Markowitz ([8], optimize risk/return), Kelly ([6], optimize log-utility), or Michaud ([10], include
estimation risk in defining portfolio optimality) – because market-cap weighted indexing would
lead to high single-asset concentrations and methods like Kelly, Markowitz or Michaud are highly
dependent on input parameters. In finance literature, portfolios based on a naive 1/N heuristic
are standard benchmarks to more sophisticated allocation methods, and in our case, a portfolio
constructed in this manner would provide a comprehensible lower-bound in our stability analysis.

3.3 Pricing the non-Gold Portion of the Reserve
We use multivariate GBM to model the value of the non-Gold portion of the reserve. Doing so
allows us to model several different scenarios, from boom phases to bust phases, by using different
parameters for the average mean and average volatility for each of the N assets. In addition, we
use the DeMiguel approach [1] to introduce a correlation structure between reserve assets, and
analyze various levels of correlations in the reserves. We model the change in value dXi

t of asset i
at time t by the following equation:

dXi
t = µiX

i
t dt+ σiX

i
t dW

i
t (10)

where µi is the drift rate of asset i and σi is its volatility parameter, and where the increments of
the respective Brownian Motions W i

t are multivariate normal, i.e.[
W 1
t −W 1

s ,W
2
t −W 2

s , ...,W
N
t −WN

s

]
∼ N ((t− s)µ, (t− s)Σ) (11)

where µ is a vector with the drift parameters µi as elements and Σ is a covariance matrix with the
variances σ2

i on the diagonal and non-zero off-diagonal elements in case of a correlation between
the respective assets.

To model the covariance matrix Σ, we assume that the returns of the reserve assets follow a
single factor structure, as per [1]:

Rt = βft + εt (12)

with ft ∼ N
(
µf , σ

2
f

)
and εt ∼ N (0,Σε)

where µf and σ2
f influence the average of the drift parameters and the average of the variance of

the assets respectively. Σε gives the covariance matrix of the error terms and is assumed to be
diagonal with volatilities drawn from a uniform distribution with a specific support [σε,l, σε,u]. The
elements of β are spread evenly between 0.5 and 1.5.

DeMiguel [1] chose the parameters µf , σf , σε,l and σε,u such that the resulting moments are
aligned with empirically observed equity returns. For our purposes, we would like to be able to
choose different sets of parameters that capture a range of possible future scenarios. We do so by

5The target ratio in our model is 1:1, so that 50% of the reserve is held as Celo Gold, and 50% is held as a
diversified basket of cryptocurrencies. Additionally, the reserve has lower and upper bounds of 20% and 80% of all
existing Gold coins.
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adjusting the DeMiguel approach such that it allows us to specify an average mean return and an
average volatility, and then extrapolate the mean return vector and covariance matrix given those
inputs. The implementation used in this version of the stability analysis assumes N = 10 assets in
the reserve.

3.3.1 Modeling Reserve Asset Price Shocks

To model jumps in the reserve assets, we extend the Merton model described in section 2.2 to the
multivariate GBM by adding an idiosyncratic jump component Y i with

Y i ∼ N
(
µc, σ

2
c

)
(13)

for each asset i as well as market wide jump component Y m with

Y m ∼ N
(
µm, σ

2
m

)
(14)

that affects all cryptoassets. This yields the following process

Xi
t = Xi

0exp
[
(µi −

1

2
σ2
i )t+ σiW

i
t

] Nt∏
j=1

exp
(
Y ij
) Mt∏
k=1

exp
(
Y mj
)

(15)

where Nt and Mt are Poisson processes with an average annual number of jumps of λc and λm
respectively.

For the purposes of our simulations, we choose the parameters such that all jumps have a mean
of zero and a standard deviation of 20%, i.e.

µc = µm = 0 and σc = σm = 0.2 (16)

And we assume 5 idiosyncratic crpytoasset jumps and 2 cryptomarket-wide jumps per annum,
i.e. (λc = 5 and λm = 2). Figure 5 shows on a logarithmic scale that the stochastic process
for the cryptomarket described by equation (15) leads to an extremely wide range of simulated
cryptomarket developments given the considered parameter settings. Figure 6 and Figure 7 show
what this implies on a linear scale by differentiating between cases of positive and negative overall
cryptomarket growth over the 30 year period.

