

#### Genetic and Morphological Characterization of Maize Landraces for Tolerance to Heat Stress



**Charles Nelimor** 

CSIR-SARI, Tamale, Ghana





Excellence in Breeding Platform

21 September, 2023



# Outline of Presentation

- Introduction
- Materials and Methods
  - ✓ Germplasm
  - $\checkmark$  Phenotyping under optimal and heat stress
  - ✓ Genotyping of germplasm
- Discussion of preliminary results
- Conclusions and perspectives



CSIR-SARI

#### Background



Fig. 1: Projected changes in mean annual temperature (up) and rainfall (down) in sub-Saharan Africa by 2080. Adapted from Cairns et al. (2012).





- Maize is key to food and income security in Africa (Edmeades, 2021)
- Drought and heat at the reproductive stages causes >40% to 100% yield loss in maize (Meseka et al., 2018)
- > +2°C would result in a greater reduction in maize yields than a decrease in precipitation by 20% (Lobell and Burke, 2010)
- > Landraces harbor alleles/genes useful for resilience breeding (Garcia-Oliveira et al., 2013; Djalovic et al., 2023)
- > Systematic characterization of landraces is crucial for genetic improvement of maize (Wurschum et al., 2022).





Goal: Contribute to discovery, characterization and deployment of novel gene variations conferring resilience to climate-related stresses in maize.

Specific Objectives:

1. Identify accessions with high value for climate-adaptive breeding of varieties needed by farmers.

2. Decipher the genetic architecture of drought and heat adaptive traits- to identify favorable alleles/genes for use in genomics-assisted breeding.



# Materials and Methods

# Genetic materials

CSIR-SARI





#### Phenotyping & Genotyping of Germplasm

- > Optimal Conditions
  - ✓ Nyankpala & Damongo✓ Growing season, 2022

#### Heat Stress

- ✓ Bontanga
- ✓ Guinea Savanna
- √ 31- 45°C
- ✓ Mid-February, 2023
- ✓ Furrow irrigation

- Experimental Procedure
  - ✓ 15\*16 lattice design
  - ✓ Replicated twice
  - $\checkmark$  Plots 3 m long
  - ✓ 0.40 × 0.75 m
  - ✓ 66,666 plants/ha
  - ✓ Weed control, Fertilizer
  - ✓ Data weather & maize crop





## Phenotypic Data Analyses

- Analyses of Variance
  - ✓ Heritability
  - ✓ Blups
- Phylogenetic /Cluster analysis
- Identification of promising accessions

 $\checkmark BI = [(2 \times GY_S) + EPP - ASI - PASP - EASP - SG]$ 

+ values indicated tolerance and – values, susceptibility (Badu-Apraku et al., 2015).



#### Genotypic Data Analysis

- Data Filtering (in Tassel)
  - √MAF (<5%)
  - ✓Missing rates (>20%)
  - $\checkmark$  Accessions with missing rate (>20%)

#### Diversity parameters

- ✓Observed heterozygosity
- ✓Expected heterozygosity
- ✓PIC (PowerMarker)

#### Cluster analysis

- $\checkmark$  Population structure (Structure 2.3.4).
- ✓PCoA (GenAlEx)
- ✓Neighbor joining tree (Figtree Software)
- ✓ DAPC



# **Results and Discussion**





Flowering days in April

Fig 1. Weather conditions (day and night temperatures and rainfall) at Botanga during the flowering period in April, 2023.



## **Results and discussion**

Table 1. Grain yield and other traits of the best ten and worse five accessions evaluated under heat stress condition at Botanga.

