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Abstract

Despite the widespread use of graphs in empirical research, little is known about readers’ ability to
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error rates and complements econometric inference.
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1 Introduction

“Few would deny that the most powerful statistical tool is graph paper.”

— Geoffrey S. Watson (1964)

Graphical analysis is increasingly prevalent in empirical research, a phenomenon Currie, Kleven, and

Zwiers (2020) call the “graphical revolution.” Effective use of graphs conveys a large set of statistical in-

formation at once and improves research transparency (Andrews, Gentzkow, and Shapiro, 2020). However,

there are different ways to construct a graph with the same data, and the particular construction an analyst

chooses has the potential to mislead readers (Schwartzstein and Sunderam, 2021). To understand the best use

of graphical evidence, it is important to study readers’ ability to process information from graphs—which

we term visual statistical inference or visual inference per Majumder, Hofmann, and Cook (2013)—as well

as the sensitivity of visual inference to choices in graph construction. To date, little is known about visual

inference for commonly presented graphs in empirical research designs.

We begin to fill this knowledge gap and study visual inference in the regression discontinuity design

(RDD or RD design). The popularity of RDD in the modern causal inference toolkit, which began in eco-

nomics with Angrist and Lavy (1999), makes it an important setting in which to study visual inference.

Standard practices in applying RDD today perhaps best embody the spirit of Watson’s quote above, with

graphs playing a central role in the presentation of findings. The key RD graph plots the bivariate relation-

ship between outcome variable Y and running variable X and is meant to display a discontinuity (or lack

thereof) in the underlying conditional expectation function (CEF) as X crosses a policy threshold. Influen-

tial practitioner guides by Imbens and Lemieux (2008), Lee and Lemieux (2010), and Cattaneo, Idrobo, and

Titiunik (2019b) recommend creating this graph by dividing X into bins, computing the average of Y within

each bin, and generating a scatter plot of these Y -averages against the midpoints of the bins.

We assess the performance of visual inference by studying whether people presented with this graph can

accurately extract the embedded statistical information, where our main criterion is the correct identification

of the existence or absence of a discontinuity at the policy threshold. Our project has two major components.

In the first, we build on work pioneered by Eells (1926) and refined by Cleveland and McGill (1984) and

conduct a series of randomized experiments to examine how different graphical parameters affect visual in-

ference in RD. We present participants recruited through the Cornell University Johnson College’s Business

Simulation Lab with RD graphs produced from data generating processes (DGPs) based on microdata from
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11 published papers that we randomly selected from a list of 110 empirical studies from top economics

journals. For each graph, we ask participants to identify the existence or absence of a discontinuity. We ran-

domize respondents into different treatment arms and show participants within each arm graphs produced

with particular graphical parameters such as small bin widths and evenly spaced bins.

There is limited research on how to choose these parameters in practice. For example, Calonico, Cat-

taneo, and Titiunik (2015) propose two popular data-driven bin width selectors: one that minimizes the

integrated mean squared error (IMSE) of the bin averages, resulting in fewer, larger bins, and another that

mimics the variability of the underlying data (mimicking variance or MV), which leads to more, smaller

bins. While both proposals set a graphical parameter to satisfy an econometric criterion, practitioners are

left with little basis to choose between them. Moreover, a host of other choices over graphical parameters re-

mains with minimal guidance from the literature, such as including smoothed regression lines in the binned

scatter plot, adding a vertical line to indicate the policy threshold, and choosing the axis scales.

By comparing the rates at which respondents correctly classify discontinuities across treatment arms, we

can assess the advantages and disadvantages of different graphical parameters. We find that certain graphical

parameters such as bin width and imposing smoothed regression lines create important tradeoffs between

type I error (identifying a discontinuity when there is none) and type II error (identifying the absence of

a discontinuity when there is one) rates. Relative to MV (small) bins, using IMSE (large) bins tends to

increase type I error rates but decrease type II error rates. Similarly, imposing fit lines may also increase

type I error rates, echoing the concerns by Cattaneo and Titiunik (2021a,b).

To translate our findings to recommendations on graphical practices in RDDs, we empirically implement

two decision theoretical frameworks that build on the recent economics literature (Kline and Walters, 2021

and Andrews and Shapiro, 2021). Our two frameworks use classification accuracy and reader confidence

in her classification, respectively, as metrics to facilitate comparisons of graphical methods. In both frame-

works, the method that uses MV bins with no fit lines consistently performs well relative to IMSE bins or

imposing fit lines. Bin spacing (equally spaced versus quantile-spaced), axis scaling, and the presence of a

vertical line indicating the policy threshold do not appear to matter, implying that researchers can adhere to

reasonable personal preferences.

Because only non-experts participate in our randomized experiments on the effects of graphical methods,

we may be concerned that our results are less relevant to academic audiences. To assess whether our findings

generalize across experience levels, we also recruit experts from a pool of seminar attendees and affiliates
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of the National Bureau of Economic Research (NBER) and the Institute of Labor Economics (IZA) to

participate in our study. Although our expert sample is not large enough to conduct the same randomized

experiments, we can compare the non-expert and expert results by using the subset of non-experts who saw

the same graphs as the experts. We find that the two groups perform comparably.

In the spirit of DellaVigna and Pope (2018), we also test whether experts are able to predict the graphical

parameters that result in the highest rate of visual inference success by non-experts. We find that experts

only partly anticipate the aforementioned effects of bin widths and fit lines.

As a second major component of the project, we compare the performances of visual inference and

econometric inference. For visual inference, we use results from the sample of experts who viewed graphs

constructed with the best-performing technique from our experiments. For econometric inference, we apply

three influential methods by Imbens and Kalyanaraman (2012), Calonico, Cattaneo, and Titiunik (2014),

and Armstrong and Kolesár (2018) (henceforth IK, CCT, and AK) and conduct hypothesis testing at the

5% (asymptotic) level. We find that visual inference achieves a type I error rate which, at just below 8%,

is lower than the IK and CCT procedures (the CCT type I error rate is not significantly higher), but the

two econometric procedures enjoy considerably lower type II error rates. Visual inference performs very

similarly to the AK procedure, a remarkable result given the minimax optimality property of AK.

Furthermore, visual and econometric inferences appear to be complimentary. First, we examine the joint

distribution of visual and econometric tests: while they commit similar type II errors, there does not appear

to be a strong association in their type I errors. Second, we assess the performance of a combined visual

and econometric inference. One simple way of combining the two inferences mirrors the practice in which

a researcher believes a discontinuity exists if and only if a formal test rejects the null of no effect and she

sees it with her own eyes. We find that the combined IK and visual inference performs similarly to the

most recent AK procedure, which may help explain the enduring credibility of the RD design despite formal

inference issues in earlier RD papers. At the same time, if many researchers already adopt this practice, then

the de facto type I error rate is lower than intended by the econometrician, suggesting a higher-than-intended

bar for empirical evidence.

Finally, we ask experts to estimate the discontinuity magnitude when they classify a discontinuity, and

we compare the accuracy of their estimates to that by econometric methods. Econometric methods tend to

do better on this front. For example, the simple local linear IK estimator yields lower mean squared errors

than experts across all 11 DGPs, shedding light on the limit of visual inference.
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This paper connects a diverse set of literatures and makes the following contributions. First, we begin to

fill an important gap in our understanding of graphical evidence by evaluating visual inference and graphical

representation practices in a widely used quasi-experimental research design. Our endeavor draws from

three strands of the statistics literature that study the choice of graphical parameters (e.g. Calonico et al.,

2015, Li et al., 2020), their effects on visual inference (e.g. Cleveland and McGill, 1984), and the evaluation

of visual inference through comparison with econometric inference (e.g. Majumder et al., 2013).

Second, we are the first within economics to use lab experiments to study empirical methods, a new

paradigm that can be applied to other important areas (see Section 5 for more discussion). Using 11 DGPs

calibrated to RD microdata allows us to carry out a more comprehensive and empirically relevant evaluation

of econometric inference procedures than econometric studies that typically rely on two or three DGPs.

Third, to guide our study design and to help interpret our empirical results, we propose a general concep-

tual framework, which may extend to future studies of visual inference in other contexts. In particular, we

can interpret the average type I (or II) error rate we use as an estimate of the probability that a randomly sam-

pled reader commits such an error when viewing a graph generated from a randomly chosen DGP. We show

that these error probabilities are key inputs in a decision theoretical framework similar to that by Kline and

Walters (2021), which helps guide the best graphical practice. We also bring together the recent theory lit-

eratures on scientific communication (e.g., Andrews and Shapiro, 2021) and persuasion (e.g., Schwartzstein

and Sunderam, 2021) that shed light on the role of statistical graphs. We demonstrate the broad utility of

Andrews and Shapiro (2021) by empirically implementing their framework adapted to our experiments to

better understand the merits of different RD graphical methods. Relating to the persuasion literature, our

paper documents that framing influences the conclusions drawn from the data (even for experts), sheds light

on presentation strategies that limit incorrect inference, and suggests avenues for future studies on elements

of visual inference and graphical representation not yet featured in existing persuasion models.

Fourth, we add to the literature on expert judgments (e.g. Camerer and Johnson, 1997) and expert

forecasts of research results (e.g. Sanders, Mitchell, and Chonaire, 2015). Our finding that experts only

partly anticipate our experimental results underscores the value of empirically evaluating visual inference

and providing evidence-based guidance on graphical methods.

We introduce the conceptual framework in Section 2, describe the design of our experiments and studies

in Section 3, present results in Section 4, and conclude in Section 5. For readers in a hurry, the takeaway

results are in Figures 5 and 8 with corresponding discussions in Sections 4.1 and 4.3.
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2 Conceptual Framework

In this section, we propose a conceptual framework for evaluating visual inference to guide our study design

and aid in the interpretation of our empirical results. First, we show how to aggregate visual inference

performances across subjects, who may reach different conclusions even when viewing the same graph,

and meaningfully interpret the parameter our aggregate measure corresponds to. Second, we adapt decision

theoretical models used by recent economic studies to guide our search for the best graphical practice as

informed by the aggregate measures.

Although RD graphs may serve other purposes, we view their most important function as accurately

conveying discontinuity existence and magnitude at the policy threshold. According to Lee and Lemieux

(2010), other purposes of RD graphs include i) helping to assess regression specifications and ii) allowing

for the inspection of discontinuities away from the policy cutoff. But ultimately, these other functions are

also motivated by inference on the discontinuity at the policy threshold: i) can be viewed as reconciling

visual and econometric inferences thereof and ii) informs the reader, under implicit global homogeneity

assumptions, whether to believe the existence of a discontinuity at the policy threshold.

