Outline

1. **Why** water productivity atlas (WP Atlas)?
2. **What** does it contain?
3. **How** can it be used?
4. Demonstration (if time permits)
Why Water Productivity Atlas?

• Support unraveling the water-food-energy-environment nexus

• What is the WFEE nexus?
 ✓ Increased food/crop production but large groundwater depletion and energy use
 ✓ Inadequate nutritional supply but large groundwater depletion and energy use
 ✓ Low crop production but inadequate energy supply for groundwater use
What is Water Productivity Atlas?

• WP Atlas is an interactive web platform developed in R Shiny Web Framework
• Shows the spatial/temporal variations of WP and water footprint (WFP) indicators?
 • Shows current gaps and potential increase in WP/WFP
• Compare WP/WFP of different locations and crops
• Identify locations with severe nexus
• Develop scenarios to reduce the nexus and enhance benefits
 ✓ Reduce yield gap
 ✓ Reduce the evaporation losses
 ✓ Diversify crops to increase value and reduce consumptive water use (crop ET)
Introduction
The Water Productivity (WP) Atlas, an online tool, is a one-stop solution that can visualize and analyze the trends of WP and water footprints (WFP), assess their linkages, and the implications on the water-food-energy (WFE) nexus. It shows physical, economic, nutritional, and energy WP trends of crops, cropping, or agricultural production system. Furthermore, WFP includes green and blue WFPs.

Crops - cereals (rice, wheat, maize, barley, bajra, ragi, jowar), pulses, oil crops, fruits, vegetables, roots and tubers, spices, sugar cane, cotton, etc.

Cropping systems - rice-wheat, rice-rice, maize-wheat, cotton-wheat, etc., and agricultural production system has crop-milk production.

Agricultural production system - crop-milk production.

WP Atlas has three components: Trends, Comparisons, and Scenarios.
Water Productivity

• Physical Water Productivity (PWP)
 – Production per unit of consumptive water use
 – Water use is total consumptive water use
 – Expressed in kgm⁻³

• Economic Water Productivity (EWP)
 – Value of production per unit of CWU
 – Expressed in $m⁻³

• Nutritional Water Productivity (NWP)
 – Nutritional supply per unit of water use.
 – Expressed in Caloriesm⁻³, Proteinsm⁻³, Fatm⁻³.
 – NWP = PWP * conversion ratio
 – Conversion ratio = Nutrition per kg of production

• Water footprints
 – Blue, Green, total

• The Nexus
Spatial variation of WP
- 28 major States & Union territories
- 596 districts
- River basins (38)/Sub river basins (94)

Trends (22 years) between 1999 and 2020

Crops (32) or cropping systems (3)
- cereals, pulses, oil crops, roots and tubers, fruits, vegetables, sugar, cotton, fodder
- Rice-wheat, rice-rice, maize-wheat

Indicators (5 WP, 6WFP)
- Water productivity or Water footprints
Total CWU

• **CWU = Crop Eta = crop coefficient x Sum of PET in crop growth periods**

• In Rainfed areas,
 • **Total CWU = CWU from rainfall = Effective rainfall**
 • USDA method for estimating Effective rainfall

• In irrigated areas,
 • **Total CWU = CWU from Irrigation + CWU from rainfall**
 • Assumed to meet total irrigation CWU
Physical WP of cereals across districts

Temporal variation

Cereals Total PWP (Kgm⁻³)
- [0.12, 0.46]
- (0.46, 0.59)
- (0.59, 0.74)
- (0.74, 2.04)
- <0.1

Statistical analysis

Effect of the other factors
PWP of cereals across districts in the GRB

Temporal variation

Cereals Total PWP (Km²)

- [0.22, 0.53]
- (0.53, 0.69)
- (0.69, 0.82)
- (0.82, 1.65)
- <0.1

Year(s)

2015
2018

Effect of the other factors

- PWP
- Yield
- Area
- CWU
Physical WP of cereals across River Basins

Temporal variation

2015

Cereals Total PWP (Kgm⁻³)
- [0.16, 0.47]
- (0.47, 0.56]
- (0.56, 0.69]
- (0.69, 1.31]

Statistical analysis

Effect of the other factors

Production system
Crop
Crop
Cereal's Total

Year(s)
2015
Update
WP of cereals across sub-river basins in the GRB

Temporal variation

Cereals Total PWP (Kgm⁻³)
- [0.49, 0.57]
- (0.57, 0.71]
- (0.71, 0.8]
- (0.8, 0.94]

Statistical analysis

Effect of the other factors
Physical WP of cereals in the Ganges

Factors of PWP

INITIATIVE ON NEXUS Gains
How does nexus change under different scenarios?

- Scenarios
 - Increasing PWP with no increase in CWU
 - reduce non-beneficial evaporation
 - Increasing PWP with supplemental irrigation/CWU
 - Increasing EWP with changing cropping patterns
 - Reduce water-intensive cropped area
 - Increase high-value cropped areas
 - Shift cropping systems
Thank you

Contact: u.amarasinghe@cgiar.org

Video: WP Atlas Demonstration
prepared by Madhusha Perera
Introduction

The Water Productivity (WP) Atlas, an online tool, is a one-stop solution that can visualize and analyze the trends of WP and water footprints (WFP), assess their linkages, and the implications on the water-food-energy (WFE) nexus. It shows physical, economic, nutritional, and energy WP trends of crops, cropping, or agricultural production system. Furthermore, WFP includes green and blue WFPs.

Crops - cereals (rice, wheat, maize, barley, bajra, ragi, jowar), pulses, oil crops, fruits, vegetables, roots and tubers, spices, sugar cane, cotton, etc.

Cropping systems - rice-wheat, rice-rice, maize-wheat, cotton-wheat, etc., and agricultural production system has crop-milk production.

Agricultural production system - crop-milk production.

WP Atlas has three components: Trends, Comparisons, and Scenarios.

Trends

TRENDS can visualize the spatial and temporal variations of crop WP of administrative units, such as districts, states, countries, and river basins and between 1999 to 2020.

Comparision

COMPARISONS allow to choose and compare WP indicators of different administrative units, river basins, or countries in different years.

Scenarios

Scenarios can analyze the implications on WFE nexus by improving the WP of crops, crop diversification, etc.

To be developed...