|              | G    | у    | УR    | ASI  | PASP |      | EASP | ТВ     | LF     |        |
|--------------|------|------|-------|------|------|------|------|--------|--------|--------|
| Entry        | tons | s/ha | %     | days | 1-9  | EPP  | 1-9  | %      | %      | BI     |
|              | NS   | HS   |       | •    |      |      |      |        |        |        |
| 41           | 3.32 | 2.88 | 13.25 | 1.73 | 5.29 | 1.04 | 4.72 | 0.0    | 0.0    | 13.61  |
| best check   | 3.30 | 2.58 | 21.82 | 1.22 | 5.19 | 0.86 | 5.03 | 0.0    | 0.0    | 11.82  |
| 42           | 3.40 | 2.95 | 13.24 | 2.88 | 5.13 | 0.97 | 5.05 | 0.0    | 0.0    | 11.53  |
| 177          | 3.17 | 2.73 | 13.88 | 2.47 | 5.05 | 0.91 | 5.07 | 0.0    | 0.0    | 10.88  |
| 205          | 3.82 | 3.07 | 19.63 | 3.58 | 5.05 | 0.83 | 4.55 | 0.0    | 0.0    | 10.80  |
| 123          | 3.98 | 3.06 | 23.12 | 3.27 | 5.19 | 0.87 | 5.03 | 0.0    | 0.0    | 10.67  |
| 12           | 3.96 | 3.12 | 21.21 | 3.18 | 5.23 | 0.87 | 5.14 | 0.0    | 0.0    | 10.22  |
| 32           | 3.21 | 2.51 | 21.81 | 2.72 | 5.10 | 0.91 | 4.63 | 2.45   | 2.70   | 9.98   |
| 117          | 3.28 | 2.60 | 20.73 | 3.23 | 5.24 | 1.03 | 4.89 | 6.69   | 13.01  | 9.48   |
| 111          | 2.79 | 2.64 | 5.37  | 3.27 | 5.29 | 0.87 | 5.00 | 3.79   | 5.89   | 8.47   |
| 202          | 3.26 | 2.35 | 27.91 | 3.17 | 5.25 | 0.90 | 5.25 | 3.79   | 3.71   | 7.42   |
| Worse Five   |      |      |       |      |      |      |      |        |        |        |
| 20           | 2.85 | 1.04 | 63.51 | 6.08 | 6.01 | 0.49 | 7.07 | 63.05  | 48.04  | -12.46 |
| 46           | 2.14 | 0.89 | 58.41 | -    | 6.38 | 0.33 | 7.60 | 45.13  | 41.86  | -12.92 |
| 54           | 2.12 | 0.00 | 100   | -    | 7.00 | 0.00 | 8.00 | 100.00 | 100.00 | -21.64 |
| 27           | 2.40 | 0.00 | 100   | -    | 8.00 | 0.00 | 9.00 | 100.00 | 100.00 | -22.61 |
| 95           | 1.52 | 0.00 | 100   |      | 8.00 | 0.00 | 9.00 | 100.00 | 98.00  | -31.59 |
| Mean         | 2.86 | 1.69 | 40.91 | 3.42 | 5.60 | 0.74 | 5.98 | 7.87   | 7.34   |        |
| Р            | ***  | ***  |       | ***  | ***  | ***  | ***  | **     | **     |        |
| Heritability | 0.74 | 0.49 | 0.89  | 0.40 | 0.32 | 0.57 | 0.55 | 0.60   | 0.56   |        |

NS=non-stress, HS=heat stress; GY=grain yield; YR=yield reduction; AD=days to anthesis; SD=days to silking; ASI=anthesis-silking interval; PASP=Plant aspect; EPP=ears per plant; EASP=Ear aspect; TB=Tassel blast; LF=Leaf firing; BI=Base index. \*;\*\*;\*\*\*=significance at 0.5; 0.1 and 0.001 probability levels, respectively.



CSIR-SARI







## **Results and discussion**



Meseka et al. (2018) Tandzi et al. (2018)

Fig 3. Phylogenetic tree of the 210 maize accessions based on phenotypic data under heat stress conditions at Botanga.

Table 2: Diversity statistics basedon 2,405 DArTag markers across203 maize accessions.

|      | MAF  | GD   | Н    | PIC  |
|------|------|------|------|------|
| Min  | 0.50 | 0.09 | 0.01 | 0.08 |
| Max  | 0.95 | 0.50 | 1.00 | 0.38 |
| Mean | 0.72 | 0.37 | 0.51 | 0.29 |

MAF: Minor allele frequency, GD: Gene diversity; Ho: heterozygosity; PIC: Polymorphic information content;

Nelimor et al. (2020); Badu-Apraku et al. (2021)



CSIR-SARI

CSIR-SARI



**Fig. 5:** Structure analysis of the 203 maize accessions based on 2,405 DArTag markers showing the best delta K (**a**) estimated by Evanno method and the estimated population structure (**b**).



#### **Conclusions and Perspectives**

- 1. The maize panel harboured ample genetic diversity
- 2. Fifty-five (55) promising accessions were identified for heat stress tolerance
- 3. Based on our results, tassel blast and leaf firing should be considered for inclusion in index selection for heat tolerance
- 4. Next steps: identification of molecular markers associated with important traits via GWAS and applying it through KASP technology for easy screening

#### Acknowledgments



#### Genetic Resources Center





Thank you



Excellence in Breeding Platform