

KASP markers for QC in potato and sweet potato Lessons learned and perspectives

Moctar Kante (CIP), Guilherme da Silva (UFV), Maria David (CIP)

Crops to End Hunger Case Studies in Africa and Beyond: Supporting CGIAR Partners through Genotyping Services, August 10, 2023

A need for QC

Vegetative propagation

Mislabeling may happen across the breeding cycle

MAS, low selection accuracy, low rate of genetic gain

KASP markers as an option

High discriminatory ability, easy to design, low cost, TAT

Used in breeding and prebreeding material

Simple analytic workflow to allow fast decision

Potato: panel design

21 markers validated and used along with traits markers Tetraploid dosage

Potato: routine use, 2021-2023, 5329 samples

batch	#samples	missing geno	missing marker	control		
TM0321	376	0.50	4.80		Crossing block Two breeding pipelines Prebreeding (2x) material	
TM1021	1495	0.00	14.30			
TM1121	372	0.00	0.00			
TM0922	573	0.00	9.50		10	
TM1122	1385	6.70	14.30	14	40 parents per pipeline 23 KASP markers	
TM0223	1128	1.90	9.50	12		

pipeline	plants in CB [†]	samples [†]	# markers [‡]	mislabeled	rate
LTVR	920	900	19	50	5.56
LBHT	920	870	18	131	15.06
Total	1840	1770	37	181	

[†] Difference due to plant survival in crossing blocks and genotypes with low quality data [‡] markers with low quality data (missing data) were removed

Potato: routine use, good markers

snpST00118

snpST00182

Potato: routine use, complicated markers

Potato: routine use, correction possible, but tedious and somewhat arbitrary

Potato: routine use, using the same control in several plates

snpST00179

Sweetpotato: verification

- 60 KASP tested: 94 samples
 - ✓ 1st test: snplB001-030 = 12 ok
 - 1. Plate 1: silica gel dry + normal buffer
 - 2. Plate 2: freeze dry + normal buffer
 - 3. Plate 3: silica gel dry + PVP buffer
 - 4. Plate 4: freeze dry + PVP buffer

- ✓ 2nd test: snpIB031-060 = 20 ok
 - 1. Plate 1: DNA dilution 1
 - 2. Plate 2: DNA dilution 2

* ok = amplification ok, polymorphism ok

Sweetpotato: verification

Sweetpotato: verification

- 30 KASP selected
 - ✓ 1st run: 18 plates from screenhouse
 - 1. CIP TP = 13 plates (circles)
 - 2. NaCRRI TP = 5 plates (triangles)

- ✓ 2nd run: 4 plates from field
 - 1. CIP TP: 3 plates
 - 2. NaCRRI TP: 1 plate

- 30 KASP selected: 94 samples
 - ✓ 1st run: 18 plates from screenhouse
 - 1. CIP TP = 13 plates
 - 2. NaCRRI TP = 5 plates

- ✓ 2nd run: 4 plates from field
 - 1. CIP TP: 3 plates
 - 2. NaCRRI TP: 1 plate

• 30 KASP selected: e.g. positive control

• 30 KASP selected: e.g. random sample

- 30 KASP selected
 - ✓ 1st run: 18 plates from screenhouse
 - 1. CIP TP (UGP) = 13 plates
 - 2. NaCRRI TP (UGN) = 5 plates

- ✓ 2nd run: 4 plates from field
 - 1. CIP TP (UGP): 3 plates
 - 2. NaCRRI TP (UGN): 1 plate

Conclusions

- KASP markers demonstrate significant discriminatory ability, making them suitable for identity analyses for low ploidy crops.
- The control genotype had different calls for the same marker across various plates, emphasizing the need for marker stability.
- Continued efforts are required to identify and select markers that maintain consistent performance over time.
- A strategic effort would be designing a DArTag panels for QC analysis in polyploids
- Given the experience gained with KASP markers, 100-150 (and trait) markers would be enough for QC analysis, and parental verification.