Crops to End Hunger Project Update Webinar

Roots, Tubers, and Bananas, Phenotyping and Germplasm Exchange Hub Facilities Upgrade

November 14, 2023

Importance of RTBs

- Food security: More than three billion people in developing countries consume RTB crops.
- High yielders in terms of calories produced per hectare
- Nutrition security: Often rich in key nutrients such as provitamin A
- Climate resilience: Many RTB crops can be grown with few inputs and often under harsh conditions, yet respond well to intensification
- Poverty alleviation: Frequently grown and/or marketed by women for income generation.

Challenges that are peculiar to RTBs

Clonal propagation:

- Low multiplication rate slowing breeding cycle length and scaling of release varieties
- Restricted germplasm exchange within and between regions

Bulkiness and perishability:

- Difficult post-harvest management and handling logistics
- Phenotyping of quality traits is a challenge

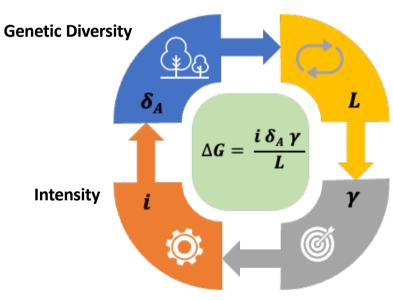
• Flowering and crossing:

• Asynchronous flowering, limited number of seeds per cross, ...

Agenda

Alliance

- Introductions (10 min)
- Upgrading Infrastructure and Facilities for Accelerated Breeding and Genetic Gain in Cassava (Xiaofei Zhang, Ismail Rabbi) (30 min)
- Regional Germplasm Hub for Vegetatively Propagated Crops
 @ KEPHIS Muguga (Morag Ferguson) (30 min)
- Investing in (sweet)potato breeding networks to mitigate climate change; Upgrading CIP-NARS East Africa potato breeding hub infrastructure (Hannele Lindqvist-Kreuze) (30 min)
- Discussion / Q&A (20 min)



Duration of Selection Cycle

Obj.1, Flower Inducing

Obj. 2, Genomic Selection

Obj. 4, Rapid propagation

Accuracy

Obj. 3, Cooking quality protocols

Dilemma:

Farmers prefer varieties with erect plant architecture, which produce few flowers as parents in **breeders'** crossing nurseries.

Solution:

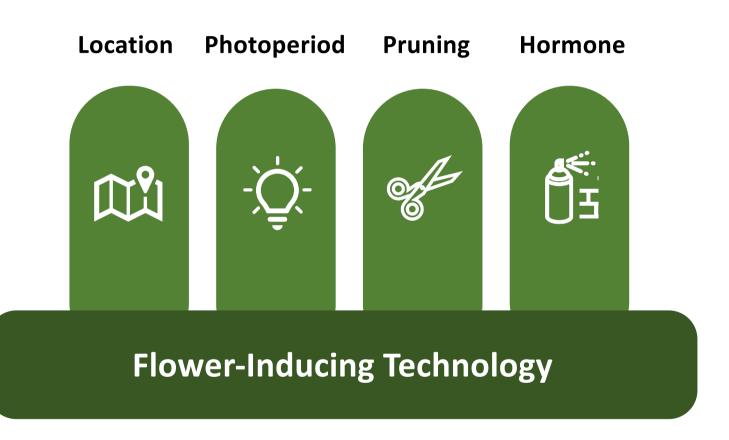
Flower-inducing technology

Flower Inducing Technology

> Front Plant Sci. 2023 May 22:14:1172056. doi: 10.3389/fpls.2023.1172056. eCollection 2023.