Figure 5: This figure shows how the hypothetical investment of 1 USD into an equally weighted
cryptomarket portfolio would have evolved over a random sample of simulated cryptomarket growth
scenarios on a logarithmic scale. Random paths that belong to the simulation runs with the same
assumed average growth rates (-20%, 0%, 10% and 20% are investigated) share the same color. As
the figure shows, we investigate an extremely wide range of cryptomarket developments.
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Figure 6: This figure shows, on a linear scale, a random sample of those simulation runs that
resulted in an overall decline of the cryptomarket over the 30 year period. Random paths that
belong to the simulation runs with the same assumed average growth rates (-20%, 0%, 10% and
20% are investigated) share the same color.

.

Figure 7: This figure shows, on a linear scale, a random sample of those simulation runs that
resulted in an overall increase over the 30 year period. Random paths that belong to the simulation
runs with the same assumed average growth rates (-20%, 0%, 10% and 20% are investigated) share
the same color.
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3.4 Pricing the Celo Gold Portion of the Reserve
To price the Celo Gold portion of the reserve, we must come up with a pricing model for Gold.
The pricing model we derive in this section is an effort to demonstrate potential outcomes in a
stability analysis, and are not intended to show or suggest that Celo Gold will appreciate in value.

In this model, we assume that there are two components to the value of Celo Gold. The first,
which we call the expansion value, is based on the protocol-directed purchases of Celo Gold when
the demand for Celo Dollars increases. The second, which we call the utility value, is based on the
fact that transaction fees on the Celo network are denominated in Celo Gold.

We also assume that the market participants, which in aggregate hold all floating Gold at time
point 0, expect their Gold ownership to be diluted over time - for example by block rewards and
reserve transactions. More precisely, we assume that the ownership fraction ωt can be described
as

ωt = ω0exp(−νt) (17)

with ω0 = 0, t > 0 < ν and where ν denotes the fraction of annual ownership dilution.

3.4.1 Expansion Value

The expansion value, qualitatively, derives from the fact that, on expansion in demand for Celo
Dollars, the protocol will purchase Celo Gold.

More precisely, assume market participants at t = 0 expect a growth rate of Celo Dollar demand
Qt of µ̂ ≥ 0, and that the demand at 1 US Dollar at t = 0 equals the supply, i.e. Q0 = S0. Then:

Qt = Q0exp(µ̂t) . (18)

implies
St = S0exp(µ̂t) . (19)

The expected instantaneous expansion of supply is thus

dSt = µ̂Stdt. (20)

In this model, the present value generated to today’s Gold holders generated through expected ex-
pansions, Ve, can be calculated by integrating over the product of the expected fractional ownership
and the discounted expansion amounts

Ve =

∫ ∞

0

ωtexp(−rt) µ̂S0exp(µ̂t) dt. (21)

where r is the discount rate. Evaluating this integral

Ve =
µ̂S0

µ̂− r − ν
[exp [(µ̂− r − ν) t]]

∞
0 (22)

under the assumption r + ν > µ̂ gives

Ve =
µ̂

r + ν − µ̂
S0. (23)

If an annual stability fee of size s is introduced, then this increases the necessary expansion rate
from µ̂ to µ̂+ s and thus leads to an expansion value of Celo Gold of

Ve =
µ̂+ s

r + ν − µ̂− s
S0 (24)

The derivation of this result can be seen as a variation of the Gordon Growth model [3]. If one
for example assumes positive Celo Dollar demand growth of 5%, a 10% ownership dilution, a 0.5%
stability fee and a discount rate of 25%, than a multiplier Ve

S0
= 0.1864 results. If we assume zero

growth in Celo Dollar demand, i.e. µ̂ = 0, equation (24) would reduce to

Ve =
s

r + ν − s
S0 (25)

which leads to a ratio of Ve

S0
= 0.0145.
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3.4.2 Utility Value

The utility value of Celo Gold derives from the fact that transaction fees are paid in Celo Gold6.
If Celo Dollar holders pay a transaction fee f for each transaction, the incremental fee is:

dFt = vfStdt. (26)

where v is the annual velocity of Celo Dollars.
Just as in the calculation of the expansion value, the utility value follows from integrating over

the product of the expected fractional ownership and the discounted expected future inflows:

