

Visualizing the water-energy-food nexus in the Indus basin toward the end of the century

Prof. dr. Walter Immerzeel Utrecht University 15 May 2024

Upper Indus Basin

Extremely water stressed Groundwater depletion Rapid population growth "Climate change hotspot"

Immerzeel, W. W., & Bierkens, M. F. P. (2012). Asia's water balance. Nature Geoscience, 5(12), 841-842.

Water, Food, Energy & Ecosystems are intrinsically linked; **Nexus**

Changes cause pressure on the sectors and linkages:

- Climatic
- Socio-economic
 - Population growth
 - Economic change
 - Urbanisation

Changes in one sector can thus have drastic consequences across the nexus and affect the status of others sectors...

Advantages

- Negative feedbacks can be prevented
- Synergies can be found and exploited

Disadvantages

- Holistically complicated
- What is the optimum? (Political) priorities define a 'good' approach and acceptable trade-offs

SustainIndus project

"To develop sustainable pathways that support decision makers and practitioners to develop science-based policy and climate—smart solutions to provide food (SDG 2), water (SDG 6) and energy (SDG 7) to all people in the Indus now and in the future."

Sustaindus Project Structure

l of integration across sectors (water, energy, food)

Global SDGs to IDGs

Resource security targets

Upstream-downstream linkages

NEXUS Gains

To improve FOOD availability, future agricultural expansion, intensification & crop choices are needed...

...these will affect FOOD SECURITY but can also impact WATER SECURITY...

...and changes in land use to reduce WATER use are also possible.

VARIANT A: WATER LIMITED

'What-if' agricultural landuse develops with priority on water conservation? 'What-if' agricultural landuse continues to develop as it has done historically?

VARIANT B: FOOD PRIORITY

'What-if' land-use develops with priority on internal food self-sufficiency?

More Focus On Water Security

Business As Usual

More Focus On Food Security

Different pathways

Different pathways have different impacts

Climatic and socioeconomic changes increase pressure Indus basin water and food security

- Increase demand food and water downstream;
- Increasing impact of upstream water use downstream availability

Adaptative land-use changes important for future water and food security

- Highly dependent on policy priorities
- Challenging to meet both targets
- Adaptation besides land-use changes essential (i.e. climate smart measures)

INITIATIVE ON **NEXUS** Gains

Thank you

www.sustaindus.org