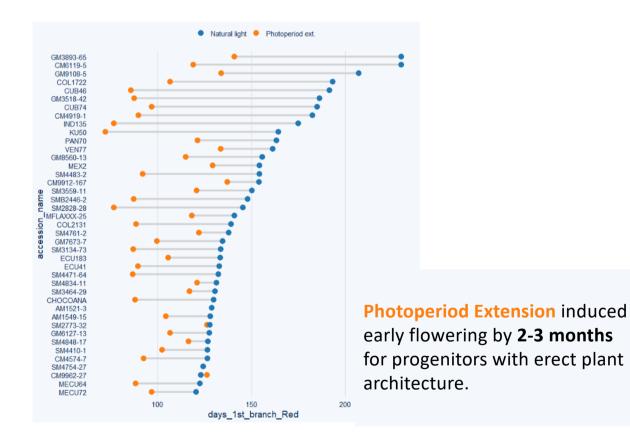
Flower-inducing technology facilitates speed breeding in cassava

Erika Paola Barinas Rodrmguez ¹, Nelson Morante ², Sandra Salazar ², Peter T Hyde ³, Tim L Setter ³, Peter Kulakow ⁴, Johan Steven Aparicio ⁵, Xiaofei Zhang ²


Affiliations - collapse

Affiliations

- 1 Universidad Nacional de Colombia, Sede Palmira, Palmira, Colombia.
- ² Cassava Program, International Center for Tropical Agriculture (CIAT), Cali, Colombia.
- ³ Section of Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States.
- ⁴ Cassava Program, International Institute for Tropical Agriculture (IITA), Ibadan, Nigeria.
- ⁵ Beans Program, International Center for Tropical Agriculture (CIAT), Cali, Colombia.

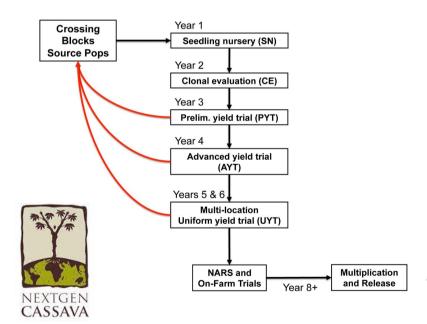


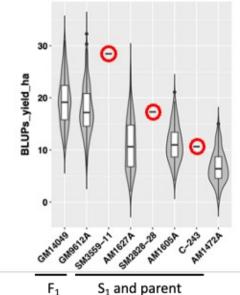
Flower Inducing Technology

Objective 1: Deliver improved breeding populations to the CGIAR-NARES cassava breeding networks.

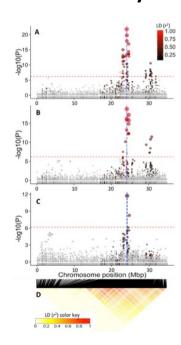
- (1) Mainstream cassava flower-inducing technology
- (2) Establish the *red light* system at IITA and CIAT
- (3) Deliver training workshops on *flower-inducing* technology (2024 Sep)







Objective 2: Enhance IITA and CIAT breeding hub genomic analysis and selection capacity.


Genomic Selection

Inbreeding Depression Hybrid Breeding

Discovery

Objective 2: Enhance IITA and CIAT breeding hub genomic analysis and selection capacity.

<u>Approach</u>: The <u>computing servers</u> will be installed at CIAT and IITA for the breeding teams to perform routine analysis in <u>genomic selection</u> and genome-wide association mapping.

10x coverage for discovering genome-wide markers (8Gb/sample) Populations:

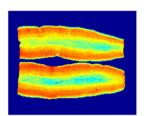
Parents, GS, inbreeding, trait discovery ==> 3,000 samples ~24TB data/year

Capacity Building in Genomics-assisted Breeding

1

3

Genomic Selection training at CIAT, 2023 Oct 25- Nov 2


Quantitative Genetics at CIAT, 2023 Nov 14-18

Objective 3: Scale RTBfoods protocols that accurately analyze highpriority quality and nutritional traits in cassava.