We focus on binary classifications of a graph and treat type I and type II errors as the main performance

measures for visual inference.1 A person commits a type I error in RD visual inference if she classifies

a continuous graph as having a discontinuity and a type II error if she classifies a discontinuous graph as

continuous. In Section 2.1, we define the key population type I and type II error probability parameters of

interest and propose estimators we can implement using our experimental data. We then show in Section 2.2

that these parameters are key inputs in a decision theoretical framework that can point to the best graphical

practice by weighing the tradeoff of type I and type II error probabilities. In the same section, we also

propose an alternative framework for evaluating graphical methods that builds on Andrews and Shapiro

(2021)’s work on scientific communication. In section 2.3, we discuss additional conceptualizations of the

role of graphs by drawing from the recent work by Schwartzstein and Sunderam (2021) on model persuasion

and related studies.
1The conceptual framework easily generalizes to assessing visual estimates of the discontinuity magnitude, which we elicit

from experts. In theory, we could also attempt to obtain the confidence set of visual inference by asking the respondents whether
the discontinuity is equal to d for a range of possible values of d. Given the practical challenges in implementation, however, we
leave this to future work.
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2.1 Measures of Visual Inference Performance

To define the measures of visual inference performance, we introduce the following notations. First, the

vector γ denotes a combination of graphical parameters (see Wilkinson, 2013 for an extensive list). We

study five parameters in this paper, bin width, bin spacing, axis scaling, the use of polynomial fit lines, and

inclusion of a vertical line, and each of the five entries of γ represents the value of a particular parameter.2

The combination (g,d) denotes the probability model underlying an RD dataset. g encompasses four

elements: i) the distribution of the running variable X ; ii) the conditional expectation function E[Ỹ |X = x]

which is continuous at the policy threshold x = 0; iii) the distribution of the error term u where Ỹ ≡ E[Ỹ |X =

x]+u; and iv) the sample size N. Intuitively, g specifies everything in the probability model except for the

discontinuity, including the shape of the conditional expectation function. The discontinuity then results

from shifting the right arm of the smooth function E[Ỹ |X = x] by some discontinuity level d, that is, Y =

Ỹ +d ·1[X>0] (which implies that E[Y |X = x] = E[Ỹ |X = x]+d ·1[X>0]; we provide a graphical illustration

in Section 3.2). We note that the variable Y can represent the outcome, baseline covariates, or treatment

take-up, so this framework applies to all graphs typically included in RD studies, including those from a

fuzzy design. Typically, the (g,d) combination is jointly referred to as the “data generating process,” but we

separate out the discontinuity level d and call g the DGP for ease of exposition below.

We think of each (bivariate) RD dataset as a realization from the probability model (g,d), which we de-

note by W—or W (g,d) if we need to emphasize the underlying probability model. Implementing a graphical

procedure with parameters γ on dataset W results in an RD graph (γ,W ), which we denote by T or T (γ,g,d).

Alternatively, we can think of T as a realization from (γ,g,d) and refer to (γ,g,d) as the graph generating

process (GGP).

When presented with the same RD graph, readers may draw different visual inferences. For example,

some readers may be more skilled than others at classifying a discontinuity because they have received more

training in statistics, have more experience with RD graphs, or otherwise have superior ability. We use φ to

capture these human characteristics that affect graph perception.

The probability that a reader with characteristics φ reports that a discontinuity exists in RD graph

T (γ,g,d) is denoted by p̃(T (γ,g,d),φ). From casual observation, we know that the same reader may

2In our experiments, we randomly assign each participant to view only graphs generated with a certain fixed value of γ . Ideally,
one could run a large experiment with a full factorial design to test all combinations of the graphical values outlined above, but
resource constraints force us to test a subset of the graphical parameter space via a sequence of studies as described in Section 3.3.1.
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be influenced by idiosyncratic elements not encapsulated in φ and classify the same graph differently on

different days. The probability formulation p̃ allows these factors to affect visual inference.

We now define the type I and type II error probabilities we use to gauge reader performance. First,

averaging p̃ over both data realizations W and reader characteristics φ leads to the quantity

p(γ,g,d)≡ EW,φ [p̃(T (γ,g,d),φ)].

This is the probability that a randomly chosen reader reports a discontinuity in a graph randomly generated

from the GGP (γ,g,d). A high value of p indicates a high classification error probability when the true

discontinuity d is zero (type I error), but a low classification error probability when d is nonzero (type II

error). Formally, the DGP-specific or g-specific type I and type II error probabilities for graphical parameter

γ are defined as:

g-specific type I error probability: p(γ,g,0)

g-specific type II error probability: 1− p(γ,g,d) for d 6= 0.

Conceptually, we can further average p(γ,g,d) over the space of DGPs, G (discussion of G after Assumption

1 below), to arrive at the overall discontinuity classification probability for γ:

p̄(γ,d)≡ Eg∈G [p(γ,g,d)].

Correspondingly, the overall type I and type II error probabilities are defined as

overall type I error probability: p̄(γ,0)

overall type II error probability: 1− p̄(γ,d) for d 6= 0.

Consistent with the definitions in Casella and Berger (2002, p. 382), we call p(γ,g,d) and p̄(γ,d) power

functions as functions of d. We show in Section 2.2 below that the overall power function, p̄(γ,d), is a key

input into a Bayes risk criterion we use to evaluate graphical methods.

In this paper, we design experiments to estimate the type I and type II error probabilities as defined

above. For each GGP (γ,g,d), we generate M different realized graphs and present each to a random

participant. That is, participant i is shown one RD graph denoted by Ti(γ,g,d), where i takes on values in

the set {1, ...,M}, and is asked to assess the presence of a discontinuity. Let the binary variable Ri(Ti(γ,g,d))

denote participant i’s discontinuity classification, which equals one if the participant reports a discontinuity

at the policy threshold. Under random sampling, the following assumption holds:
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Assumption 1. For a given GGP (γ,g,d), the Ri(Ti(γ,g,d))’s are i.i.d. with E[Ri(Ti(γ,g,d))] = p(γ,g,d).

A natural estimator for p(γ,g,d) is the sample average of discontinuity classifications:

p̂(γ,g,d) =
1
M ∑

i
Ri(Ti(γ,g,d)).

Proposition 1 in Appendix A.1 states the distribution of p̂(γ,g,d) and shows the estimator to be unbiased

and consistent as M→ ∞ for p(γ,g,d) under Assumption 1.

To estimate the overall probability p̄(γ,d), we need to sample from the DGP space G , which we formally

define in Appendix A.2. While the infinite dimensionality of G makes it difficult to theoretically characterize

the distribution of DGPs, we think of the data used in empirical RD research as realizations when sampling

from G according to this distribution. To that end, we can specify J DGPs that approximate data from

existing research and present graphs generated with discontinuity d for each DGP g j ( j = 1, ...,J) to a

distinct group of M participants for a total of M · J participants and visual discontinuity classifications.

Assumption 2. The DGP g j’s are randomly sampled from G .

A natural estimator for p̄(γ,d) is

ˆ̄p(γ,d)≡ 1
J ∑

j
p̂(γ,g j,d) =

1
M · J ∑

i, j
Ri(Ti(γ,g j,d)),

the average of discontinuity classifications across the M · J classifications. Proposition 2 in Appendix A.1

states the distribution of ˆ̄p(γ,d) and shows the estimator to be unbiased and consistent (as J → ∞) for

p̄(γ,d) under Assumptions 1 and 2 (given that J = 11 in our experiments, consistency here is a conceptual

statement implying that were we to incorporate DGPs from more RD studies, our estimators would be closer

in probability to the population parameters of interest). We henceforth refer to p̂(γ,g,d) when d = 0 and

1− p̂(γ,g,d) when d 6= 0 as the DGP- or g-specific type I and type II error rates, respectively. We refer to

ˆ̄p(γ,d) when d = 0 and 1− ˆ̄p(γ,d) when d 6= 0 as the average type I and type II error rates, or simply the

type I and type II error rates, respectively.

We can also define the type I and type II error probabilities of an econometric inference procedure

based on a discontinuity estimator, θ̂ , but with two adjustments. First, γ is no longer an argument in these

expressions because we directly implement θ̂ on microdata W . Second, we need to specify the level of the

testing procedure, which we set to 5%, the prevailing standard in empirical studies. Because the definitions

of these probabilities and their estimators are similar to the quantities defined above, we omit them here.

In subsequent sections, we empirically trace out ˆ̄p(γ,d) as functions of d, which concisely summarize
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the type I and type II error probabilities of a graphical method. For brevity, we also use the term “power

functions,” as opposed to “estimated power functions,” to refer to their empirical estimates. We study

visual inference by comparing its power functions ˆ̄p(γ,d) across γ and against the corresponding power

functions of various econometric inference procedures. We discuss the calculation of the standard errors on

the differences between the visual and econometric power functions when we present our empirical results

in Section 4, as its details depend on the design of our experiments.

In summary, we have defined the type I and type II error rates for visual inference. The type I error rate

is the fraction of continuous graphs participants incorrectly classify as having a discontinuity, and the type

II error rate is the fraction of discontinuous graphs incorrectly classify as being continuous. Our framework

allows us to interpret these rates as unbiased and consistent estimates of the probabilities of type I and type II

errors a randomly chosen person commits when classifying a graph generated from a representative DGP. As

we show in the next section, these probabilities play an important role in our decision theoretical framework

that sheds light on best graphical practice.

2.2 Frameworks for Evaluating Graphical Methods

We present two decision theoretical frameworks for evaluating graphical methods. In the first framework,

we incur a loss from reader i misclassifying graph Ti(γ,g,d):

L i(γ,g,d)≡ Ri(Ti(γ,g,0)) ·κ ·1[d=0]+(1−Ri(Ti(γ,g,d))) ·ϕ ·1[d 6=0],

where κ and ϕ are the costs of a type I and type II error, respectively. This loss function generalizes the

zero-one loss (e.g., p. 20 of Friedman, Hastie, and Tibshirani, 2001) to allow asymmetric loss for the two

error types. A similar setup was recently used by Kline and Walters (2021) to formulate an auditor’s decision

on which employers to investigate for discrimination (see also Storey, 2003).

Averaging L i over i, which encapsulates averaging across both readers and graph realizations, leads to

the expected loss or risk for DGP g:

R(γ,g,d)≡ p(γ,g,0) ·κ ·1[d=0]+(1− p(γ,g,d)) ·ϕ ·1[d 6=0].

