
Accelerating genetic gains in potatoes through genomics-led breeding

CPRI

Salej Sood

salej1plp@gmail.com; salej.sood@icar.gov.in

ICAR-Central Potato Research Institute, Shimla, HP, 171001, India

October 5, 2023

The Potato

Originated in Andean region

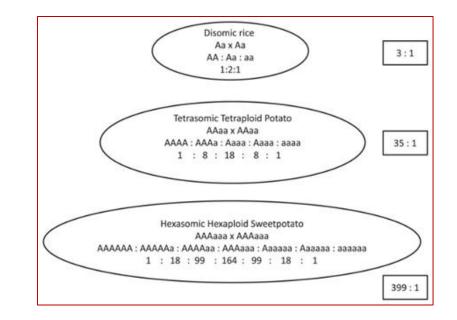
Domesticated ~ 8,000 years ago

Third most important food crop

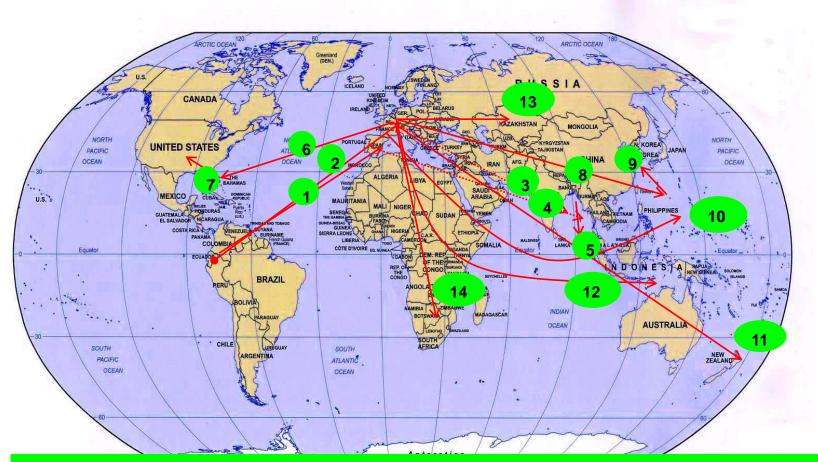
Petota section has >100 tuber bearing species

Important cultivated species

- S. tuberosum Chilotanum Group (long day adapted)
- S. tuberosum Andigenum Group (short day adapted)


Solanum tuberosum (2n=4x=48)

Genome size= ~850Mb


Autotetraploid

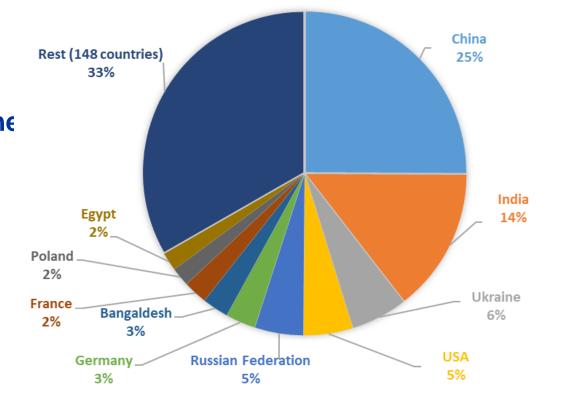
Vegetatively propagated

Heterozygosity

Potato's journey from centre of its origin

- South America (Centre of origin)
- 1. South America → Spain 1570
- 2. South America →UK 1590
- 3. UK → India <1610
- 4. Portugal * India <1610
- 5. India → Sri Lanka <1610
- 6. UK → Bermuda 1613
- 7. Bermuda * Virginia, USA 1621

- 8. Holland → Taiwan <1650
- 9. Taiwan → China <1650
- 10. Spain → Philippines <1700
- 11. UK → New Zealand 1773
- 12. Holland + Java 1794
- 13. Holland → Russia <1800
- 14. UK→ South African continent 1830


Global Status

Production World: 376 million tonne

Asia + Europe:~ 80%

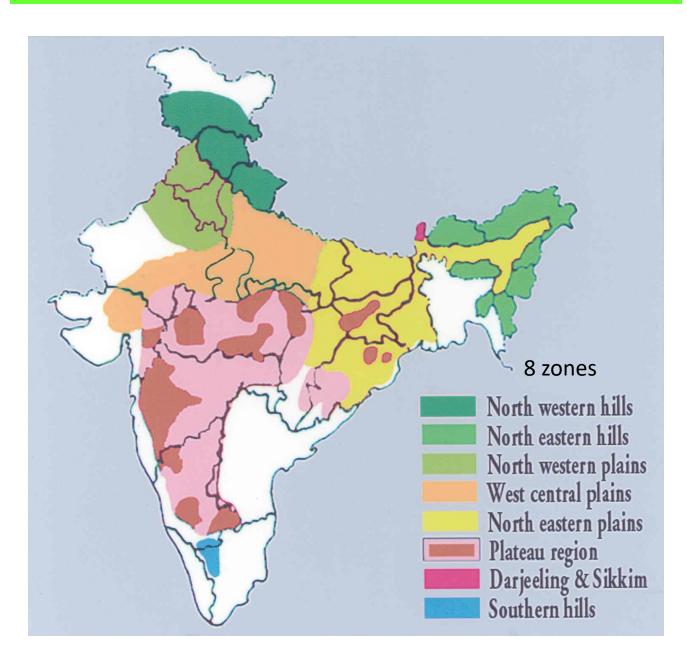
India 53.03 million tonnes 25 t/ha

~50% consumed as fresh food

FAOStat 2021

Indian Scenario

- Sub-tropical crop
- Predominant vegetable
- Fresh consumption
- Growing processing sector
- Inadequate storage capacity