Equipment:

- hyperspectral imaging at CIAT
- freezer and freeze dryer at CIAT for PPD samples

Facility:

- commercial kitchens for boiled cassava at CIAT and IITA
- Renovate facilities at CIAT and IITA for PPD evaluation

Workshop:

A one-week training on high-priority quality and nutritional traits at CIAT and IITA

	Carotype	1 24	12500 10	12560 10	130d 10	130d N	id il	id 20 h	HAJ2	id 10 h	ind 12 w	id 10 h	hid 12 hid 17	nd 12 mi		Jan Ju	BUP'S
R	PER183	1.23	1.98	3.21	2.14	0.10	0.74		0.27	0.55	0.15	0.09	1.52	0.58	0.63	0.98	
	CPDCR5B-036	0.74	0.99	0.27	0.06		1.31	0.03	0.21	2.14		1.02	1.46			1.03	
	CPDCR5B-069A	0.56	2.00	0.02	0.66	0.80	2.27		0.86	1.10	0.49		0.84	1.07		1.06	
	CPDCR1B-080	0.61	0.51	0.67	1.33	1.49	2.65	0.26	1.17	0.78		0.84	0.17	0.65	2.06	1.07	
	CDDCDED 103	0.66	0.75	0.35	0.62	0.15	2 17	0.22	0.04	4 52		1 0 1				1.07	ĺ