Further integrating R over the distribution of g leads to the average or Bayes risk:

R̄(γ,d)≡ p̄(γ,0) ·κ ·1[d=0]+(1− p̄(γ,d)) ·ϕ ·1[d 6=0].

In the remainder of the paper, we refer to R and R̄ as the classical risks.
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We make three remarks. First, the type I and type II error probabilities are key inputs into the classical

risks. Second, unlike econometric inference, it is hard to theoretically control the type I error probability

of visual inference under a pre-specified threshold, and different graphical methods often lead to type I and

type II error tradeoffs. To choose a method in the presence of these tradeoffs, we need to specify the cost

parameters κ and ϕ and further average over d according to a prior probability of encountering graphs with

different discontinuity levels. These specifications entail subjective judgement, and we discuss our choices

in Section 4.1.1 when we estimate the classical risks with experimental data. Third, we can define the

minimax graphical method as the best performing method under the most adverse DGP. While the vastness

of the DGP space makes it difficult to estimate the population maximal risk, the best performing graphical

method in terms of the estimated Bayes risk defined above also does very well under the sample maximal

risk among our DGPs.

Our second framework for evaluating graphical methods builds on the recent work on scientific com-

munication by Andrews and Shapiro (2021) (henceforth AS), who propose the so-called communication

risk and show that reporting certain statistics achieves lower communication risk than others. Unlike the

classical risks, which take each reader’s classification as given and incorporate it directly into the loss, the

AS risk formulation starts from each individual’s optimal decision problem.

Adapted to our context, the (posterior) AS communication risk for reader i when viewing graph Ti

generated from GGP (γ,g,d) is

R i
AS(γ,g,d) = min

δ∈{0,1}
E i [

δ ·1[D=0] ·κi +(1−δ ) ·1[D6=0] ·ϕi | Ti(γ,g,d)
]
.

We use the capital letter D to denote the reader’s perceived discontinuity. More precisely, D is the random

variable that represents the discontinuity unknown to the reader, for which she perceives a distribution. The

expectation E i is taken with respect to this subjective (posterior) distribution of reader i after she sees a

graph. κi and ϕi are the costs the reader incurs for committing a type I and type II error, respectively. The

two values of δ represent the classification choices, and risk minimization leads to the reader’s discontinuity

classification Ri. Solving the minimization problem implies that she would classify a graph as discontinuous

(i.e., Ri = 1) if she is reasonably certain. Denoting her perceived discontinuity probability by qi ≡ Pri(D 6=

0|Ti), the reader classifies a discontinuity when qi is above the cutoff ςi ≡ κi/(κi +ϕi), and her posterior AS

risk is

R i
AS(γ,g,d) = (1−qi) ·1[qi>ςi] ·κi +qi ·1[qi<ςi] ·ϕi,
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which is tent-shaped as a function of qi. We focus on the case where κi = ϕi = 1 as the two costs are equal in

our experimental design (only the ratio of the two parameters matters in determining the optimal graphical

parameter, but choosing a value of 1 leads to easily interpretable quantities). The risk simplifies to 1−βi

where βi ≡ 0.5+ |qi− 0.5|. βi is simply the reader’s perceived probability of being correct: it attains the

highest value of 1 when she is certain that the graph is continuous (qi = 0) or discontinuous (qi = 1), and it

attains the lowest value of 0.5 when she is completely unsure (qi = 0.5). Therefore, a graphical parameter is

preferred under the AS communication risk if it leads to higher reader confidence (this form of the AS risk

is also known as the (mis)classification risk, see e.g., Kitagawa, Sakaguchi, and Tetenov, 2021).

Averaging over i, we arrive at the AS risk for GGP (γ,g,d):

RAS(γ,g,d)≡ Ei[R
i
AS(γ,g,d)] = Ei[1−βi(γ,g,d)],

where we make explicit the dependence of βi on the GGP (γ,g,d). Because we randomly assign graphs to

participants, we can interpret the expectation above as first averaging over the realizations of graph T for

each participant type φ as defined in Section 2.1, and then averaging over the distribution of φ . The first

average is the AS ex ante communication risk if each reader correctly anticipates the objective distribution

of T (the ex ante communication risk corresponds to the integral of the ex post communication risk with

respect to the reader’s subjective prior distribution of T , which is hard to ascertain). Because the second

average is over the φ -distribution, we can interpret RAS as a weighted average communication risk per AS

where the weights reflect the composition of our experimental subjects. As before, we can further average

the DGP-specific risk with respect to the distribution of g to define an overall average communication risk:

R̄AS(γ,d)≡ Eg[RAS(γ,g,d)].

Estimating the AS communication risks requires measures of βi, each reader’s perceived probability of

being correct. We do not directly elicit them from the participants in our experiments but can approximate

them with each participant’s graph-specific choice of a risky or risk-free payment scheme. We discuss

the payment schemes in Section 3.3.2 and compare across graphical methods the estimated values of the

communication risk in Section 4.1.1.

2.3 Further Conceptualizations of Graphs

Finally, we offer another lens to view the role of graphs by connecting to the recent literature on persuasion.

A particularly relevant study is by Schwartzstein and Sunderam (2021) on “model persuasion” (related
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works include Eliaz and Spiegler, 2020, Bénabou, Falk, and Tirole, 2018 and Olea et al., 2019). There

are two actors in the Schwartzstein and Sunderam (2021) framework, an analyst and a reader. The analyst

presents the reader a model of his choosing (in the form of a likelihood function) to persuade the reader to

interpret the data in a way that will benefit him. The reader has a default model in mind, but she will adopt

the analyst’s model if it fits the data better.

Schwartzstein and Sunderam (2021) find a natural application of their theory in the use of fit lines. The

authors write “[w]hen social scientists want to build the case for a particular conclusion, they may draw

curves through data points in ways that make the conclusion visually compelling,” and they humorously

illustrate their point with a comic strip (Figure 1 of the paper shows stylized scatter plots from xkcd.com/

2048/). We can view the choice of the other graphical parameters through the same lens, where the analyst

tries to influence the reader’s visual perception of how well his model fits the data.3

However, the formal model persuasion theoretical framework does not yet accommodate certain ele-

ments in the visual inference process. First, in Schwartzstein and Sunderam (2021), the reader chooses

between her ex-ante default model and the model supplied by the analyst, but seeing a graph should allow

the reader to adopt a model that is neither her default nor the one supplied by the analyst. That is, she may

draw her own conclusion upon seeing a graph, a process better captured by the AS framework. Second,

Schwartzstein and Sunderam (2021) assume that the analyst and the reader can access the same data, but in

our context the reader may only have summary empirical results supplied by the analyst. In fact, RD graphs

may be the most disaggregated data a reader has access to, and the bin width dictates the level of granularity.

In this sense, we can also view the bin width choice through the lens of how much information to disclose.

Although the persuasion framework does not capture all aspects of visual inference, it complements

Andrews and Shapiro (2021): rather than having a disinterested analyst, it gives him a stake in the belief

of the reader. Recent studies by Banerjee et al. (2020) and Spiess (2020) combine elements from both

papers: they study statistical problems—experimental design and covariate adjustments—using decision

theory while accounting for analyst preference. The research referenced here can thus orient future studies

on the role and use of statistical graphs.

3It is not explicit in the Schwartzstein and Sunderam (2021) formulation, but the analyst may use an interactive process to
experiment with different visualizations before choosing a picture to present to the reader. Hullman and Gelman (2021) provide a
conceptual framework of the role of interactive graphical analysis in the context of exploratory analysis and model checking.
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3 Description of Experiments and Studies

3.1 Graphical Parameters Tested

We test the effects of bin width, bin spacing, parametric fit lines, vertical lines at the policy threshold, and

y-axis scaling. We discuss each of these treatments in detail below and provide graphical illustrations of

each in Figure 1.

The most studied graphical parameter in RD is the width of each bin in the binned scatter plot. The first

class of bin width selection algorithms comes from Lee and Lemieux (2010): start with some number of

bins, double that number, test whether the additional bins fit the data significantly better, and repeat until

the test fails to reject the null. Calonico et al. (2015) propose two bin width selection algorithms based on

different econometric criteria. The first, which is more in line with the convention of the nonparametric

regression literature is the bin selector that minimizes the IMSE of the bin-average estimator of the CEF,

where the resulting number of bins increases with the sample size N at the rate N1/3. For their second

bin selector, the MV selector, Calonico et al. (2015) state that they “choose the number of bins so that

the binned sample means have an asymptotic (integrated) variability approximately equal to the amount of

variability of the raw data.” The resulting number of bins increases with the sample size more quickly, at

the rate N/ log(N)2. The IMSE-optimal bin width therefore selects fewer bins, and hence has larger bin

widths, than the MV algorithm (we describe these algorithms further in Appendix A.3). In addition to these

two algorithms, Calonico et al. (2015) provide an interpretation for any given number of bins as the output

of a weighted IMSE-optimal algorithm. Applying the Lee and Lemieux (2010) algorithms to our datasets

typically leads to bin numbers in between the IMSE and MV selectors that tend to be closer to those of the

IMSE. Thus, we restrict our analysis to the visual inference properties of the IMSE and MV bin selectors.

Although the prevailing approach is to adopt evenly spaced bins, this method has drawbacks in that the

resulting bins may contain vastly different numbers of observations, or even none at all.4 This can happen

when the distribution of the running variable is far from uniform. As a remedy, Calonico et al. (2015) also

propose quantile-spaced bins where each bin contains (approximately) the same number of observations.

Both spacings support IMSE and MV bin selectors, and we test each of these combinations.

Following suggestions by Imbens and Lemieux (2008) and Lee and Lemieux (2010), RD graphs fre-

4In a literature review we conduct for current practices, 98% of the more than 100 studies we compile use evenly space bins.
Our review includes RDD studies as well as studies that apply the regression kink design—RK design or RKD.
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quently feature parametric fit lines and a vertical line at the treatment threshold. Both papers suggest fit

lines improve “visual clarity” by approximating the conditional expectation functions, and the default in the

popular rdplot command by Calonico et al. (2015) uses piecewise global quartic regressions on each side

of the policy threshold. Of the 11 RDD papers on which we calibrate our DGPs, ten include fit lines. For the

six of these papers that generate fit lines using polynomial regressions, we use the same polynomial order as

in the source graph, and in the remaining cases, our team unanimously decides on the fit that best matches

the original fit line or the data. We could also use a formal data-driven approach to select the polynomial

order, but different criteria from Lee and Lemieux (2010) lead to conflicting recommendations (for exam-

ple, for our first DGP, the Akaike information criterion selects a fifth-order polynomial, while the Bayesian

information criteria and F-test they describe choose a zeroth-order polynomial).