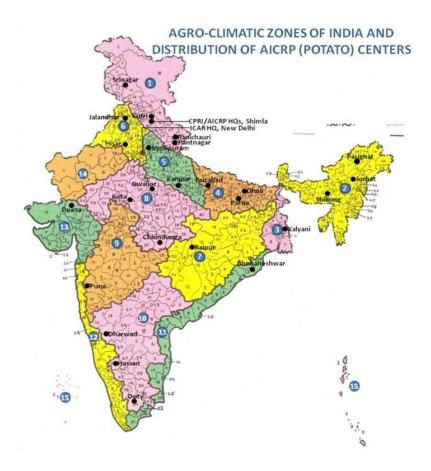

- India is producing 53.0m tons from 2.2 m ha at an average productivity of 25t/ha
- > 4.5m tons (8.5%) of the produce is used as seed.
- 5.3m tons (~10%) of the produce is processed.
- 0.5m tons exported (in 2022)
- Post-harvest losses are nearly 20% of the total produce

Agro-ecological zones of the country

Potato Research in India

- Organized research started in 1935
- ICAR-CPRI established in 1949
- Headquarter shifted to Shimla in 1956
- First indigenous variety released in 1958
- Seed Plot Technique in 1960s
- Nucleus Seed Production at Kufri (Fagu) in 1963
- Seed Production Stations: Jalandhar 1969, Daurala (Meerut) 1971, Kodiakanal 1975, Gwalior 1979

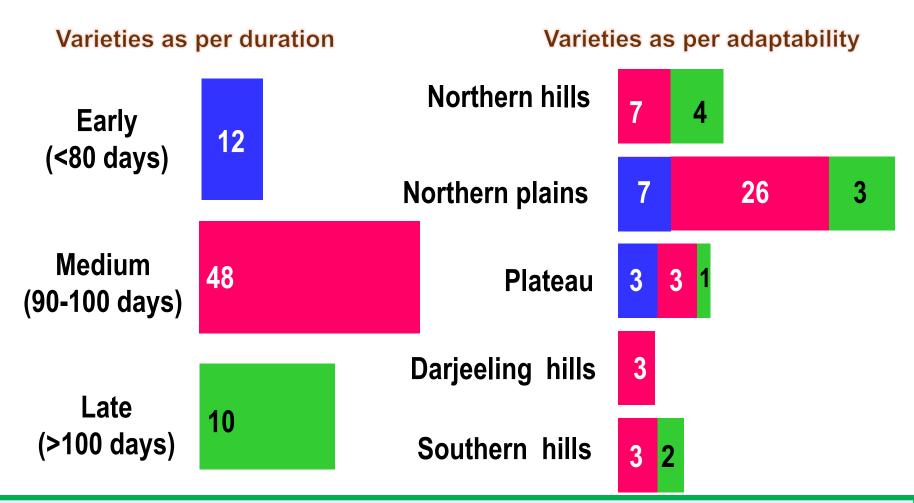
Central Potato Research Institute, Shimla (CPRI)


6 research centres

- CPRIC, Modipuram, Meerut (UP)
- CPRS, Jalandhar (Punjab)
- CPRS, Gwalior (MP)
- CPRS, Patna (Bihar)
- CPRS, Kufri-Fagu, Shimla (HP)
- CPRS, Ooty (Tamilnadu)
- CPRS, Shillong (Meghlaya)

All India Coordinated Research Project Potato (AICRP),1970

has headquarter at CPRI, Shimla has a nationwide network of **25**

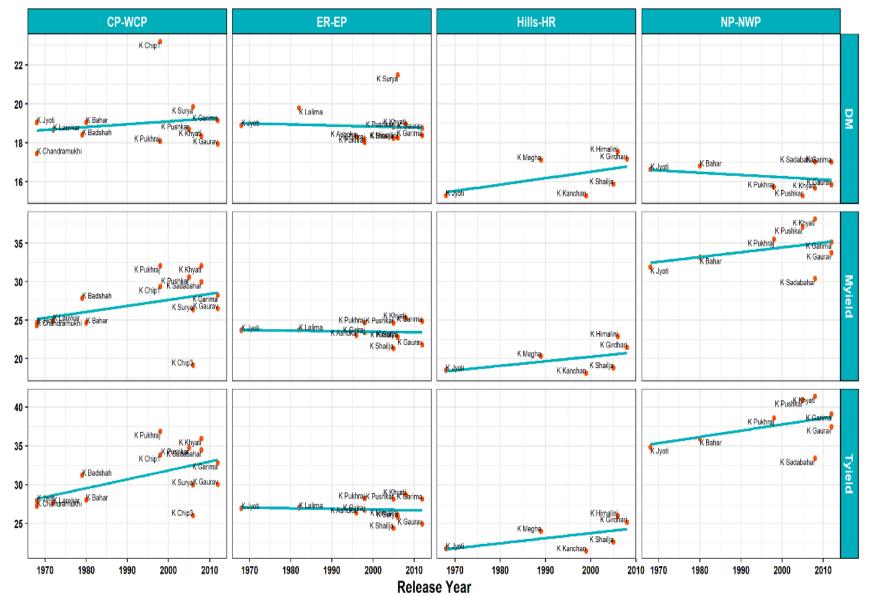

centers (7 CPRI based centers, 17 SAU based centers and 1 Voluntary center)