	<u>/ </u>	<u> </u>	<u> </u>	<u>/ •</u>	<u> </u>	<u> </u>	/ "	/ V	/ "	/ "					
PER183	1.23	1.98	3.21	2.14	0.10	0.74		0.27	0.55	0.15	0.09	1.52	0.58	0.63	0.98
CPDCR5B-036	0.74	0.99	0.27	0.06		1.31	0.03	0.21	2.14		1.02	1.46			1.03
CPDCR5B-069A	0.56	2.00	0.02	0.66	0.80	2.27		0.86	1.10	0.49		0.84	1.07		1.06
CPDCR1B-080	0.61	0.51	0.67	1.33	1.49	2.65	0.26	1.17	0.78		0.84	0.17	0.65	2.06	1.07
CPDCR5B-102	0.66	0.75	0.35	0.63	0.15	3.17	0.32	0.94	1.53		1.04				1.07
CPDCR5B-055	2.47	1.83	0.84	0.68	1.00		0.80	1.17			1.04				1.51
B1PD280-040	0.40	1.32	1.58	0.41	0.59	2.32		2.04							1.54
CPDCR1B-052	1.82	0.69	1.44	0.94	2.48	3.71	0.38	0.70	1.13		3.02	0.70	0.75	1.96	1.55
AM206-5	1.80	0.42	0.32	0.59	1.42	0.30	0.07	0.26	4.77	0.29	5.10	0.42	1.63	5.94	1.58
CPDCR5B-041	1.89	2.54	0.80	0.68	1.99	3.63	1.21	0.67	2.33						1.78
COL22	1.63	2.06	3.44	3.69	1.11	1.15	0.88	1.60	1.42	1.02	1.24	3.10	0.38	3.19	1.85
CPDCR1B-075	0.01	2.03	0.60	1.01	0.99	3.98	0.54	0.27	4.05			2.38			1.86
CPDCR1B-065	0.39	0.90	1.34	1.67	4.44	3.25	1.00	0.97	1.75	1.30		2.00	0.69	2.43	1.87
CPDCR5B-053	0.80	2.19	0.71	0.17			0.36	0.40				2.87	1.72		1.88
HMC-1	0.42	0.64	3.02	4.42	1.71	4.47	0.74		1.72	1.20	1.55	2.70	0.69	1.00	2.00
CPDCR5B-096	1.73	1.80	0.61	0.56	2.21	3.94	0.37	2.38	3.78	1.79		3.65	1.49	1.34	2.08
B1PD280-008	0.37	0.70	0.44	2.71	1.82	5.80	0.67	1.24	3.61	1.74		2.25	0.19	2.94	2.08
CPDCR1B-046	1.14	1.94	2.56	3.78	3.60	0.88	4.50	0.57				1.24	0.69	5.12	2.36
CPDCR1B-048	1.09	1.89	2.08	2.08	3.96	5.21	1.21	3.07	2.21		3.38	0.51	0.67	2.82	2.39
CPDCR1B-026	1.27	1.38	1.82	3.74	4.52	4.41	0.50	1.38	3.57		4.66	1.79	0.23	2.79	2.60
CPDCR1B-078	1.22	2.12	1.34	3.86	3.32	4.52	0.61	0.92		4.62					2.63
CPDCR1B-064	0.51	0.45	1.73	1.64	4.97	7.61	0.67	4.00	1.56		4.62	1.51	0.64	2.34	2.70
CPDCR5B-016	2.64	0.71	0.77	1.21	0.36		2.50	5.67	3.57	8.40		2.52	0.63	1.41	2.94
CPDCR5B-043	1.74	1.90	1.73	0.46	5.63	0.20	0.71	3.13		8.63		1.41			2.99
CPDCR1B-019	1.09	2.83	2.91	2.63	3.67	3.98	1.29	2.61			6.23	2.21			3.01
CPDCR1B-062	1.62	2.22	1.09	3.38	5.43	3.92	1.02	5.05	3.50		2.88	1.37	0.41	6.17	3.04
CPDCR1B-054	1.35	1.98	3.42	2.09	5.43	6.85	0.67	2.48	3.68		4.00	1.96	1.47	3.04	3.05
CPDCR1B-028	0.70	1.33	1.57	1.63	4.21	6.49	0.90		6.45		3.51	1.78	0.36	5.45	3.10
CPDCR5B-109	1.71	2.02	1.30	2.71	2.46	4.35	0.70	2.47	4.71		9.08	1.92	1.43	3.82	3.12
C4	4.39		2.58	1.37	2.78	7.44	0.62	3.41		3.56			1.51	5.44	3.20
CPDCR1B-027	1.31	1.62	0.73	1.22	5.40	3.79	0.29	1.43	7.18	8.71		1.86	2.28	4.15	3.28
CPDCR1B-043	1.70	0.90	1.59	1.80	6.39	8.28	1.82	2.69		5.23		3.00	1.29	3.30	3.48
CPDCR1B-034	1.85	3.62	3.50	2.51	6.65	4.32	0.64	2.08	5.45		7.00	1.29			3.51
CPDCR1B-015	2.50	2.66	3.43	2.84	5.21	7.04	1.11	3.53	3.01	2.23		6.37	1.51	5.32	3.59
CM523-7	1.84	4.82	4.17	7.39	2.86	5.34	1.34	2.23	3.52	2.06	4.68	6.36	1.35	6.58	3.75
CPDCR1B-013	1.42	2.22	4.69	4.81		1.64	1.62	2.77			8.52	5.51	3.24	3.90	3.83
CPDCR5B-013					6.36										3.84
CPDCR1B-068	1.25	1.98	1.47	4.59	2.40	7.84	0.80	4.19	4.76	5.07		5.99	4.44	5.40	3.91
CPDCR1B-074	6.33	3.52	4.15	5.11	7.47	5.65	3.64	5.17	4.37		2.45	2.86	1.09	4.00	4.17
CPDCR1B-008	2.41	0.97	6.03	6.61	6.90	8.54	2.78	4.82	4.63	6.80		5.95	1.88	4.46	4.98
CPDCR1B-076	3.13	2.72	5.95	5.37	5.86	8.03	5.53	6.68			6.54	6.48	5.02	3.46	5.41