Vu =

∫ ∞

0

ωtexp(−rt) vfS0exp(µ̂t) dt. (27)

Evaluating this integral

Vu =
vfS0

µ̂− r − ν
[exp [(µ̂− r − ν) t]]

∞
0 (28)

under the assumption that r + ν > µ̂ results in a utility value of:

Vu =
vf

r + ν − µ̂
S0. (29)

3.4.3 Deriving Price

The total value Vt of Celo Gold in float is calculated as the sum of the expansion and the utility
value:

Vt = Ve + Vu. (30)

Once we have the total value Vt of Celo Gold in float at time t, we can compute the price pt of a
single Celo Gold coin as follows:

pt =
Vt
qt
. (31)

where qt is the quantity of Celo Gold in float (not in the reserve). In our model, we know the
number of coins in the reserve and the float at any time t, and so we can use pt to give a value of
the Gold portion of the reserve at time t.

3.4.4 Deriving Intra-Time Step Price

In addition to deriving the price of Celo Gold at each time step, we can also derive the average
price of Celo Gold between time steps. This is useful in modeling the amount of Gold that the
protocol needs to purchase or sell at a given time step to handle a contraction or expansion during
that time step.

A naive estimate would be to assume that all gold purchased or sold during a time step is
purchased at the price of gold at the previous time step. However, in the case, for example, of a
large purchase during a time step, it is likely that the price would be affected by the purchase.

To model this, we take the Celo Dollar amount ∆ generated by buying back floating Celo Gold
as the integral over the pricing function above. Let the start quantity of floating Celo Gold at time
step t to be qs and the end quantity of floating Celo Gold at time step t to be qe, then

∆ =

∫ qs

qe

V

x
dx = V (log(qs)− log(qe)) . (32)

Rearranging the above formula gives

qe = qsexp
(
−∆

V

)
(33)

as the end quantity of Celo Gold during a change in supply of ∆ Celo Dollars.
6We may choose to have transaction fees paid in Celo Dollars. In that case, value derived from transaction

fees will be a component of the expansion value much like the case of stability fees, since Celo Dollar-denominated
transaction fees would increase the demand for Celo Dollars. Stability dynamics in either case will remain the same
in our models; we model the Celo Dollar-denominated transaction fee scenario explicitly in a future version of this
paper.
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Figure 8: This figure illustrates the price/quantity relationship of Celo Gold. The floating Gold
value chosen for demonstration purposes in this figure is V = 100,000. The resulting change in
Celo Dollar supply, denoted by ∆, is the area under the curve from qe = 1, 000 to qs = 2, 000 in
this example.

3.5 Additional Mechanisms to Bolster the Reserve
In addition to the natural price dynamics of the reserve, two additional mechanisms serve to bolster
the reserve in times of volatility.

3.5.1 Block Reward Distribution Scheme

When the reserve ratio is below a certain threshold, block rewards in excess of miner rewards are
distributed to the reserve. In our model, we assume a reserve ratio threshold of 2, and that a
constant fraction of 60% of block rewards are distributed to miners. This implies that 40% of
block rewards are, depending on the current reserve ratio, either distributed as incentives or to the
reserve.

3.5.2 Celo Gold Transfer Fees

An additional mechanism for avoiding low reserve ratios is a transfer fee on Celo Gold transactions.
This fee is paid on all transactions involving Celo Gold during times in which the reserve ratio is
below a threshold of two, and thus encourages long-term holding of the reserve coin. All proceeds
from this fee go to the reserve. This fee could be adjusted dynamically as a function of the
reserve ratio to generate higher reserve inflows when the reserve ratio is low. In this version of
the analysis, we simply assume a constant and conservatively estimated trading volume of Gold of
20% per annum and a constant transfer fee of τ = 0.5% per Celo Gold transaction.