Varieties with special attributes: Processing-7; Heat tolerance-3

- Genetic gain potato breeding in India
- Low-density genotyping for forward breeding
- > Mid-density genotyping for genomic selection

- Twenty-two potato varieties released in different decades from 1968-2012
- Evaluated for three consecutive years (2014-15 to 2016-17) in four potato-growing zones of the country

Zone	Varieties	Locations	Trait	Base Predicted Mean	Relative Genetic Gain (%)
NWP	8	4	Total tuber yield	35.11	0.230
			Marketable tuber yield	32.52	0.192
			Dry matter	16.69	-0.070
WCP	13	6	Total tuber yield28.260.4		0.404
			Marketable tuber yield	25.23	0.308
			Dry matter	18.68	0.079
EP	12	7	Total tuber yield	27.05	-0.031
			Marketable tuber yield	23.66	-0.032
			Dry matter	19.09	-0.028
HR	6	2	Total tuber yield	21.67	0.302
			Marketable tuber yield	18.46	0.320
			Dry matter	15.42	0.214

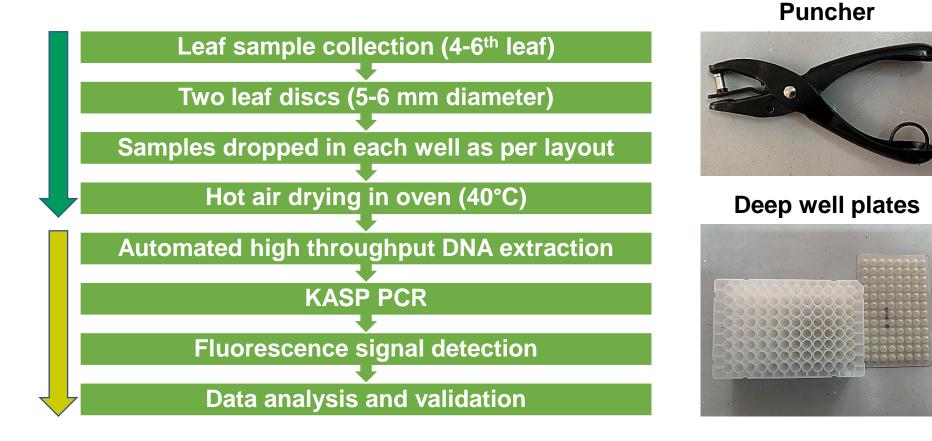

NWP-North-Western Plains; WCP-West Central Plains; EP-Eastern Plains; HR-Hills Region

Realized Genetic gains in ERA Trials

Several biotic stresses hamper quantity and quality of tuber production

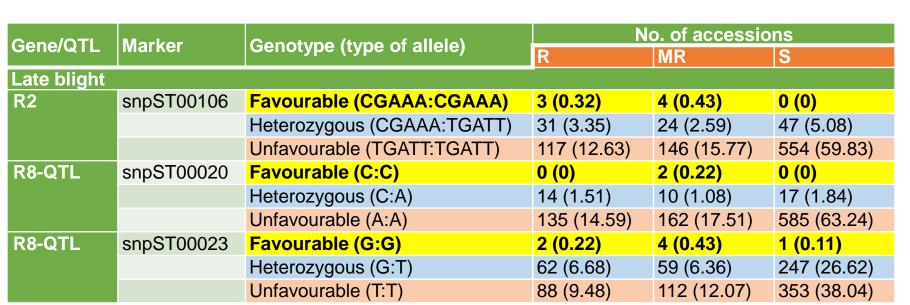
- Late blight
- Viruses PVY
- PCN

- ✓ SNP KASP markers for late blight, PVY, PCN and common scab resistant genes were designed and used
- ✓ A set of 1447 potato accessions were used for screening
- ✓ Phenotypic data on late blight, PVY and PCN recorded earlier at Shimla, Kufri, Shillong and Ooty over the years was used for validation

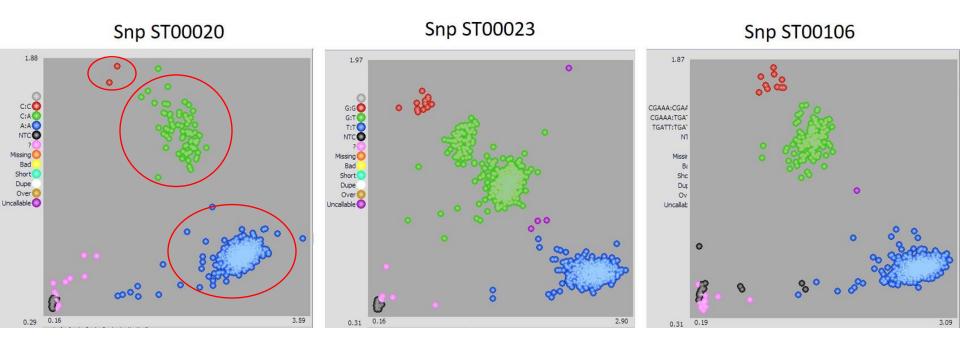

Trait	Gene	Number
Late blight	R2, R8-QTL, unknown genes	17
Ρ٧Υ	Ryadg, Rysto, Ny(o,n)sto	5
Potato Cyst Nematode	H1, H2, H3, H6, Pa2/3	20
Plant Maturity & MCR	-	17
Chip colour	-	1
Common Scab	-	10