PPD Evaluation in Multiple Environments

H² is **0.67**

14 environments

7 years

Protocol

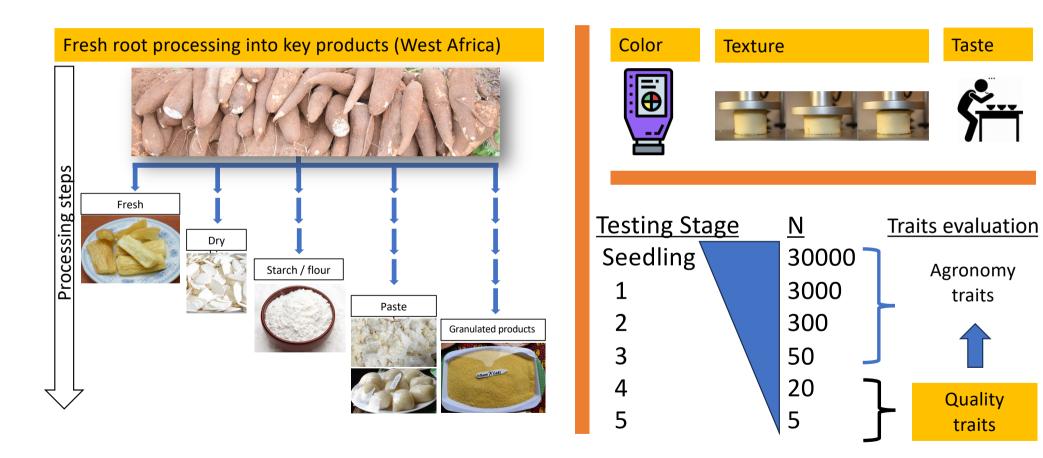
Objective 4: Reduce the duration of the cycle between crossing, trialing, and scaling out to the seed system

Net house facility to keep the planting materials pest and disease-free.

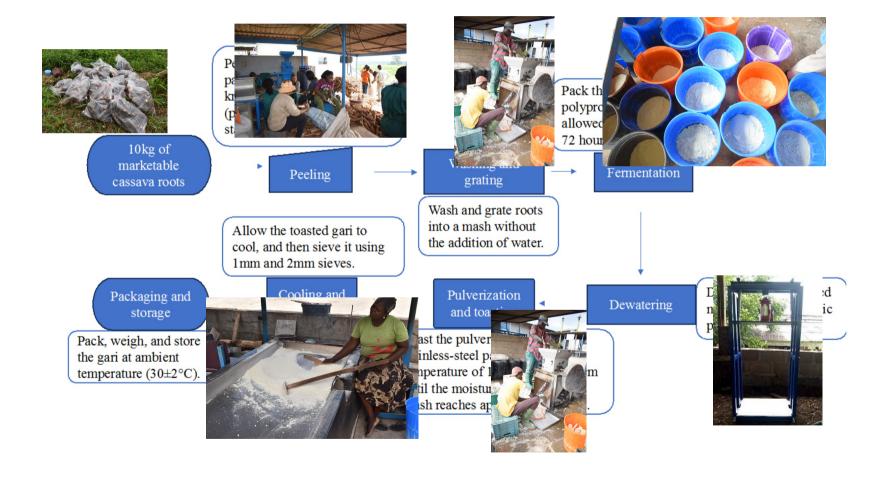
Objective 3: RTB processing and quality phenotyping

SN	Product Pipeline Name	Traits for product profiles	Baseline traits	Current Breeding Pipeline	Product samples
1	Processed Products (Gari and fufu)	High quantity and quality of processed product (% conversion rate, colour and texture)	Yield, dry matter, resilience to common biotic and abiotic stresses, flexible time of harvest	West Africa (Nigeria) Central Africa (DRC)	
2	Cassava for Fresh Markets	Root mealiness after boiling, Low cyanogenic potential, Sweet taste	Yield, dry matter, resilience to common biotic and abiotic stresses, flexible time of harvest	East Africa (Uganda and Tanzania) Central Africa (DRC) Southern Africa (Zambia) West Africa (Nigeria, Ghana)	
3	Biofortified cassava for enhanced nutrition	β-carotene , suitability for gari and fufu products	Yield, dry matter, resilience to common biotic and abiotic stresses, flexible time of harvest	West Africa (Nigeria) Central Africa (DRC)	Design Control of the
4	Cassava for Industry	High starch and flour content, mechanizable plant architecture.	Yield, dry matter, resilience to common biotic and abiotic stresses, flexible time of harvest	West Africa (Nigeria)	