4 Expansion and Contraction Mechanism
At a high level, the Celo expansion and contraction mechanism allows users to create new Celo
Dollars by sending 1 US Dollar worth of Celo Gold to the reserve, or to burn Celo Dollars by
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redeeming them for 1 US Dollar worth of Gold. This mechanism, referred to as decentralized one-
to-one mechanism (DOTO) for the rest of this article, creates incentives such that when demand
for the Celo Dollar rises and the market price is above the peg, an arbitrage profit can be achieved
by buying 1 US Dollar worth of Celo Gold on the market, exchanging it with the protocol for one
Celo Dollar, and selling that Celo Dollar for the market price. Similarly, when demand for the
Celo Dollar falls and the market price is below the peg, an arbitrage profit can be achieved by
purchasing Celo Dollars at the market price, exchanging it with the protocol for 1 US Dollar worth
of Celo Gold, and selling the Celo Gold to the market. These actions drive the market price of the
Celo Dollar back towards 1 US Dollar without the need for the protocol to estimate the optimal
expansion or contraction amounts.

There is one major drawback to a direct implementation of the DOTO mechanism described
above: in order for a user to send 1 US dollar worth of Celo Gold to the reserve, or redeem 1 US
dollar worth of Celo Gold from the reserve, the protocol needs an oracle to give the exact price
of Celo Gold in US Dollars. In cases where the Celo Gold to US Dollar oracle value is imprecise
(in other words, if Celo Gold is trading on the market at a different price than what the oracle
says), arbitrage opportunities exist even if the Celo Dollar is perfectly pegged7. These unintended
arbitrage opportunities can lead to unintended supply adjustments and reserve depletion. The
next section describes the implementation of the above mechanism that mitigates this potential.

4.1 Constant-Product Decentralized One-to-One Mechanism
(CP-DOTO)

To address the risk of imprecise oracle values for the Celo Gold to US Dollar exchange rate in
the DOTO mechanism, the protocol uses a constant-product market-maker model, inspired by
Uniswap (see [11]), to dynamically adjust the on-chain exchange rate in response to on-chain
exchange activity. For that purpose, two wallets controlled by the protocol, one containing Celo
Dollars and one containing Celo Gold, are initialized whenever the oracle value is updated. Let G0

denote the number of Celo Gold coins and D0 the number of Celo Dollar coins in the respective
wallets at initialization. The central equation for the constant-product market-maker model fixes
the following relationship:

G0 ×D0 = Gt ×Dt ∀ 0 ≤ t < T (34)

where T denotes the point in time of the next oracle value update.
Given this, it can be shown (see [11]) that the price for an infinitesimal amount of Celo Gold

in Celo Dollar units in the period 0 ≤ t < T is

Pt =
Dt

Gt
. (35)

Whenever the oracle price of Celo Gold is updated, the protocol initializes wallet quantities D0

and G0 that lead to a on-chain price P0 which equals the current oracle rate.
If the oracle price is correct, the exchange rate quoted by the constant-product market-maker

will be equal to that of the market, and no arbitrage opportunity will exist if the Celo Dollar is
pegged. If the oracle price is incorrect, the two rates will differ, and an arbitrage opportunity will
exist even in the absence of a Celo Dollar depeg. As arbitrageurs exploit this opportunity the
constant-product market-maker model will dynamically adjust the quoted exchange rate until the
arbitrage opportunity ceases to exist. This limits the depletion potential of the Celo expansion
and contraction mechanism in the case of an incorrect oracle price.

In this analysis, we take the conservative approach of assuming that no external market makers
or other market participants are willing to compensate short-term fluctuation of the Celo Dollar at
market places on their own account. The short-term price fluctuations resulting in this simulation
analysis are thus a conservative estimate of the short-term stability of the Celo Dollar.

7To give a concrete example, if the oracle says the price of Celo Gold is $1.50, and Celo Gold is trading on the
open market for $2, then people have an incentive to redeem their Celo Dollars for Celo Gold from the reserve at
$1.50 and then sell the Celo Gold on the open market for $2. Further, in that scenario, nobody would buy Celo
Dollars from the reserve, because they will need to pay $2 worth of Celo Gold to buy 1.50 Celo Dollars.
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5 Simulation Results
Given the above models for Celo Dollar demand, value of the reserve, and the expansion and
contraction mechanism, we simulated a range of market scenarios and analyzed the stability of
Celo Dollars in these scenarios.