The presence of a vertical line is designed to visually separate observations above and below the cutoff.

We test all combinations of these two treatments except for including the fit line and not having a vertical

line, which is used infrequently in practice (our literature review shows that fewer than 10% of papers use

this combination).

The motivation for rescaling graph axes comes from Cleveland, Diaconis, and McGill (1982), who note

that correlations on scatter plots seem stronger when scales are increased. We use two axis scaling options in

our experiments. First is the default output returned by Stata 14. Second, we double that range by recording

the range of the y-variable from the default graph, then increasing the bounds by 50% of the original range

in each direction, resulting in a graph where the data are condensed along the vertical axis. We do not

manipulate the scale of the x-axis because our survey of the literature suggests that this is not a common

adjustment. A related decision researchers encounter is the range of the running variable to use in producing

graphs: should they use the entire dataset or only a subsample close to the policy threshold? We do not test

this margin of adjustment in our experiments due to the difficulty in generalizing the findings from such an

exercise. Suppose we find that selecting 50% of the observations closest to the threshold improves visual

inference, should researchers “chop” the sample they are already planning to use? And after doing so, will

it be beneficial to chop again? One could argue for testing the effect of using the full sample versus the

subsample falling within the IK or CCT bandwidth, but these bandwidths themselves depend on the full

sample—the first step in bandwidth calculation is a (semi-)global regression—and it is not even clear how

we should define the “full” sample. In fact, some of the replication data used for our DGP calibration are

already subsets of a larger sample.
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There are other graphical parameters we do not test in our experiments. One is plotting confidence

bands around the binned averages or fit lines. However, confidence intervals are too complex to explain to

the non-experts in our short tutorial without potentially affecting the way participants think about the clas-

sification task itself, and therefore we do not experimentally test their effects on visual inference. Because

the moderate size of our expert pool makes it unsuited to randomized experiments, we refrain from testing

other graphical parameters.

3.2 Creation of Simulated Datasets and Graphs

We specify data generating processes based on the actual data used in published research. We randomly

sample 11 from a set of 110 empirical RD papers published in the American Economic Review, American

Economic Journals, Econometrica, Journal of Business and Economic Statistics, Journal of Political Econ-

omy, Quarterly Journal of Economics, Review of Economic Studies, and Review of Economics and Statistics

that have replication data available to create our DGPs. We refer to these DGPs as DGP1-DGP11.

The calibration of each DGP g entails the specification of its four components: the distribution of the

running variable X , the continuous conditional expectation function E[Ỹ |X = x], the distribution of the error

term u, and the sample size N.5 We use the empirical distribution of the running variable from each of the

11 papers but normalize it to lie in [−1,1] with 0 representing the treatment cutoff. We also remove the most

extreme observations where |X | > 0.99, following Imbens and Kalyanaraman (2012) and Calonico et al.

(2014). For two papers which feature semi-discrete running variables, we add small amounts of normal

noise to the running variable to match the regularity conditions from Calonico et al. (2015). To create

a continuous CEF, we fit global piecewise quintics (still following Imbens and Kalyanaraman, 2012 and

Calonico et al., 2014) and vertically shift the right arm. We specify the distribution of the error term u as

i.i.d. normal with mean zero and standard deviation σ , which we set as the root mean squared error of

the piecewise quintic regression. We use the same number of observations as the original paper minus any

observations removed while trimming the data. Plots of the resulting CEFs before we vertically shift their

right arm to make them continuous are in Figure 2, and Figure 3 illustrates the construction process. We

describe the DGP creation process in full detail in Appendix B.

Because the outcomes from the 11 papers are measured in different units, we need to standardize the

5Out of the 11 studies, two plot residualized outcomes instead of the original Y to adjust for covariates, conceptually consistent
with the covariate-adjusted RD estimation by Calonico et al. (2019) and the ideas of Angrist and Rokkanen (2015).
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discontinuity levels and choose to specify discontinuity levels d as multiples of σ . Alternatively, we could

specify d as multiples of the overall standard deviation of the outcome variable net of the discontinuity,

a measure that also captures the variation due to the conditional expectation function besides the error

term. Using this alternative measure turns out not to make a difference: the variance of the error term, σ2,

dominates the variance of E[Y |X ] in all of our DGPs, with the ratio of the two ranging from 8 to 690.

As a multiple of σ , d takes on 11 values: 0,±0.1944σ ,±0.324σ ,±0.54σ ,±0.9σ ,±1.5σ . We include

d = 0 in order to measure type I error rates. We choose the upper bound |d|= 1.5σ based on our own visual

judgment: it represents the point at which we expect every reasonable person to say a graph from any of our

11 DGPs features a discontinuity. The nonzero magnitudes of d are equally spaced on the log scale. We

use a log rather than linear scale to generate more graphs with smaller discontinuities, which are harder to

detect, in order to better capture the shape of the power functions.

Our discontinuity magnitudes are similarly distributed to those observed in the main outcome graphs

in our literature review. The average absolute value of the discontinuity t-statistics in our datasets from

piecewise quintic regressions is 5.0 with a standard deviation of 5.3, compared to the observed mean of

3.9 with a standard deviation of 6.4. If we instead compare the distributions of the absolute value of the

discontinuity divided by the control magnitude (the left intercept of the CEF), the means are similar, 1.3 in

our datasets and 1.9 in the field, while our standard deviations are somewhat smaller at 2.2 compared to 7.7.

As argued in Section 2, we want our DGPs to be representative. Although we select the papers randomly,

we also need to evaluate how well our DGPs approximate the actual data from the respective studies. To

do this, we adapt the lineup protocol from Buja et al. (2009) and Majumder et al. (2013), which uses visual

inference to conduct hypothesis testing. In our case, we test the null hypothesis that the original datasets

come from the calibrated DGPs. Specifically, we present one graph of the original data randomly placed

among 19 graphs from datasets drawn from the corresponding DGP. The goal is to identify the true dataset

by choosing the graph that least resembles the others. If the viewer does not select the original graph, then

we cannot reject the null hypothesis. Under the null hypothesis, the probability of identifying the graph

produced from the original data (or the type I error probability) among the 19 simulated datasets is 5%

(1/20) for a single reader. For our lineup protocol, each graph is a binned scatter plot using the MV bin

selector. We present two examples in Figure 4.

Based on visual testing among the authors, we cannot identify the graph from the true data for eight out

of our 11 DGPs, which supports the idea that our DGPs approximate the original datasets well. For three
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DGPs, however, there is an obvious difference, as exemplified by DGP3 in the right panel of Figure 4. All

three “fail” seemingly because of the misspecification of the variance structure of the error term u. Recall

that we specify u as being i.i.d. across observations and homoskedastic. But in the right panel of Figure

4, for example, the running variable is time, and there is positive serial correlation in the outcome. As a

consequence, the outcome variability in the binned scatter plot is understated when u is assumed to be i.i.d.

Nevertheless, we adhere to the i.i.d. specification because it is standard in Monte Carlo exercises to evaluate

RD estimators and inference procedures.

Another caveat of our DGP specification is that using global quintic regressions can lead to overfitting,

the same issue that has brought forth the warning by Gelman and Imbens (2019) against using high-order

global polynomial regressions to estimate RD treatment effects (see Pei et al., Forthcoming for related

discussions on the order of local polynomial regressions). We acknowledge this potential drawback of using

quintics as some of our graphs indeed feature high variation in the tails. That said, the lineup protocol we

adapt offers a novel and transparent method to evaluate our DGP specifications, and we find our inability to

distinguish the real data from those drawn from one of our DGPs in a majority of cases reassuring. To further

assuage the concerns regarding our DGP specification, we carry out a supplemental phase of experiments to

gauge the sensitivity of visual inference to alternative DGP specifications. In Appendix C, we demonstrate

the remarkable robustness of our results to using local linear estimates as an alternative to model the CEF

(and allowing for heteroskedasticity), which is much less likely to overfit.

3.3 Non-Expert Experiments

In our randomized experiments, we present non-expert participants with binned scatter plots made from

our DGPs and ask them to classify the graphs as having a discontinuity or not. We conduct five phases of

computer-based experiments online through the Cornell University Johnson College’s Business Simulation

Lab. Our subject pool consists of current and former Cornell students, Cornell staff, and non-student local

residents with an expressed interest in focus groups or surveys. Although these educated laypeople are not

the primary audience for academic research, RD graphs are sufficiently transparent that they are featured in

popular media articles in publications such as The New York Times, The Washington Post, and The Atlantic

(Dynarski, 2014; Sides, 2015; Rosen, 2015), suggesting the participants in our sample should be capable of

interpreting the graphs.
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3.3.1 Experiment Design

Before the experiment, participants watch a video tutorial explaining how the graphs are constructed.6 We

do not instruct participants on how to make their decisions, e.g. whether only to look at points near the cutoff

or mentally to trace out the CEF. The video contains an attention check with a corresponding question later in

the experiment to ensure that subjects pay attention to the instructions. After the video, participants complete

a series of interactive example tasks and receive feedback on their answers. As part of the instructions, we

tell participants explicitly that all, some, or none of the 11 graphs they classify may feature a discontinuity.

In each phase of the experiment, we present participants with a series of RD graphs using data gen-

erated as described in Section 3.2. Participants see two graphs with zero discontinuities, one each of

±0.1944σ ,±0.324σ ,±0.54σ ,±0.9σ , and one of either 1.5σ or −1.5σ . Participants see one graph from

all 11 DGPs in a randomized order. We have up to 88 participants per treatment arm, and every graph we

generate is seen by only one participant. For each graph, we ask participants whether they believe there is a

discontinuity at x = 0.

Because running an experiment with 25 = 32 treatment arms is infeasible with our resources, we conduct

our experiment in phases, testing only a few treatments in each phase. Table 1 details the timeline of the

experiments and lists the graphical parameters we test and hold fixed for various experimental phases. In

phase 1, we test both bin width and axis scaling options. In phase 2, we test bin widths and bin spacings.

In phase 3, we test imposing fit lines and a vertical line at the treatment threshold. Based on the results

from these three phases, in which only bin widths and fit lines have major impacts, phase 4 tests all four

combinations of those two treatments together.

