Mainstreaming biofortification in maize and wheat

Dr. Martin Kropff
System Council Meeting

May, 2017

Maize and wheat: what the world eats

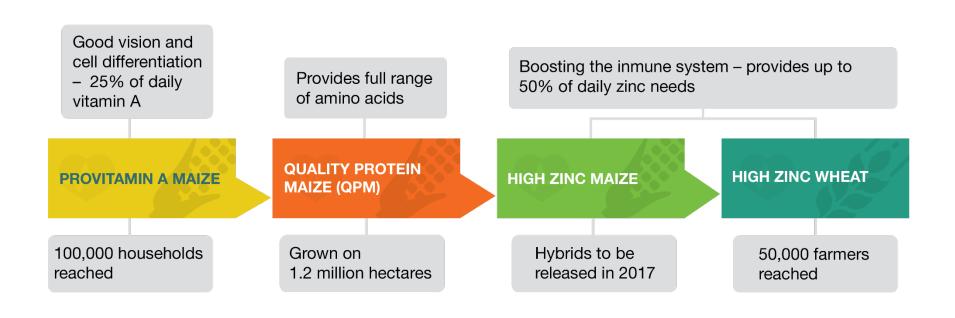
STAPLE FOOD TO 2.5 billion people in 89 countries

WHEAT PROVIDES 18% OF OUR TOTAL AVAILABLE CALORIES

PREFERRED

STAPLE FOOD TO Million people

LIVING ON LESS THAN \$2 A DAY


MAIZE PROVIDES 15-56% OF TOTAL CALORIE INTAKE

in Sub-Saharan Africa, Latin America and Asia

CIMMYT

Biofortification – progress so far

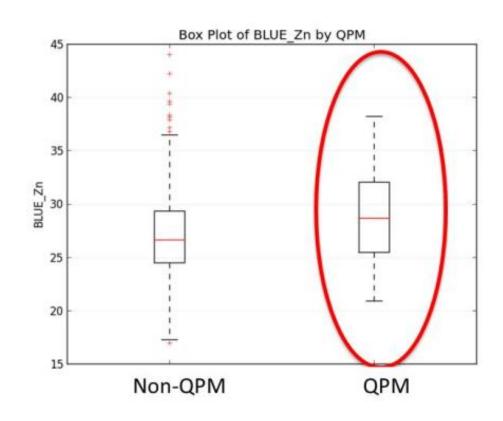
MAIZE

Provitamin A-enriched Maize

1500 tons of seed of provitamin A enriched certified seed produced per year

Number of households growing pro-vitamin A maize in Africa in 2013: 100,000

Total number of pro-vitamin A varieties released: 4 in Malawi, 3 in Zambia and 1 in Zimbabwe


Impact: QPM

- QPM is estimated to be grown on about 1.2 million hectares worldwide
- 2010 meta analysis from 5 countries showed consumption of QPM instead
 of conventional maize leads to a 12% increase in the rate of growth in
 weight and a 9% increase in the rate of growth in height in infants and
 young children with mild to moderate undernutrition from populations in
 which maize is the major staple food.
- Use for animal feed China

Impact: High Zn

- High Zn 3-6 hybrids and additional OPVs to be released in Guatemala, Colombia and Nicaragua in 2017
- Not all QPM are high in Zn, but CIMMYT has identified good sources of High Zn in QPM background

Constraints

- 1. <u>Cultural preferences</u> orange vs. white maize, different consumption patterns and market situations need to work in a targeted manner with both public and private sector partners.
- 2. <u>Compromise for other traits.</u>
- 3. Risk of little genetic diversity one pathogen could wipe out all varieties.
- 4. <u>Best lines for nutritional traits are often agronomically inferior</u> biofortification programs are playing catch up.
- 5. <u>Lag in grain yield compared to existing white hybrids</u> more investment has gone into white maize.