Flow chart of KASP analysis

SNP ID	Marker	Trait	Resistant Allele	Susceptibl e allele	Gene associated
snpST00020	S9_61261167	Late blight	С	Α	R8-QTL
snpST00023	solcap_snp_c2_5641 8	Late blight	G	т	R8-QTL
snpST00052	M6F1R4_711	PVY, Ryadg	Α	G	Ryadg
snpST00073	M6F1R4_817	PVY, Ryadg	G	Α	Ryadg
snpST00082	YES3_a	PVY, Rysto	т	G	Rysto
snpST00083	YES3_b	PVY, Rysto	DEL	INS	Rysto
snpST00094	CPRISNP01	PCN	Α	G	H2 (Pa1)
snpST00106	CPRISNP13	Late blight	CGAAA	TGATT	R2
snpST00107	CPRISNP14	PVY, Rysto	CAATTCC	TAATTCT	Ny(o,n)sto


Allele calls of KASP assays for late blight, PVY and PCN

Trait & Gene/QTL	SNP ID	Allele/call	Count	Freq (%)
Late blight R2	snpST00106	CGAAA:CGAAA	10	0.7
		CGAAA:TGATT 165		11.2
		TGATT:TGATT	1301	88.1
Late blight R8-QTL	snpST00023	G:G	13	0.9
		G:T	579	39
		T:T	892	60.1
PVY Ny(o,n)sto	snpST00107	CAATTCC:CAATTCC	35	2.4
		CAATTCC:TAATTCT	128	8.7
		TAATTCT:TAATTCT	1301	88.9
PVY Ryadg	snpST00052	A:A	1	0.1
		G:A	159	10.8
		G:G	1308	89.1
PVY Rysto	snpST00082	T:T	27	1.8
		G:T	1	0.1
		G:G	1459	98.1
PCN H2	snpST00094	A:A	2	0.1
		A:G	208	14
		G:G	1271	85.8

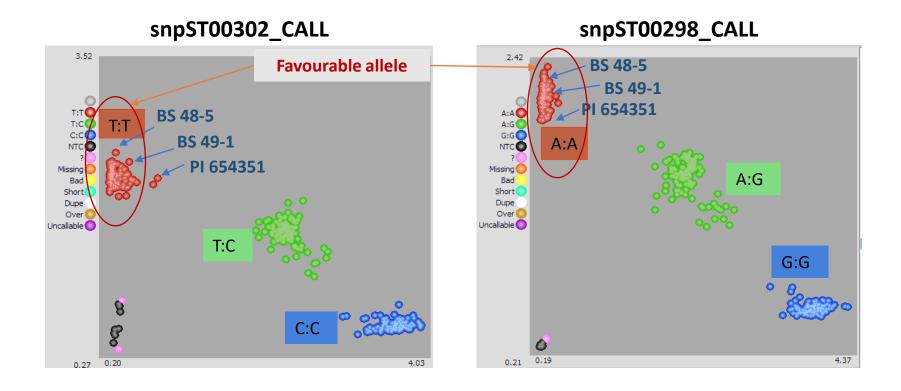

- Rapid, high throughput diagnostic markers for MAS
- > KASP assays for late blight and PVY demonstrated a good diagnostic potential
- Effective for screening large potato germplasm collection

Late Blight KASP assay

KASP assay for self-compatibility

Marker ID	SNP_ID	Chr	Position	Favourable allele	Unfavorable allele	SNP
snpST00297	ST4_03ch12_58961580	12	58961580	A	G	A/G
snpST00298	ST4_03ch12_58962561	12	58962561	A	G	A/G
snpST00299	ST4_03ch12_58974932	12	58974932	A	т	A/T
snpST00300	ST4_03ch12_59002442	12	59002442	т	С	T/C
snpST00301	ST4_03ch12_59019319	12	59019319	A	т	A/T
snpST00302	ST4_03ch12_59023684	12	59023684	т	С	T/C
snpST00303	ST4_03ch12_59155291	12	59155291	С	A	C/A
snpST00304	ST4_03ch12_59184424	12	59184424	С	т	C/T
snpST00305	ST4_03ch12_59211572	12	59211572	А	G	A/G
snpST00306	ST4_03ch12_59271443	12	59271443	т	С	T/C

Clot et al. (2020)



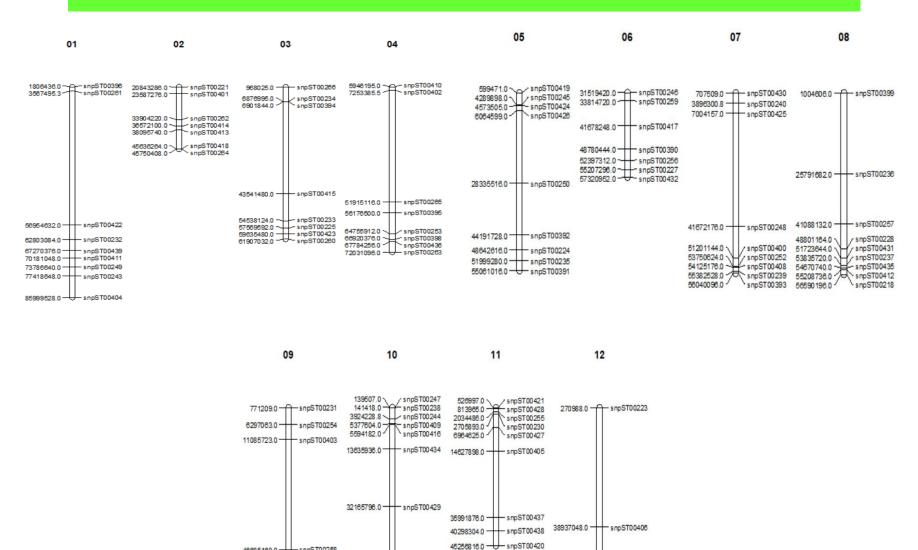
KASP assay for self-compatibility

> Validated 10 SNP markers to screen self-compatible diploid clones

Association of KASP marker genotypes with self-compatible phenotype through Chi-squared likelihood ratio test