The experiments are programmed in oTree (Chen, Schonger, and Wickens, 2016) and pre-registered at

the AEA RCT registry (Korting et al., 2019a) and the Center for Open Science’s OSF platform (Korting

et al., 2019b). The study takes participants approximately 15 minutes to complete.

3.3.2 Participant Compensation and Bonus Schemes

Participants receive a base pay of $3 for being in the experiment. To stimulate participant engagement

and elicit participants’ confidence in their response, participants can choose, for each graph they classify, a

bonus that is either based on a monetary wager which pays 40 cents if their judgment is correct but nothing

6The video tutorial is available at https://storage.googleapis.com/rd-video-turial/rd_video_tutorial.mp4.
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otherwise, or a fixed payment of 20 cents irrespective of their performance. We do not give participants

real-time feedback on either the accuracy of their responses or their cumulative earnings but do report

total earnings and the final tally of correct classifications after a short exit survey soliciting demographic

information and comments at the very end of the experiment.

In the remainder of this section, we analyze a participant’s bonus choice, which we use to estimate

her confidence in discontinuity classification and calculate the AS risk in Section 4.1.1. First note that

participants will choose a classification if and only if their perceived probability that the classification is

correct (β as defined in Section 2.2) is at least 50%. Denoting the utility function by v, the expected

utility under the wager is given by βv($0.4)+ (1− β )v($0), which is equal to βv($0.4) if we normalize

v($0) to zero. Expected utility maximizing participants will choose the sure amount whenever βv($0.4)6

v($0.2), i.e. whenever β ∈ [0.5,v($0.2)/v($0.4)]. A risk neutral subject (with a linear utility function)

would therefore only choose the sure amount when they believe their chance of being correct is exactly 0.5

and choose the wager as soon as their confidence exceeds 0.5. If the distribution of β is continuous, then

few should choose the risk-free payment scheme. In the data, however, we see a number of people choosing

the risk-free payment scheme.

An alternative behavioral model that is consistent with the observed bonus choices is loss aversion.7 In

this case, the utility function is replaced with a value function for gains and losses with respect to a reference

point, and loss aversion is governed through a parameter λ > 1 multiplying outcomes in the loss domain.

In the context of our wager, the sure option of 20 cents serves as a natural focal point to participants, so

we consider the simple loss aversion framework put forward by Kahneman and Tversky (1979) assuming a

fixed reference point of 20 cents. That is, participants would consider the gamble as an opportunity to win

20 cents or lose 20 cents relative to this reference point depending on their answer.

The expected payoff of the wager in this case is given by βv($0.2)− λ (1− β )v($0.2), compared to

zero under the fixed payment option. Participants choose the wager whenever β > λ/(1+λ ). Therefore,

for a given value of λ , a player’s bonus choice indicates the interval in which β falls, which we can use to

approximate the communication risk by Andrews and Shapiro (2021). Brown et al. (2021) conduct a meta-

analysis of 607 empirical loss-aversion estimates across 150 studies and find that the average coefficient

λ lies between 1.8 and 2.1. For simplicity, we abstract away from heterogeneity in λ and assume a loss-

7In principle, we can model risk aversion instead, but Rabin and Thaler (2001) and O’Donoghue and Somerville (2018) show
that risk aversion over small stakes such as those in our wager implies implausible choices at higher stakes.
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aversion parameter of λ = 2 throughout our analysis.

3.4 Expert Study

In addition to our non-expert experiment, we conduct a study with researchers in economics and related

fields who work on topics that often employ RDDs. We collect data at three technical social science seminars

and online by contacting randomly selected members of the NBER in applied microeconomic fields (aging,

children, development, education, health, health care, industrial organization, labor, and public) and IZA

fellows and affiliates. After removing a total of six responses from participants who completed the survey

more than once, did not provide a valid email address for payment, or were not part of our recruited sample,

we are left with 143 expert responses.

This expert study allows us to answer two questions. First, how do classification accuracy and the

impacts of graphical techniques differ between experts and non-experts? And second, can experts correctly

predict which graphing options perform best for our non-expert sample? This second question speaks to

experts’ ability to predict which visualization choices are best suited for interpretation by a lay audience.

Because the success of a graphical technique ultimately lies in the reader’s correct perception of graphs using

it, it is important to understand whether experts’ intuition regarding the relative advantages and drawbacks

of alternative representation choices aligns with the evidence we find in practice. In related work on experts’

ability to predict non-expert performance, DellaVigna and Pope (2018) find that economic experts are better

than non-experts at estimating the effect of alternative incentive schemes on performance in a real effort

task, but perform similarly to non-experts in terms of a simple ranking of incentive schemes.

Our expert study consists of two parts. The first is similar in structure to the non-expert experiment.

Participants see a series of RD graphs and are asked to classify them by whether they have a discontinuity.

To assess the accuracy of point estimates in addition to binary classifications of discontinuities, we also ask

participants for an estimate of the discontinuity magnitude whenever they report a discontinuity. Due to

sample size limitations, we do not randomize graphical treatments in the expert study, and all participants

see graphs with equally spaced bins, no fit lines, default axis scaling, and a vertical line at the treatment

threshold. All expert graphs use small bins, except for one seminar where participants see large bins. Four

randomly selected participants receive a base payment of $450 plus a bonus payment of $50 per correct

discontinuity classification. The bonus payment does not depend on the accuracy of the magnitude estimate.

The second part of the expert study asks about experts’ preferences and their beliefs regarding non-
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expert performance across alternative graphical parameters. We present experts with three discontinuity

magnitudes: 0, 0.54σ , and 1.5σ . For each magnitude, we present four graphs using the same underlying

data, one for each combination of bin width and fit lines. We show graphs from the DGP where visual

inference performs most closely to the average over all DGPs and randomize graph treatment order between

participants. At each magnitude, we ask the experts to indicate which of the four treatment options they

prefer and which of the four treatment options they believe perform best and worst in our non-expert sample.

To evaluate the experts’ predictions about non-expert performance, we run an additional non-expert phase 4

in which we test all four treatments simultaneously across subjects.

4 Results

4.1 Non-Expert Experiment Results

For each combination of graphical parameters in all phases of the experiment, we compute power functions

based on participants’ classifications of graphs as having or not having a discontinuity. Using notation from

Section 2, a DGP-specific power function represents the estimates p̂(γ,g,d) for graphical parameters γ and

DGP g across different levels of discontinuity d. An overall power function represents the estimates ˆ̄p(γ,d).

The intercept of a power function indicates the type I error rate as defined in Section 2. At all other

discontinuity magnitudes, the power function represents the proportion of graphs with discontinuities that

participants classify correctly, which can be interpreted as one minus the type II error rate when the DGP

is chosen uniformly randomly from the 11 possibilities. A desirable inference method has a small intercept

before quickly rising to achieve a low type II error rate. Plots of the overall power functions for each phase

are shown in Figure 5, while Figure A.1 plots the corresponding DGP-specific power functions. The x-axis

in these graphs is the magnitude of the discontinuity divided by the DGP-specific σ . This normalization fa-

cilitates aggregation and comparisons across DGPs, which then have six identical discontinuity magnitudes:

0, 0.1944, 0.324, 0.54, 0.9, and 1.5. Estimated effects on visual inference are in Tables A.1-A.5. Because

we effectively adopt stratified randomization in the design of our experiments as described in Section 3.3.1,

where each of the 11 strata is determined by the DGPs seen for every discontinuity magnitude, we obtain

these estimates by regressing the participants’ responses on treatment indicators and stratum fixed effects.

Phase 1 of the experiment tests the four combinations of the bin width treatments (large IMSE-optimal

bins and small MV bins) with the y-axis scaling treatments (the default in Stata 14 and double that range).
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Comparing power functions, large bins have significantly higher type I error rates relative to small bins.

While both small bin treatments lead to a type I error rate of approximately 5%, the large bins have a type I

error rate of around 20% to 25%. The large bins have a type II error advantage over the small bins, which

is at least partly driven by its higher type I error rate, but power functions converge as the discontinuity

magnitude increases. In contrast to bin widths, axis scaling has little effect on participant perception. Based

on this result, we use Stata’s default scaling for all subsequent phases.

In phase 2, we again test the two bin width treatments, this time interacted with the two bin spacing

treatments: even spacing and quantile spacing. Note that large bins and small bins with even spacing appear

in both phases 1 and 2. With this design, we can gauge the stability of visual inference across different sam-

ples from the non-expert population, and it is encouraging to see the results for these two treatments being

virtually identical across phases. Comparing the power functions for these repeated treatments with their

new quantile-spaced versions, we see that evenly-spaced and quantile-spaced bins perform very similarly.

We conclude that bin spacing has a small or null effect on visual inference for the DGPs we test.

Phase 3 tests three treatments: the inclusion of a vertical line at the treatment threshold with and without

polynomial fit lines and the omission of both the vertical line and fit lines. We find that the vertical line at

the cutoff makes little difference in perception. Fit lines, on the other hand, appear to increase type I error

rates in this phase, in line with a common concern that they may be overly suggestive of discontinuities.

Jointly, these three phases of experiments suggest that the presence of fit lines and the bin width choice

have the largest impact on visual perceptions of discontinuities. We therefore base our analysis of expert

preferences and expert predictions about non-expert performance on the interaction of these two treatments

and run a final phase of experiments, phase 4, directly comparing the four possible treatment combinations.

Interestingly, while the effects of bin width choice are once again robust across phases, the effects of fit lines

are more muted in this phase. In particular, the treatment with small bin and fit lines has a type I error rate

of only 0.052 in phase 4 but 0.175 in phase 3. This finding suggests that we cannot conclude that fit lines

unequivocally result in an increase in type I errors, but that they do add uncertainty to visual inference.

We provide additional results in Appendices E and F. Appendix E includes evidence for the balance

of covariates across treatment arms and the measurement of predictive power of demographic and DGP

characteristic variables on visual inference performance. Appendix F examines how large the t-statistics

need to be for readers to visually detect a discontinuity.
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4.1.1 Graphical Method Recommendation

In this section, we provide a recommendation to practitioners on the choice of graphical method in RDD. We

arrive at our recommendation by empirically implementing the two decision theoretical frameworks from

Section 2.2, which synthesize our experimental results.

