Integrating Water Resources Management in a Shared River Basin: Applying a Nexus Tool to Support Water Allocation Reform in the Incomati

Naga Velpuri¹, Mikiyas Etichia², Jonathan Lautze¹, Khethiwe Ngcobo³, Kamagelo Mohlala⁴, Zanele Lulane⁵ and Dercio Zandamela⁶

¹International Water Management Institute; ²University of Manchester, Manchester, UK; ³KOBWA, ⁴IUCMA, South Africa; ⁵Joint River Basin Authority, Eswatini; ⁶ARASUL, Mozambique.
Background

Countries: Eswatini, Mozambique, South Africa

River Basin Commission: INMACOM formed in 2021

Size: 49,000 km²
Length of main river: 480 km
Population: 2.3 million
Water use is intense in the basin

Amount of the water generated in the basin being withdrawn by human consumption (van der Zaag et al., 2003).

Competition over water is high, with competing water demands and water abstractions are fast approaching the limits of sustainability.

The effects of extreme events such as droughts and floods, are very common with significant losses recorded each year.
Basin water use acerbating water scarcity in the dry season?

Monthly discharge at Ressano Garcia (1952-1980)
Impact of competing demands from multiple sectors is not clearly understood

<table>
<thead>
<tr>
<th>Sector</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td>Area under irrigated sugarcane expanded by significantly in the basin</td>
</tr>
<tr>
<td>Reservoir storage</td>
<td>Member states have increased storage capacity by building new dams since 1980s and more dams are underway</td>
</tr>
<tr>
<td>Industry</td>
<td>One of the biggest economic zones in South Africa relies on Incomati waters</td>
</tr>
<tr>
<td>Domestic water supply</td>
<td>Domestic water supply for Maputo city is also dependent on Incomati waters</td>
</tr>
</tbody>
</table>
Transboundary Basin Governance

1983 TPTC
Drought (and increased use) reduced cross-border flow to nothing, countries accepted to coordinate

1991 Piggs Peak Agreement
All countries developing water resources, eSwatini needs World bank funding. WB requires no objection from downstream Mozambique. To secure no-objections, SA and eSwatini agree to

2 m³/s to Mozambique at border (Komatipoort/Ressano Garcia)

2002 IIMA
Better relations between states, SADC Water sharing Protocols; Need for a more comprehensive approach, belief that more water can be found if a more collective approach are used

- Minimum transboundary flow increased to 2.6 m³/s

➢ New Transboundary Flow allocation under development
Activity Objectives

1. Develop a model that can be used by INMACOM to support basin wide decision making

2. Explore simulation and optimization that can enhance cross sector WEFE benefits
 - Understand the impact of competing basin demands and optimize water allocation in the basin
 - Understand the water resources impact of potential dams (Moamba Major) on basin hydrology
 - Understand the water resources impact of increased irrigation (both upstream and downstream)
 - Quantify the changes in the basin outflow under different scenarios of irrigation development
Activity Progress: Developing a process for model development

First meeting held in Aug, 2022

- 18 Participants from 3 countries
- Stock-taked country-level modelling efforts
- Introduced the PyWR model to the member states
- Agreed on YPs and process through which data is to be collected and PyWR model developed for Incomati
- Initiated weekly meetings with YPs
Activity Progress: Co-developing the model and testing

- 18 Participants from 3 countries
- Presented Incomati river basin PyWR model
- Capacity building and training
- Identified key questions to answer using the PyWR model
 - Impact of ensuring flows into Moamba dam on upstream water abstraction
 - Potential benefits that could be derived from increasing transboundary minimum flow requirement
PyWR Model background

- PyWR – Python Water Resources is an open source Python simulator that can create a digital support system (DSS) to explain basin water systems in terms of flows, water demands, allocations and infrastructure operations that accurately reflect the reality.

- Developed by University of Manchester in 2020

PyWR is a generalised network resource allocation model written in Python.
Model Data

- **Inflow**: Naturalized flows from Pitman and WEAP models
- **Water Demands**: Pitman, WEAP, National and river basin organizations
- **Observed reservoir levels**: National and river basin organizations
- **Reservoirs and dams**: Pitman model, National and river basin organizations
- **Irrigation**: National and river basin organizations

Young Professionals from Incomati basin region
Thank you

n.velpuri@cgiar.org