Marker ID	Chi-square	P value	Critical value at p =0.05
snpST00297	5.18	0.02*	
snpST00298	2.05	0.15	
snpST00299	2.26	0.13	
snpST00300	1.94	0.16	
snpST00301	2.61	0.11	3.84
snpST00302	2.18	0.14	5.04
snpST00303	0.18	0.67	
snpST00304	0.07	0.79	
snpST00305	0.07	0.79	
snpST00306	0.05	0.83	

*Significant at $P \le 0.05$; means observed genotype through marker alleles differ significantly from expected phenotype; non-significant differences suggest that observed marker genotypes agree with the SC phenotype


SNP for Homozygosity

- 100 SNPs distributed across the potato genome were used for homozygosity analysis
- ~10 SNPs per chromosome were selected, SNPs were evenly distributed across the genome, including the most distal telomeric and centromeric markers
- The SNP sequences were taken potSNP information generated in earlier studies (AnithaKumari et al., 2010)

100 SNPs distributed across the 12 potato chromosomes

/ snpST00407

snpST00220

57479636.0 snpST00241 57895672.0 snpST00226

56681384.0 \

58185496.0

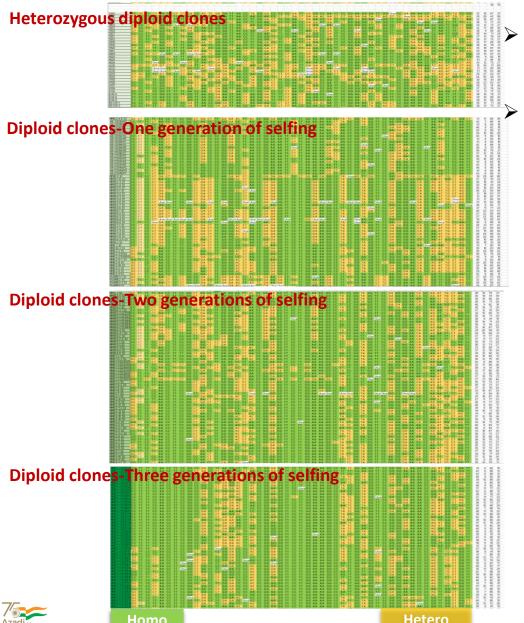
53314044.0

/ snpST00222

55294796.0 snpST00433 57889408.0 snpST00267 59211512.0 snpST00229 59294856.0 snpST00229

48685160.0 snpST00258

54201080.0 snpST00251 54830988.0 snpST00397 57006616.0 snpST00242


Homozygosity percentage in different diploid potato generations assessed through 100 KASP assay

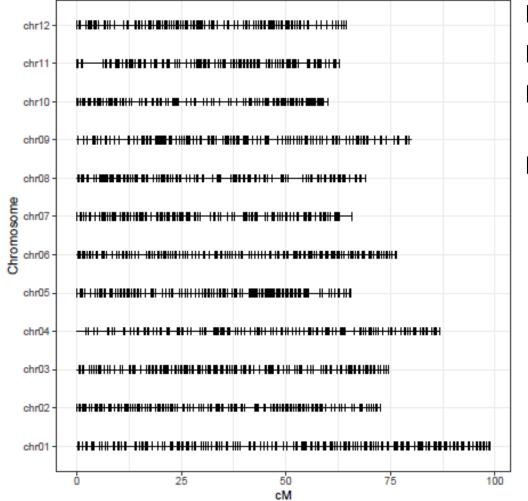
Inbreeding Generation	Ν	н	omozygosity (ʻ	sity (%)					
		Min	Max	Average					
Founder diploid clones	132	20.1	78.3	56.7					
Sli introgressed lines	18	45.6	80.9	68.2					
First generation selfing	62	51.2	82.8	65.8					
Second generation selfing	95	59.5	85.4	76.6					
Third generation selfing	50	69.3	87.6	80.7					

Average homozygosity in founder diploid clones was 57%.

Homozygosity

- S₀: 20-78%
- S₁: 45-80%
- S₂: 51-82%
- S₃: 60-85%
- S₄: 69-88%

Genomic Selection

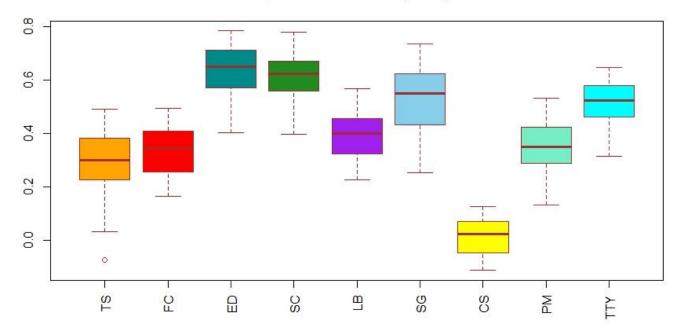


- Mid-density genotyping data generated on potato clones using 2502 SNP loci using DArTag platform
- > Allele read depth varied from 1-13299, ref allele: 1-934; alternate allele: 1-13125
- ➢ 60 Loci having read depth of less than 10 were removed
- Phenotype data generated in two locations on qualitative and quantitative traits
- GS models were tested with available phenotype data

