Wageningen and CCAFS

Martin van Ittersum, professor Plant Production Systems

Structure of CCAFS

RESEARCH PROGRAM ON Climate Change, Agriculture and Food Security

Important aspects for Wageningen involvement

- Expertise
- Multi disciplinary approach
- Result-oriented
- Engagement with the private sector

Wageningen involvement

Sustainable Intensification of Dairy Production in Indonesia (SIDPI)

Overall goal:

To sustainably increase farmer incomes and improve livelihoods in smallholder dairy systems in Indonesia.

Project aims:

- To increase herd and cow productivity
- To improve resource use efficiency
- To reduce greenhouse gas emissions

Private sector involvement

Crop nutrient gaps project

Bringing CSA practices to scale: assessing their contributions to narrow nutrient and yield gaps

• Ethiopia, Kenya and Tanzania

Aims:

- 1. estimate crop nutrient gaps to bridge maize yield gaps
- 2. define climate-smart nutrient management packages and scaling these up

Private sector involvement:

- International Fertilizer Association
- Yara

Global Yield Gap Atlas

Global Yield Gap Atlas

Go to the Atlas

Go to the Atlas for advanced users

www.yieldgap.org

With University of Nebraska, ICRISAT, AfricaRice, CIMMYT and many regional and national partners

- Major food crops in the world
- Global protocol with local application
- Local data and evaluation
- Strong agronomic foundation
- Co-financed by Bill and Melinda Gates Foundation

Clobal Yield Gap Atlas

Yield and supporting data for rainfed maize

	Rainfed maize	Yields	Map layers	
*** F - [Select crop :		
		Rainfed maize	*	
		Select aggregation level:	:	
	1 Aler	Climate zones	•	
- La viting		Select yield indicator:		
in many	A share and	- Relative yield: Ya / Yw >	x 100%	
		Select variable:		
	2-1 2	Mean value	•	
Г		Apply crop mask: 💿 No 🔵 Yes		
		Legend: 💿 all classes 🔾 current classes		
	-) - Content	%	%	
		up to 10 %	50 % - 60 %	
		10 % - 20 %	60 % - 70 %	
		20 % - 30 %	70 % - 80 %	
		30 % - 40 %	80 % - 90 %	
		40 % - 50 %	more than 90 %	
To view data details: Click on the map.				

Clobal Yield Cap Atlas

×

www.yieldgap.org

Can sub-Saharan Africa feed itself?

Martin van Ittersum, Lenny van Bussel – Plant Production Systems group Patricio Grassini, Ken Cassman – University of Nebraska-Lincoln GYGA team, including ten country agronomists from SSA

Van Ittersum et al., PNAS, 2016

Self-sufficiency 2050: 10 countries

Yield gaps closed to 80% of Yw

- Yield gaps closed to 50% of Yw
- Actual farmers yields 2010 extrapolated to 2050 (Ya extrapolated)
- Actual farmers yields 2010 (Ya)

West and East Africa aggregated

The challenge: tunelling through

Zhang et al., Nature, 2015

From yield gaps to nutrient gaps

Yield gap: Yw - Ya: t/ha

Nutrient uptake gap for 50%Yw-Ya: CNE/ha

www.yieldgap.org

Picture: Kindie Tesfaye (CIMMYT)

Trade off surface – income – N_2O - carbon

Bos et al., 2017 – Agricultural Systems

Thank you for your attention!

© http://www.riennijboer.nl/