First, we estimate the overall classical risk of each graphical method. For a given d, the risk R̄(γ,d)

is a simple transformation of the type I or type II error probability and is effectively summarized by the

power functions presented in Figure 5. To facilitate the risk comparisons across γ , however, we will need to

aggregate the information in each power function across d. Formally, as mentioned in Section 2.2, this task

requires the specification of the type I and type II error cost parameters—κ and ϕ , respectively—and a prior

on d that represents the probability of encountering a graph with a certain discontinuity level. Because their

choices involve subjective judgement, we present results under different scenarios, and our power functions

also allow researchers to estimate the risks with their preferred specification of these quantities. For the

cost parameters, we normalize ϕ to 1 (only the ratio of the cost parameters matters for comparing risks)

and try both the baseline case of κ = 1 and a benchmark used by Kline and Walters (2021), κ = 4. For

the prior on d, we adopt the uninformative prior that it is equally likely to encounter a continuous graph

as a discontinuous graph, but there is still the question of how to incorporate the type II error rates across

different discontinuities. In our main estimates presented in Table 2, we use the type II error rate at 0.324σ ,

the modal (and median)—and therefore the most likely—discontinuity level among the subset of the 11

papers that report a significant discontinuity. In Appendix Table A.6, we also present risk estimates by

simply averaging the type II error rates across the five different nonzero discontinuity levels, which lead to

the same recommendation.

When weighting type I and II errors equally, the classical risks are fairly similar across treatments. In

fact, no risk is statistically significantly different from that of the benchmark small bins/no fit lines treatment

(in bold) repeated across experimental phases. When penalizing type I errors more in the κ = 4 calculations,

the benefit of the low type I error rate of the benchmark treatment is more evident. The benchmark treatment

has the lowest risk in two of the four phases (phases 2 and 3) and the second-lowest in the other two, where

the differences with the best performer are not statistically significant. Further, the large bin treatments in

the three phases where they appear (phases 1, 2, and 4) have statistically significantly higher classical risks,

as does the fit lines treatment in phase 3.
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Second, we estimate the AS communication risks per Andrews and Shapiro (2021). To do this, we need

to measure the perceived probability of being correct, β , for each participant-graph combination. As noted

in Section 3.3.2, a participant’s bonus scheme choice provides information on β . Assuming a loss aversion

parameter of 2, β falls into the interval (2/3,1) if the participant chooses the ($0.4,$0) wager, and it falls

into (1/2,2/3) if she chooses the risk-free ($0.2,$0.2) option. For the estimates of the AS risk we present,

we simply approximate β by the midpoint of the two intervals, and the resulting averages of β lie between

7/12 and 5/6. We plot these values in Figure A.2 with inference on the differences across treatment arms

in Tables A.7 through A.10. We note that the midpoint approximation is coarse and may underrepresent

the true curvature in Figure A.2—the average β at the highest and most obvious discontinuity magnitude is

likely very close to one as opposed to 5/6. We use it because it is a common way of handling interval data

and because it amounts to a transparent linear combination of the fractions of the two bonus scheme choices,

leading to a single interpretable quantity. We have also tried alternative functional forms for the underlying

distribution of β and reach similar conclusions.

Approximating β using participants’ bonus scheme choices allows us to estimate the AS risk R̄AS(γ,d)

for each (γ,d) combination. But we still need to aggregate across d so that we can compare the overall risks

across γ . We simply proceed with the same weighting scheme as with our classical risks.

We present these results in the bottom half of Table 2, and the repeated benchmark small bins/no fit lines

treatment (in bold) again performs well. When giving the same weight to the AS risk at zero and nonzero

discontinuities, the benchmark treatment has the lowest risk in phase 2 and the second-lowest in phases 1,

3, and 4. With greater weights at zero discontinuity, it has the lowest risk in phases 1 and 2. As with the

classical risks, no treatment achieves a statistically significantly lower AS risk than small bins/no fit lines,

and many are significantly outperformed in either weighting scheme.

To summarize, we find that the graphical treatment of small bins, no fit lines, even spacing, default

y-axis scaling, and a vertical line at the policy threshold consistently performs well, as measured by both

the classical and AS risks, in all phases of our experiment. This particular method, therefore, can serve as

a sensible default for generating RD graphs. Of the five graphical parameters, bin spacing, y-axis scaling,

and the presence of the vertical line do not appear to matter much, allowing researchers to use reasonable

discretion. The other two parameters are much more important, and the use of small bins and no fit lines is

key for good visual inference performance. Finally, we emphasize that our recommendation is not intended

as a doctrine that practitioners must abide by. We are limited to the 11 DGPs we test. In addition, as
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described in Appendix A.3, there is an ad hoc element in the construction of small bins. In fact, we prefer

(quantile-spaced) large bins ourselves in the regression kink design experiments in a previous working paper

Korting et al. (2020), where the sample sizes are much larger than for our RD DGPs. In this regard, we view

our recommended graphical method as a sensible starting point based on the best evidence we have. An

equally important takeaway is the value in documenting the robustness of graphical evidence given our

finding of divergent visual inferences under commonly used methods.

4.2 Expert Study Results

Most expert participants (95 out of 143) saw graphs generated with our preferred method as discussed

above. We plot in Figure 6 the expert power functions against those of the non-experts who saw the same

graphs. When comparing expert and non-expert performances, we use solid (hollow) markers to indicate

that the point is (not) statistically significantly different from the reference curve, and present plots of the

corresponding 95% confidence intervals (created here with the large sample approximation described at the

end of Appendix A.1 and by assuming independence between the experts and non-experts) in Figure A.29.

The two groups perform similarly, with experts having a slightly higher type I error rate (approximately 8%

to the non-expert 5%) and a slightly lower type II error rate. The only statistically significant differences are

for the experts’ marginally lower type II error rates at the 0.1944 and 0.324 discontinuities.

In addition to the aforementioned treatment, we show experts in one seminar pool (48 out of 143) graphs

using the large bins and no fit lines treatment. The two groups again perform similarly, and the expert and

non-expert power functions are not statistically significantly different anywhere. Both groups have type I

error rates well above their corresponding small bin rates. That is, experts also do worse when viewing

graphs constructed with large bins.

4.2.1 Expert Preferences and Predicting Non-Expert Performance

We present experts’ preferences and their beliefs about non-expert performance across the four considered

treatments in Figure 7. When asked about graphing options for the main graph of a paper that conveys the

treatment effect, most experts report preferring small bins, usually with fit lines. These results hold at all

three discontinuity magnitudes considered, including zero. Experts’ predictions about the most effective

treatments for non-experts tend to mirror their preferences. By a large margin, experts believe small bins
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with fit lines to be the most efficacious treatment for non-experts at all discontinuity magnitudes. Conversely,

most experts view large bins without fit lines least favorably in the context of non-expert performance.

Comparing the expert predictions to our experimental data from phase 4, we find substantial discordance

for the effects of bin width choice on non-expert classification accuracy. The best- and worst-performing

treatments at each discontinuity magnitude have + and - signs, respectively, in Figure 7. The actual power

functions are shown in Figure 5 (Figure A.3 shows the power functions based only on DGP9 which was used

in the example graphs shown to experts in the second part of the expert study.) While a majority of experts

correctly identifies the bin width treatment with lowest type I error rates (i.e. most experts prefer small bins

at the zero discontinuity level, either with or without fit lines), there is also significant expert support for

the large bin with fit lines treatment, even when there is no discontinuity, which exhibits the greatest type I

error rate in our sample. In addition, experts fail to predict the type I vs type II error tradeoff presented by

the bin width choice: most experts expect large bins to perform worst even at large discontinuities, while

we find this treatment arm has the lowest type II error rates in those cases. Although in the actual power

functions, the effects of bin width are much more pronounced than the effect of fit lines, we find more expert

disagreement regarding non-expert performance along this dimension. We also find expert predictions to be

similar whether their own visual inference performance is above or below the median.

4.3 Visual versus Econometric Inference

In this section, we compare the performances of visual inference from our small bin expert sample with

various econometric RD procedures. We present both the overall power functions and the difference between

visual and econometric inferences for each econometric procedure. For a fair comparison, we base the

estimators’ power calculations on their rejection decisions over the same set of datasets underlying the

graphs seen by the experts. That is, the estimators “see” the same data as the experts, preventing differences

driven by variation in sampling from the same DGP.

As a benchmark, our first estimator comes from a correctly specified model: a global piecewise quintic

regression with homoskedastic standard errors. The power function for the corresponding 5% test compared

with human performance is presented in the left panel of Figure 8. We again use solid (hollow) markers to

indicate that the difference to the comparison power function is (not) statistically significant, and provide

plots of the differences in Figure A.30. We additionally include in Table 3 type I and II error rates (the latter

at both |d|= 0.324σ and averaged across nonzero discontinuities) for visual and econometric inferences.
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Next, we implement the IK, CCT, and AK inference procedures, again plotting the corresponding power

functions in the left panel of Figure 8. All three procedures build upon local linear regressions but take

different approaches to conduct inference.

Strictly speaking, Imbens and Kalyanaraman (2012) do not study inference but propose an MSE-optimal

bandwidth selector, the IK bandwidth:

ĥ =CIK ·
(

σ̂2(0+)+ σ̂2(0−)
f̂ (0) · (µ̂(2)(0+)− µ̂(2)(0−))2 + r̂

)1/5

·N−1/5

where CIK is a constant determined by the kernel, f (·) is the density of the running variable, µ(2)(0±) and

σ2(0±) represent the second derivatives of the CEF and conditional variance on both sides of the threshold,

r is a regularization term to prevent very large bandwidths, and the hats on the various quantities indicate

that they are estimated. We refer to the “conventional” (terminology from Calonico et al., 2014) inference

procedure practitioners typically implement in conjunction with the IK bandwidth as the “IK” inference

procedure. Specifically, letting τ denote the true RD parameter and τ̂ the local linear estimator, we have

√
Nh(τ̂− τ−h2B)⇒ N(0,Ω).

B is the asymptotic bias constant, which is a function of the second derivatives of the CEF on both sides

of the threshold. Even though the normal distribution is centered around the constant τ +
√

Nh5B when

h shrinks at the optimal rate h = O(N−1/5) (as is the case for IK), “conventional” inference ignores the

bias term
√

Nh5B. As seen in the left panel of Figure 8, the IK procedure achieves even lower type II

error rate than the piecewise quintic estimator, and is significantly better than visual inference at detecting

discontinuities up to 1.5σ . But with this advantage in type II error rate comes a significant disadvantage in

type I error rate. When there is truly no discontinuity, the estimator still rejects the null hypothesis in 22.6%

of datasets.