Chromosome	No of SNP loci	10 PotVar0120130	chr01	602954	104.7109 27.4		4	13	_	1	4 3	4	4 4	4 4	4
Chromosome		11 solcap_snp_c2_36639	chr01	717629	70.74783 63.7		3	32	4	0	4 1	2	1 1	3 4	2
		12 solcap_snp_c1_10926	chr01	828025	25.88184 9.10		3	1 3	2	0	4 1	3	2 3	3 3	3
Chr 1	272	13 solcap_snp_c1_2426 14 PotVar0071738	chr01 chr01	1177430 1254782	164.4073 105.		3	33 1	4	0	3 1	2	1 2	3 4	2
		14 PotVar0071738	chr01 chr01	1254782 1259087	127.8283 95.1 30.38056	.375	1	1 2	1	4	1 3	2	3 2	2 1	2
	242	16 PotVar0071966	chr01	1692167	68.62953 9.05		4	4 4 2 /	4	4	4 4	- 4	4 4	2 4	2
Chr 2	242	17 solcap snp c1 2417	chr01	1916269	175.0251 87.9		2	2 2		2	2 1	2	1 2	3 4	2
		18 PotVar0044821	chr01	2537458	120.0567 25.1		2	1 2	4	4	1 0	3	1 2	3 2	1
Chr 3	221	19 solcap_snp_c2_21098	chr01	2617236	250.6017 184.		3	1 4	2	3	4 4	2	4 3	1 3	4
Chi S	221	20 solcap snp c2 21122	chr01	2690797	240.2636 223.		0	3 1	0	3	2 3	2	3 1	2 2	2
		21 solcap snp c2 21178	chr01	2829162	38.05476 15.0		2	3 3	2	2	2 1	2	3 2	2 3	3
Chr 4	220	22 PotVar0044963	chr01	2868145	16.4184 15.3	722	4	1 1	. 4	2	3 2	3	1 2	2 2	3
		23 PotVar0044998	chr01	2868837	94.42137 36.9	598	2	1 (4	3	4 2	3	1 1	3 2	2
Chr 5	199	24 solcap_snp_c2_19358	chr01	3730701	113.4556 86.2	605	3	1 2	2 2	4	2 1	3	0 3	2 1	0
CIII 5	199	25 solcap_snp_c2_19353	chr01	3744040	274.9912 230.	783	2	2 2	2 0	3	1 1	2	0 3	2 2	0
		26 PotVar0045428	chr01	4013228	22.14887 23.2	387	1	з з	3	1	2 3	0	4 2	22	4
Chr 6	211	27 solcap_snp_c2_51811	chr01	4592988	38.53448 42.3		4	3 3	4	3	4 4	3	4 3	4 1	4
•••••••		28 solcap_snp_c2_51791	chr01	4643672	586.3536 140.		3	3 3	2	4	4 3	4	2 4	4 3	1
	400	29 solcap_snp_c2_49936	chr01	4996079		.623	2	3 3	3	2	0 3	2	4 2	2 4	4
Chr 7	198	30 solcap_snp_c2_48051	chr01	5729429	388.9503 68.8		4	3 4	4	4	4 3	4	3 3	2 4	4
		31 solcap_snp_c2_56125	chr01	6012003	152.055 347.		1	1 1	. 0	3	2 2	1	2 2	1 1	2
Chr 8	193	32 solcap_snp_c1_13307	chr01	6097814	272.058 126.		2	3 3	3	3	3 2	4	2 2	2 3	3
	195	33 solcap_snp_c1_13312	chr01	6105530	318.0499 151.		3	2 4	3	3	2 3	3	3 3	2 3	4
		34 solcap_snp_c1_13290 35 solcap snp c1 13297	chr01 chr01	6218999 6242823	164.1262 258. 92.49425 1.88		2	1 1	. 0	3	0 2	1	2 2	1 2	2
Chr 9	201	36 solcap_snp_c1_13237 36 solcap_snp_c2_27882	chr01	6953278		.214	4	4 4 7 1	2 2	4	4 4	2	4 4	4 4	2
		37 solcap_snp_c1_8608	chr01	7025123	428.8421 175.		4	3 3	2	4	4 4 A A	2	4 5	4 3	3
Chr 10	178	38 solcap_snp_c1_0000	chr01	7184764	54.43491 59.6		1	2 2	2	1	2 1	2	1 1	2 4	1
	1/0	39 solcap snp c2 53842	chr01	7501568		678	3	3 4	2	4	4 2	3	1 4	4 3	1
		40 solcap snp c2 38350	chr01	8378536	358.9006 232.		3	3 4	4	2	3 3	3	2 4	2 2	2
Chr 11	190	41 solcap_snp_c1_11430	chr01	8604059	62.94286 25.8	981	4	3 1	. 4	4	4 4	3	4 3	4 4	3
		42 solcap_snp_c1_14511	chr01	10925976	475.6657 169.	897	4	3 2	4	4	3 4	3	4 4	4 3	3
Ch.: 12	4 7 7	43 solcap_snp_c1_14731	chr01	11138798	258.6359 116.	575	4	3_2	4	4	3 4	3	4 4	4 3	3
Chr 12	177	44 solcap_snp_c2_50030	chr01	11139408	148.5069 51.4	763	4	3 4	4	4	3 4	4	4 4	4 4	3
		45 solcap_snp_c2_55008	chr01	11987796	452.6898 99.3		3	2 2	2 2	4	4 3	2	1 2	4 3	4
Total	2502	46 solcap_snp_c2_43970	chr01	12917838	130.0778 158.		1	0 1	1	3	2 2	1	0 1	1 2	1
Iotal	2302	47 solcap_snp_c1_8906	chr01	13027433	125.2833 84.1		4	3 2	4	3	3 4	4	4 4	4 3	4
			•			····/				-					