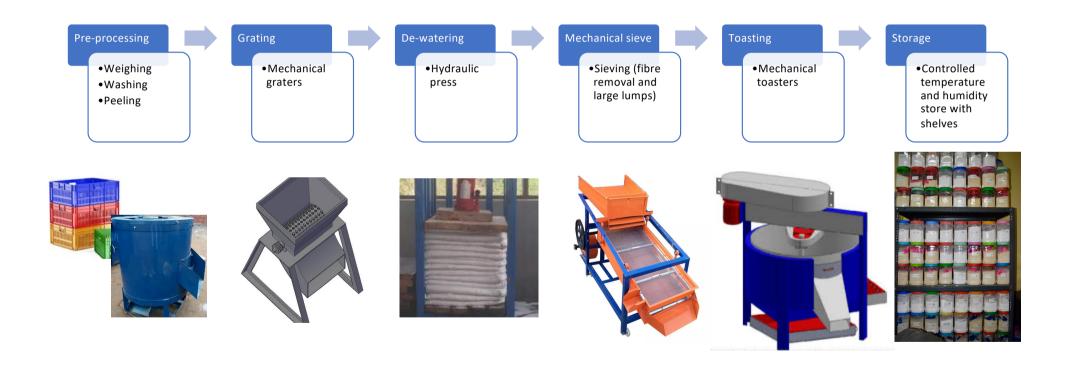
Complexity of cassava products, processing steps and current evaluation stages for quality traits

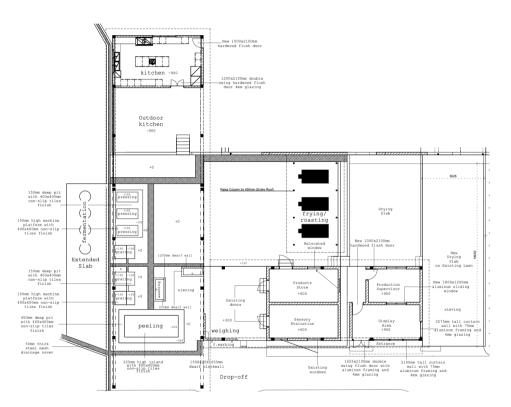

Taste

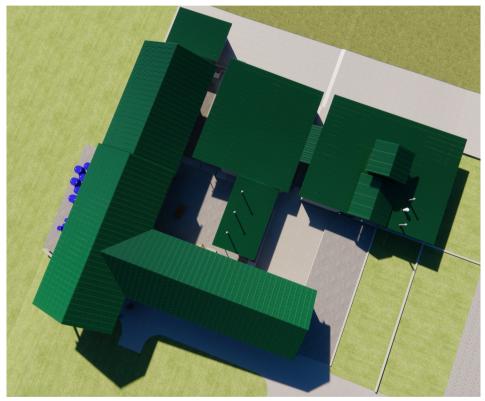
Agronomy


traits

Quality


traits




Cassava garri processing

Proposed facility upgrade to streamline root processing

What we would achieve by facility upgrade

Customer focus:

Deliver smallholders benefits

Deliver varieties that are suitable for the major product value chain

Operational excellence (root phenotyping):

Implement high-throughput root/tuber phenotyping (intermediate & finished product).

Evaluate more entries at earlier stages of selection

Standardize processing to increase data quality (increase genotype-effect to noise ratio).

Organizational leadership:

Occupational health

 Ensure worker operational safety and health

Facility hygiene

• Product quality and safety