Third, we assess the performance of the inference procedure proposed by Calonico et al. (2014) (CCT)

as implemented in the rdrobust Stata, R, and Python packages. This procedure differs from IK and creates

robust confidence intervals by estimating the bias B using another (“pilot”) bandwidth b, creating a bias-

corrected estimator τ̂bc = τ̂−h2B̂, and accounting for the sampling variation in B̂ under the unconventional

asymptotics where h/b converges to a positive constant. Calonico et al. (2014) also generalize IK and

propose a new class of MSE-optimal bandwidth selectors.8 Note that although CCT’s type I error rate is

8While the CCT bandwidth remains the default and modal choice of rdrobust, new work by Calonico, Cattaneo, and Farrell
(2020) proposes inference-optimal RD bandwidth selectors. As seen in Figure A.4, using these bandwidths reduces the excess type
I error rate relative to visual inference.
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approximately 12.5%, as seen in the left panel of Figure 8, this could be a “small sample” problem. As

mentioned in Section 3.4, we effectively have 88 datasets modulo the discontinuity level for the expert

study. In a separate Monte Carlo simulation with 1,000 draws, the type I error rate is in line with that of

the experts at 7.0%. However, it is possible that the type I error rate of visual inference also decreases

over graphs based on these alternative datasets—the realization of the disturbance term can impact both

econometric and visual inference—and therefore we keep the comparison based on the datasets the experts

saw. The CCT inference procedure achieves lower type II rates, enjoying a significant 15 to 20 percentage

point advantage over expert visual inference at intermediate discontinuity levels.9

Finally, we apply the AK inference procedure from Armstrong and Kolesár (2018) and implemented

in the R package RDHonest, which adapts Donoho (1994) and produces asymptotically valid and minimax

(near-)optimal confidence intervals over the Taylor class of conditional expectation functions{
µ± : |µ±(x)−µ

′
±(0)x|6CT |x|2 for all x ∈ χ±

}
.

χ± is the support of the running variable on two sides of 0, and CT is a researcher-supplied bound on

the second derivatives. CT is the key tuning parameter and dictates the bias magnitude of a local linear

estimator—unlike CCT, AK’s bias correction is nonrandom. Using the default rule-of-thumb procedure in

the RDHonest package to estimate the tuning parameter, the AK inference has a type I error rate of approx-

imately 6%, and the power function is very close to that of the experts.10 Given the minimax optimality of

AK, the comparable performance of visual inference is remarkable. However, it is worth emphasizing that

although they have approximately the same average type I error rate, AK offers a theoretical guarantee to

control the (asymptotic) type I error rate for all DGPs in the Taylor class while visual inference does not.

In Appendix Figure A.5, we present additional power functions where we impose our knowledge of the

DGP. In particular, we use the theoretical MSE-optimal bandwidth for IK, this bandwidth and the theoretical

asymptotic estimator bias for CCT, and the true second derivative bound for AK (because we specify the X-

9One may be concerned that visual inference’s lower type I error rate is a consequence of our experimental design where
the majority (nine out of 11) of graphs feature a discontinuity. If subjects speculate that only about half the graphs feature a
discontinuity, our type-I-error-rate result is biased in favor of visual inference. As mentioned in Section 3.3, we explicitly tell
participants that “all, some or none of the 11 graphs you see in this survey may feature a discontinuity,” and we present evidence
against this bias in Appendix E.3, where we test dynamic visual inference.

10Armstrong and Kolesár (2020) propose analogous confidence intervals that maintain coverage and enjoy minimax optimality
over a Hölder class of functions, which is determined by a global, as opposed to local, bound on the second derivative of the CEF.
Though not presented here, we find the corresponding power functions to be similar. Like Armstrong and Kolesár (2018, 2020),
Imbens and Wager (2019) also adapt the idea of Donoho (1994). They propose an RD estimator through numerical optimization
that is minimax mean-squared-error optimal over CEFs with a global second derivative bound. Because the corresponding inference
procedure performs similarly to Armstrong and Kolesár (2018) in simulations by Pei et al. (Forthcoming) in their 2018 working
paper version and can be computationally demanding, we do not implement the Imbens and Wager (2019) procedure here.
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distribution as the empirical running variable distribution from the published study, we need to estimate its

density at 0 in computing the theoretical MSE-optimal bandwidth, and it is the only quantity we estimate).

While the AK result is similar to when we use the estimated turning parameter (it is possible that our quintic

specification is friendly to the rule-of-thumb estimator, which relies on a quartic regression), the IK type

I error rate is considerably lower, leaving little for CCT to improve upon. Although the theoretical MSE-

optimal bandwidth is still “too large” based on its N−1/5 rate of shrinkage, the driving force of IK’s high

type I error rate appears to be the noisy estimates of the constants in the bandwidth formula (similar patterns

also emerge from the simulation results in Calonico et al., 2014).

The IK and CCT inference procedures at the 5% level exhibit higher type I and lower type II error

rates than visual inference. We can circumvent this tradeoff by adjusting their type I error rate to the level

of visual inference: we search for alternative critical t-values such that the resulting type I error rate of

the econometric inference procedure is equal to that of visual inference and then use those critical values to

conduct inference. For IK, this critical t-value is 2.46, and it is 2.28 for CCT. We present the results for these

type-I-error-rate-adjusted inference procedures in the right panel of Figure 8, with the differences between

these procedures and expert visual inference in Figure A.31. Despite the extent of their differences in type

I error rates relative to visual inference, both econometric procedures’ type II error rates only increase by

around 5-10 percentage points from this adjustment and are still significantly lower than those of visual

inference at moderate discontinuities.

In addition to asking experts to classify graphs as having or not having a discontinuity, we ask them to

estimate the magnitude of the discontinuity. We take several steps to make human and econometric point

estimates comparable. Because we ask participants to round their estimates to the nearest hundredth, we

round estimators with the same precision. We similarly replace econometric estimates with 0 when the test

fails to reject the null hypothesis.

Figure 9 presents the root mean squared error (RMSE) of each estimator’s point estimates by DGP,

averaged over all discontinuity magnitudes. We do this by DGP to prevent scaling issues, as units for each

DGP are different and results from one DGP are not directly comparable to those from another. Although

there are a handful of DGPs where experts perform similarly to the econometric estimators, their point

estimates generally have a greater RMSE than the estimators, and experts overall are worse at estimating

magnitudes. Specifically, IK has a lower RMSE than visual inference for every single DGP, which is driven

by the variance component of the MSE in a majority of cases as shown in the right panel of Figure 9, (we
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leave the details of the decomposition of their MSE differences to Appendix A.4). In summary, although

the average human performs quite well at identifying the existence of discontinuities, her ability to estimate

their magnitude is not as strong.

4.3.1 The Complementarity of Visual and Econometric Inferences

Thus far, we have studied the “marginal” power functions for visual and econometric inferences. In this

section, we use the joint distribution of visual and econometric discontinuity tests to examine their comple-

mentarity and explore the performance of a simple combined visual-econometric inference procedure.

First, we examine the joint distribution of visual and econometric inferences to see whether they tend to

agree on the same data. For each discontinuity magnitude, we characterize the joint distribution of visual

and econometric classifications in the form of a two-by-two contingency table. We conduct Fisher’s exact

test for independence and present one-sided p-values in Table 4 by discontinuity magnitude and for each

econometric method. We report one-sided p-values because two-sided p-values are method-dependent due

to the ambiguity in classifying contingency tables as extreme in the opposite direction (see for example

Agresti, 1992). In principle, we could also report correlations between inferences, but they may be hard to

interpret: because of the binary nature of the classification variables, the maximum of the standard correla-

tion measure depends on the marginal distributions of the classifications (for example, if their probabilities

of rejecting no discontinuity are not identical, then their correlation cannot be 1), which vary across dis-

continuity levels and by econometric methods. Although we can follow the proposals by Cohen (1960) and

Davenport and El-Sanhurry (1991) and present correlations scaled relative to their maximum as determined

by the marginal distributions, we omit them for brevity.

Two patterns emerge from Table 4. The first row shows no strong support for an association between

visual and econometric classifications when the true discontinuity is zero. But when the true discontinuity

is nonzero (rows two to six), there appears to be strong evidence in support of association (though not

reported in Table 4, all correlations are positive in these cases). In other words, type II errors by experts are

predictive of type II errors by various econometric inference methods, but this is not true for type I errors,

which highlights the complementarity of visual and econometric inferences.

Second, we illustrate this complementarity more concretely by studying the performance of a particular

combined visual-econometric inference procedure. It infers a discontinuity if and only if both the visual and

econometric procedures reject no discontinuity. As a referee suggests, many researchers may already use
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this procedure informally when reading or writing RD papers.

We plot the resulting power functions in the top panel of Figure 10, along with the power function of

the AK procedure for comparison. Because of the lack of dependence between visual and econometric

classifications when d = 0, the combined inferences achieve lower type I error rates than either of the

individual inference types. On the other hand, the same mechanism pushes type II error rates higher, but the

positive associations between the classifications when d 6= 0 help limit their increase.

In fact, the power function of the combined visual-IK inference procedure is fairly close to that of

AK. The bottom panel of Figure 10 presents the difference between the two. Despite the limitations of

the IK procedure with a type I error rate above 20% as shown before, the IK-expert hybrid has a type I

error rate of 2.6% while not performing statistically significantly differently from AK at any of the nonzero

discontinuity levels. This finding helps to explain the enduring credibility of RDDs despite potential issues

with the econometric inference method used prior to CCT and AK. It also suggests that the de facto type I

error probability may be lower than intended if researchers informally combine different statistical evidence

instead of relying on a single econometric inference result, a point that deserves attention in future research.

5 Conclusion

This paper studies visual inference and graphical representation in RD designs via crowdsourcing. Through

a series of experiments and studies that recruit both non-expert and expert participants, we provide answers

to two sets of questions. First, how do graphical representation techniques affect visual inference and which

technique should practitioners use? And second, when presented with well constructed graphs, how does

visual inference perform compared to common econometric inference procedures in RDDs?

To answer the first set of questions, we experimentally assess how five graphical parameters impact

visual inference accuracy. We find that generating graphs with the Calonico et al. (2015) IMSE (large)

bin selector leads to higher type I error rates but lower type II error rates relative to their MV (small) bin

selector. Imposing fit lines can have a similar effect as using large bins, confirming the worries by Cattaneo

and Titiunik (2021a,b). Implementing the decision theoretical frameworks that build on Kline and Walters

(2021) and Andrews and Shapiro (2021), we recommend the use of small bins and no fit lines as a sensible

starting point in practice. Bin spacing, a vertical line at the policy threshold, and y-axis scaling have little

effect, implying that researchers can adhere to reasonable preferences.