- □ 2-3 SNP per cM
- Low genotyping cost
- Possible inclusion of any mapped marker
- □ US \$12 per sample

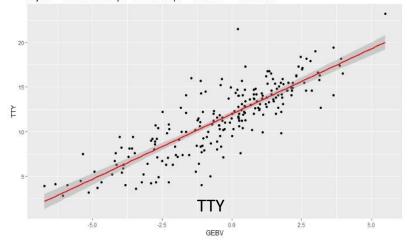
Trait	ТР	h² (ns)	Prediction accuracy			
			Range	Average±S.E.		
Tuber Shape	171	0.21	-0.10-0.45	0.17±0.021		
Flesh Colour	171	0.34	0.11-0.49	0.28±0.010		
Eye depth	143	0.53	0.40-0.78	0.64±0.014		
Skin colour	143	0.41	0.40-0.78	0.62±0.012		
GR resistance	97	0.21	0.00-0.38	0.19±0.016		
GP resistance	97	0.30	-0.23-0.21	0.06±0.013		
Late blight resistance	191	0.56	0.18-0.67	0.42±0.016		
Specific Gravity	171	0.74	0.25-0.74	0.52±0.017		
Chip score	183	0.16	-0.11-0.13	0.02±0.009		
Plant Maturity	171	0.24	0.13-0.53	0.35±0.013		
Total tuber yield	171	0.50	0.32-0.65	0.52±0.011		

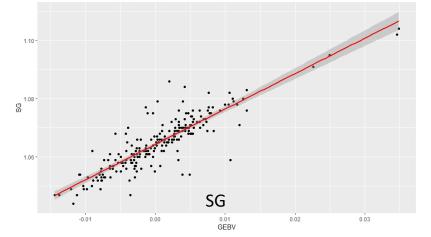

Test population size -50 for all the traits; Results are means ± s.e. across 50 replicates

GS Prediction Accuracy

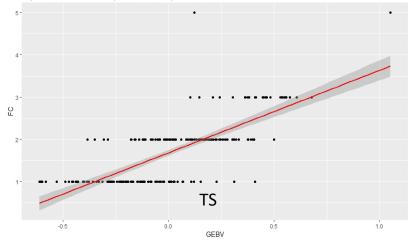
GBLUP - Genomic prediction accuracy range of different traits

TS- Tuber shape; FC-Flesh colour; ED- Eye depth; SC- Skin colour; LB- Late blight resistance; SG-Specific gravity; CS- Crisp score; PM- Plant maturity; TTY-Total tuber yield Results are means ± s.e. across 50 replicates

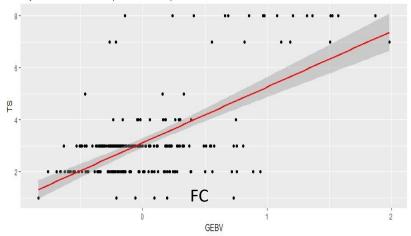




Genomic prediction bias



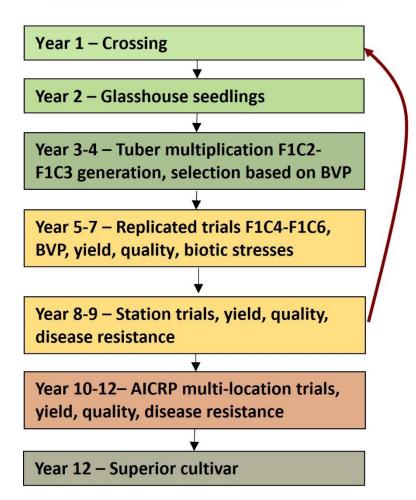
Adj R2 = 0.70198 Intercept = 11.989 Slope = 1.4598 P = 1.0476e-59

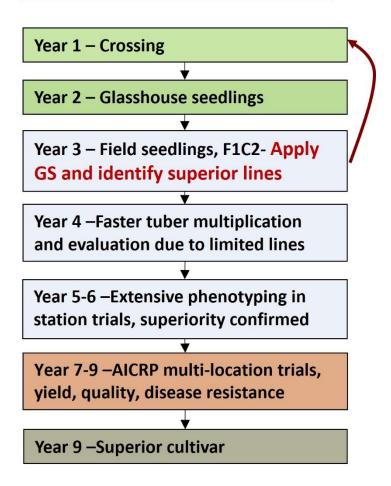


Adj R2 = 0.54817 Intercept = 1.6884 Slope = 1.9491 P = 7.2882e-40

Adj R2 = 0.38641 Intercept = 3.1191 Slope = 2.1403 P = 3.0841e-25

Adj R2 = 0.76828 Intercept = 1.0643 Slope = 1.2133 P = 1.08e-71





Proposed GS Breeding Pipeline

Genomic Selection breeding scheme

- ✓ Genetic gain is low in potato breeding
- ✓ KASP assays demonstrate the usefulness in high throughput cost effective MAS for important biotic stress traits
- ✓ Genomic prediction accuracy is moderate to high for most of the traits
- ✓ Robust and accurate data could further improve the prediction accuracy
- ✓ Genomic selection shows promise for enhanced genetic gain in potato breeding

Publications

ELSEVIER

European Journal of Agronomy Volume 141, November 2022, 126620

Scientia Horticulturae 295 (2022) 110859 Contents lists available at ScienceDirect

Scientia Horticulturae

journal homepage: www.elsevier.com/locate/scihorti

Genetic progress in 50 years of potato breeding in India: Where do we stand?