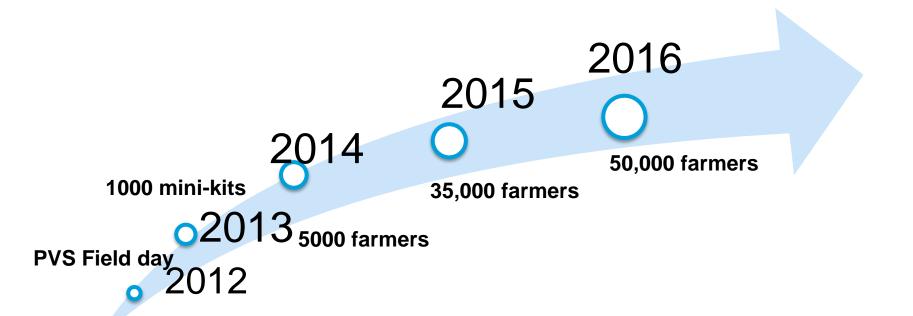
Priorities for mainstreaming

- Still need explore best way to mainstream biofortification:
 - Needs are different in different regions
 - Mainstreaming can take different forms
 - Zinc, iron and proVA are nutritionally related
- "Bridging" breeding program applying all available to tools to introgress combinations of traits
- Would require an investment of at least 4-5 million USD per year in only SSA over a 10 year period.

WHEAT

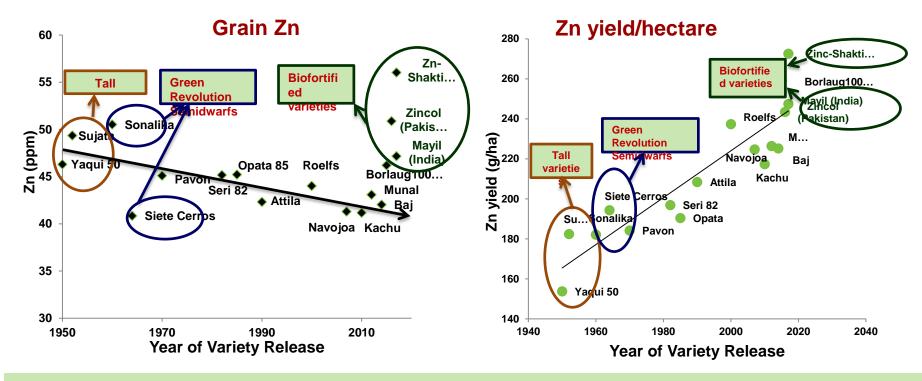
From genetic resources to farmers' fields in less than 10 years

Zn-Shakti' PVS variety: Extra-early with +14 ppm Zn (40% increase) adopted by >40000 farmers in NEPZ


Zincol 2016: 1st high zinc wheat in Pakistan with +6 ppm Zn = 2000 tons of seed to be sown in 2016-17

Two sister Mayil lines (+6 ppm Zn) identified in 2016 for release in NWPZ of India in 2017

High Zn Wheat Delivery progress & target in South Asia



	2014	2015	2016	2017	2018
Area (ha)	2000	40,000	60,000	150,000	350,000
Farming HH	5000	35,000	75,000	250,000	500,000

Zn in tall, semidwarf and 'biofortified wheat varieties

(mean 2013-14, 2014-15 & 2015-16 seasons in Zn-enriched fields at Ciudad Obregon, Mexico)

- Grain Zn concentration shows declining trend over year of breeding, however
- Zn yield/hectare shows increasing trend over year of breeding; i.e. newer varieties harvest more Zn from soil
- Biofortified varieties combine high grain Zn with high Zn yield/hectare

Constraints

- Early generations selections on individual plants level not possible, grains from small-plots can be useful if obtained from soil with more uniform Zn content/availability. - this limits the total number of plots that can be sown and harvested (as small plots and yield trial plots).
- Need appropriate testing program in target countries e.g. high zinc lines in Obregon might not be high in India)
- Continuous funding focused on improving grain micronutrients funding for Wheat H+ has gone down

Priorities for mainstreaming

- Maintaining annual genetic gains of 1% to 1.5% in grain yield (& other traits) needs additional funding of 30% increase
- Major increase in costs for main-streaming are for:
 - Increased land for growing plots (advanced lines and yield trials) in Zn homogenized soil.
 - Increased scientific, technical capacity and machines (XRF).
 - Upscaling phenotyping for disease resistance and other traits.
 - Molecular markers development for combining multiple QTLs.
 - Working on genomic selection approaches- prediction of crosses and selecting lines with multiple traits.

Thank you for your support!