In our simulations, we explored every permutation of the parameter settings in Table 1, and
simulated 1,000 paths for each permutation, each path with daily time steps over a period of 30
years, for a total of 24,000 30-year simulations which gives more than 259 million simulated days
overall.

Parameter Settings

Parameter
Symbol Settings Explanation

Demand

µ −10%, 10%, 20% Drift rate of demand
σ 20%, 40% Volatility of demand
µd 0% Average demand jump size
σd 10% Volatility of demand jump
λd 1 Demand jumps per annum
γ 1 Price elasticity of demand

Cryptomarket

µf −20%, 0%, 10%, 20% Drift rate of reserve assets
σf 50% Volatility of reserve assets
µc 0% Average idiosyncratic reserve jump size
σc 20% Volatility of idiosyncratic reserve shock
λc 5 Idiosyncratic reserve jumps per annum
µm 0% Average market wide reserve jump size
σm 20% Volatility of market wide reserve shock
λm 2 Market wide reserve jumps per annum

Protocol & Macro

v 20 Annual velocity of Celo Dollars
f 0.2% Transaction fee
s 0.5% Stability fee
τ 0.5% Gold transfer fee
r 25% Discount rate
µ̂ 5% Market expected Celo Dollar Growth
N 10 Number of non-Gold reserve assets
ν 10% Ownership dilution per annum

Table 1: This table gives an overview over the main parameters of the simulation and the respective
considered settings. When choosing parameters, we chose quite conservative values to achieve a lower
bound on stability, assuming highly volatile markets and demand growth, low market expectations for
Celo Dollar growth, and a low initial reserve ratio.

Table 2 provides a summary of the different permutations and some key stability metrics:
average price (avg_price), average daily absolute deviations from the target price (avg_abs_dev),
the 5% and 95% percentiles of the observed prices (x%_perc respectively) and the percentage of
days with depegs of more than 1 cent and 10 cent (depeg_1cent and depeg_10cent respectively).
The results with respect to the average absolute deviation are visualized in Figure 9.

6 Conclusion
The purpose of this analysis was to gain a better understanding of the stability-related mechanics
and overall stability of the Celo protocol. We found that in its current version, the Celo stability
mechanism limits volatility to a reasonably narrow band over a range of market scenarios. However,
it is important to note that any simulation is only as good as its assumptions, and no simulation can
model all possible scenarios. In this simulation, we used a reasonable set of assumptions to derive
the model and set the parameters, but as in any model, there are other reasonable assumptions
that would lead to other models and other sets of parameters.

Future versions of the analysis will continue to refine the Celo Dollar demand and reserve
asset pricing models, for example by including the stochastic volatility model of [4] that allows for
volatility clustering, and block bootstrap methods (see for example [2] and [7]) that allow us to
base the stochastic demand on historical crypto asset data without making strong distributional
assumptions. Further, in future versions we will model large scale attacks, and include additional
stability features of the protocol that we did not include in the current version, for example by
introducing multiple stable value assets.
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Appendix I: Simulation Result Table
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Appendix II: Simulation Result Visualization

Figure 9: This figure visualizes the simulation results shown in Table 2 with respect to the stability
metric of absolute average price deviation of the Celo Dollar. The respective average growth rates
for the cryptomarket and the Celo Dollar demand growth are given on the horizontal axis. The
lower and upper surface show results for σdemand = 20% and σdemand = 40% respectively.

17


	Introduction
	Stability Mechanism
	Stability Risks

	Demand: A Stochastic Anchor Point Model
	Stochastic Anchor Points for the Demand Curve
	Modeling Demand Shocks
	Shape of the Demand Curve

	Supply: Pricing the Reserve
	Initial Reserve Value
	Reserve Composition
	Pricing the non-Gold Portion of the Reserve
	Modeling Reserve Asset Price Shocks

	Pricing the Celo Gold Portion of the Reserve
	Expansion Value
	Utility Value
	Deriving Price
	Deriving Intra-Time Step Price

	Additional Mechanisms to Bolster the Reserve
	Block Reward Distribution Scheme
	Celo Gold Transfer Fees


	Expansion and Contraction Mechanism
	Constant-Product Decentralized One-to-One Mechanism (CP-DOTO)

	Simulation Results
	Conclusion