Salej Sood ^a A 🖾, Vinay Bhardwaj ^a, Vinod Kumar ^a, Roma Das ^b, VK Gupta ^c, Vikas Mangal ^a , SK Luthra ^c, Raj Kumar ^d, Shambhu Kumar ^e, RK Singh ^a, Manoj Kumar ^{a, c} , Abhishek Rathore ^b A 🖾, NK Pandey ^a, AK Singh ^f

Show more 🗸

+ Add to Mendeley 😪 Share 🍠 Cite

https://doi.org/10.1016/j.eja.2022.126620

Get rights and content

Review article

Digitalization of potato breeding program: Improving data collection and management

Bhawna Dipta^a, Salej Sood^{a,*}, Rasna Devi^a, Vinay Bhardwaj^a, Vikas Mangal^a, Ajay Kumar Thakur^a, Vinod Kumar^a, N.K. Pandey^a, Abhishek Rathore^b, A.K. Singh⁶

^a ICAR-Central Potato Research Institute (CPRI), Shimla, Himachal Pradesh-171001, India ^b GGIAR Excellence in Breeding Platform (EB), International Maize and Wheat Improvement Center (CIMMYT), India ^c Division of Horitoitulard Science, RAPL, Pusa, New Delhi-11002, India

ARTICLEINFO

ABSTRACT

Keywords: Breeding data management Data digitalization Phenotyping Precision breeding A plant breeding program involves hundreds of experiments, each having number of entries, genealogy information, linked experimental design, lists of treatments, observed traits, and data analysis. The traditional method of arranging breeding program information and data recording and maintenance is not centralized and is always scattered in different file systems which is inconvenient for retrieving breeding information resulting in poor data management and the loss of crucial data. Data administration requires a significant amount of manpower and resources to maintain nurseries, trials, germplasm lines, and pedigree records. Further, data transcription in scattered correlations fuels to also the non-centure and training mistakes. Which affect data KASP markers validation for late blight, PCN and PVY resistance in a large germplasm collection of tetraploid potato (*Solanum tuberosum* L.)

Salej Sood^{a,*}, Vinay Bhardwaj^a, Kumar N. Chourasia^a, Ratna Preeti Kaur^b, Vinod Kumar^a, Raj Kumar^b, S. Sundaresha^a, Rajaguru Bohar^c, Ana Luísa Garcia-Oliveira^{d,e}, R.K. Singh^a, Manoj Kumar^{a,f}

* ICAR-Central Potato Research Institute, Shimla, 171001, HP, India

- ^b ICAR-Central Potato Research Institute, Regional Station, Jalandhar, 144003, Punjab, India
- ^c CGIAR Excellence in Breeding (EiB), CIMMYT-ICRISAT, 502324, Hyderabad, India ^d CGIAR Excellence in Breeding (EiB), CIMMYT-ICRAF, PO Box 1041-00621, Nairobi, Kenva

Conn Excentice in intering (Eds), climin 1100Art, PU Box 101100021, ration, Reiyu ⁶ Department of Molecular Biology, Biotechnology and Bioinformatics, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar, 125004, Haryana India

ABSTRACT

^f ICAR-Central Potato Research Institute, Regional Station, Modipuram, UP, India

A R T I C L E I N F O Keywords: Biotic stress resistance Germplasm

Molecular markers are important and valuable tools in crop breeding programmes to help in the discovery and manipulation of important genes governing resistance reaction. In potato, several biotic stresses hamper quantity and quality of tuber production. Availability of molecular markers and high throughput screening method

Genome-wide association and genomic prediction for late blight and PCN resistance in potato

<u>Salej Sood</u>, Vinay Bhardwaj, Sanjeev Sharma, Aarti Bairwa, Sundaresha S., Ashwani Kumar, Baljeet Singh, Ashwani Sharma, Dalamu Dalamu, Vinod Kumar, NK Pandey Central Potato Research Institute, Shimla, India

Overview

Potato is the most important tuber crop and is a staple food for ~1.3 billion people worldwide. Late blight and PCN are two important biotic stresses which hamper the quantity and quality of tuber production. Although the potato genome was deciphered in the year 2011, various genetic complexities like autotetraploid inheritance, heterozygosity, etc. constrained the identification of genomic loci's governing these traits in comparison to major crops. The genomic-assisted

Salej Soor Baljeet Si

Acknowledgements

DDG Horticulture ICAR, Director CPRI, CPRI Colleagues ICAR-BMGF Grant, Dr. A.K. Singh, Director IARI, Dr. T. Nepolean, Dr. C. Bhardwaj

EiB – Dr. Ana Luísa Garcia-Oliveira, Dr. Abhishek Rathore, Rajaguru

Bohar

Thanks

Agrisearch with a Suman touch