31



For the second set of questions, we find that visual inference performs competitively on graphs con-

structed with the recommended method. It achieves a lower type I error rate than econometric inference

at the 5% level based on the Imbens and Kalyanaraman (2012) and Calonico et al. (2014) methods (the

difference between the visual and CCT type I error rates is not statistically significant), though the two

econometric inference procedures offer considerable type-II-error advantages. The performance of visual

inference is very similar to that based on the procedure suggested by Armstrong and Kolesár (2018). Fur-

thermore, visual and econometric inferences appear to be complimentary. Through the analysis of the joint

distribution of visual and econometric tests we find that, while they commit similar type II errors, there does

not appear to be a strong association in their type I errors.

Our study is subject to several important limitations. The first limitation is the restricted set of param-

eters we are able to experimentally test. As mentioned above, we do not impose fit lines with confidence

intervals in our graphs, which researchers sometimes do, due to the difficulty in explaining it to non-expert

participants. We also do not vary the size and color of the dots. However, these choices may impact inference

due to their effect on visual attention and visual complexity as suggested by the literature on the psycholog-

ical and neurological mechanisms underlying the processing of (visual) information (Hegarty, Canham, and

Fabrikant, 2010; Kriz and Hegarty, 2007; Rosenholtz, Li, and Nakano, 2007; Wolfe and Horowitz, 2004).

We leave these investigations to future work.

Second, our results are based on a specific set of DGPs. For example, while the bin spacing choice—

equally spaced or quantile spaced—appears immaterial in our experiments, it could be important when

the distribution of the running variable is farther from uniform than in our DGPs. On the other hand, the

number of DGPs used in Monte Carlo simulations that lead to methodological recommendations is typically

far lower than our 11, and those DGPs sometimes bear no semblance to real-world data. In addition, we

test the validity of our simulated datasets by adapting the lineup protocol from Majumder et al. (2013) to

assess the degree to which our DGPs approximate the original data, and we document the robustness of our

experimental results to alternative DGP specifications.

And third, the mechanism of RD visual inference remains elusive. In a previous working paper (Korting

et al., 2020), we reported the results from an eyetracking study, in which we sought to identify eyegaze pat-

terns (e.g., “visual bandwidths”) that robustly predict visual inference success. Had the predictive patterns

emerged from the eyetracking study, we would have followed up with additional experiments, in which we

instruct a random subset of the participants to focus their visual attention according to our finding. But we
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were not able to identify predictive ocular patterns and could only conclude that the processing of visual

signals, as opposed to where in a graph participants looked, drove visual inference success. A next step

toward better understanding the mechanism is to systematically study the types of DGPs for which visual

inference performs well and poorly.

These limitations notwithstanding, our study answers the call by Leek and Peng (2015) to provide em-

pirical evidence on best practices in data analysis, and our approach can find applications in other important

areas. We have conducted analogous experiments to study visual inference and graphical representations

in RKDs using DGPs based on Card, Lee, and Pei (2009), Card et al. (2015a), and Card et al. (2015b)

(Ganong and Jäger, 2018 also discuss RK visual inference, albeit informally). Interested readers can consult

our previous working paper (Korting et al., 2020) for our nuanced findings. Another related topic to study

follows the recent work by Cattaneo et al. (2019a), who, among other contributions, propose econometric

tests of linearity and monotonicity based on binned scatter plots, which are motivated by studies such as

Chetty et al. (2011) and Chetty et al. (2014). One could assess the impact of the graphical parameters on

reader perception and compare visual and econometric linearity/monotonicity tests. A third related topic is

structural breaks in time series econometrics, in which graphs serve practically the same purpose as those

in RDD. Finally, within time series econometrics, studying visual inference for unit root/stationarity anal-

ysis may also be promising.11 In an influential textbook, Stock and Watson (2011) conduct an augmented

Dickey-Fuller (ADF) test for the presence of a unit root in U.S. inflation. Upon finding that the test rejects a

unit root at the 10% level but not at the 5% level, Stock and Watson (2011) write “The ADF statistics paint

a rather ambiguous picture. . . Clearly, inflation in [the figure] exhibits long-run swings, consistent with the

stochastic trend model.” In this case, Stock and Watson (2011) apply visual unit root inference when the test

statistic is marginal, which raises the question: can we leverage our eyes to begin with?

11In recent work, Shen and Wirjanto (2019) propose a new framework for stationarity tests, which formalizes the intuition that
a visual characteristic of stationary time series is the infinite recurrence of “simple events” asymptotically.
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Tables and Figures

Table 1: Timeline of Experiments and Graphical Parameters Tested

Phase Holding fixed Treatments Date
# participants

recruited
# completions

Main Phases

1 bin spacing: ES binwidth: large vs small November 13-16, 4*88=352 330 (94%)
fit lines: no # 2018
vertical line: yes axis scaling: default vs 2x default

2 scaling: default binwidth: large vs small February 11-12, 4*88=352 325 (92%)
fit lines: no # 2019
vertical line: yes bin spacing: ES vs QS

3 binwidth: small fit lines: no; center line: yes February 27, 3*88=264 248 (94%)
bin spacing: ES fit lines: no; center line: no 2019
scaling: default fit lines: yes; center line: yes

4 bin spacing: ES binwidth: large vs small October 28-29, 4*88=352 340 (97%)
scaling: default # 2019
vertical line: yes fit lines: yes vs no

Supplemental Phase

5 binwidth: small global quintic vs local linear fit March 10-11, 4*88=352 339 (96%)
fit lines: no # 2021
bin spacing: ES homoskedastic vs heteroskedastic s.e.
scaling: default
vertical line: yes
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Table 2: Risks: Classical and Andrews and Shapiro

(1) (2) (3) (4)
Phase Treatment Type I Error Rate (d = 0) Type II Error Rate (|d|= 0.324σ ) Classical Risk: Equal Weights Classical Risk: 4×Weight at d = 0
1 Small bins/default axes 0.055 0.634 0.688 0.853
1 Large bins/default axes 0.257 0.461 0.717 (0.647) 1.488 (0.000)
1 Small bins/large axes 0.036 0.692 0.729 (0.504) 0.838 (0.835)
1 Large bins/large axes 0.198 0.520 0.718 (0.747) 1.313 (0.002)
2 Small bins/even spacing 0.053 0.648 0.702 0.861
2 Large bins/even spacing 0.306 0.439 0.745 (0.355) 1.663 (0.000)
2 Small bins/quantile spacing 0.088 0.655 0.743 (0.414) 1.008 (0.270)
2 Large bins/quantile spacing 0.211 0.421 0.632 (0.322) 1.264 (0.006)
3 No fit lines/vertical line 0.036 0.659 0.694 0.802
3 Fit lines/vertical line 0.179 0.485 0.664 (0.613) 1.200 (0.010)
3 No fit lines/no vertical line 0.052 0.664 0.716 (0.658) 0.873 (0.487)
4 Small bins/no fit lines 0.073 0.609 0.682 0.900
4 Large bins/no fit lines 0.218 0.379 0.597 (0.174) 1.250 (0.022)
4 Small bins/fit lines 0.054 0.555 0.609 (0.220) 0.769 (0.285)
4 Large bins/fit lines 0.304 0.367 0.671 (0.908) 1.582 (0.000)
Phase Treatment AS Risk (d = 0) AS Risk (|d|= 0.324σ ) AS Risk: Equal Weights AS Risk: 4×Weight at d = 0
1 Small bins/default axes 0.180 0.208 0.388 0.927
1 Large bins/default axes 0.215 0.221 0.436 (0.002) 1.081 (0.000)
1 Small bins/large axes 0.182 0.204 0.386 (0.913) 0.931 (0.924)
1 Large bins/large axes 0.201 0.213 0.415 (0.078) 1.018 (0.024)
2 Small bins/even spacing 0.183 0.214 0.397 0.947
2 Large bins/even spacing 0.226 0.215 0.441 (0.018) 1.119 (0.001)
2 Small bins/quantile spacing 0.212 0.233 0.445 (0.005) 1.081 (0.002)
2 Large bins/quantile spacing 0.229 0.218 0.447 (0.009) 1.134 (0.000)
3 No fit lines/vertical line 0.192 0.210 0.402 0.980
3 Fit lines/vertical line 0.183 0.218 0.401 (0.997) 0.950 (0.510)
3 No fit lines/no vertical line 0.190 0.214 0.403 (0.891) 0.972 (0.882)
4 Small bins/no fit lines 0.198 0.227 0.425 1.017
4 Large bins/no fit lines 0.223 0.217 0.439 (0.397) 1.107 (0.063)
4 Small bins/fit lines 0.192 0.216 0.408 (0.398) 0.984 (0.506)
4 Large bins/fit lines 0.219 0.216 0.435 (0.586) 1.090 (0.134)

Notes: For both the classical and the Andrews and Shapiro risk measures, column (3) is simply the sum of columns (1) and (2); column (4) is equal to four times column (1) plus column (2). Risks

at |d| = 0.324σ are calculated using responses at that discontinuity magnitude, the mode and median of the subset of our 11 DGPs corresponding to papers that report discontinuities. In parentheses in

columns (3) and (4) are the p-values for testing whether the difference in risks relative to the first and benchmark treatment (in bold) within each phase is zero. We obtain the p-values by regressing risks

on treatment indicators and strata fixed effects, where we define the 11 strata by the DGPs seen for every discontinuity magnitude, and conducting inference using the procedure from Bugni, Canay, and

Shaikh (2019) for stratified experiments.
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Table 3: Type I and Type II Error Rates for Expert and Econometric Inferences

Inference Type Type I Error Rate Type II Error Rate: |d|= 0.324σ Average Type II Error Rate: d 6= 0

Experts 0.079 0.537 0.336

Piecewise Quintic 0.068 (0.785) 0.395 (0.003) 0.260 (0.000)

IK 0.226 (0.005) 0.216 (0.000) 0.145 (0.000)

CCT 0.132 (0.252) 0.342 (0.000) 0.219 (0.000)

AK 0.058 (0.585) 0.500 (0.429) 0.321 (0.400)

Notes: The average type II error rate when d 6= 0 weights all discontinuity magnitudes equally. We present p-values for the difference between

experts and each estimator in parentheses. They are based on two-way cluster-robust standard errors computed via a stacked regression where

we account for the potential correlation between visual and econometric inferences at the dataset level (there are 88 datasets in total) and in

visual inferences for the same individual across graphs–see Appendix G for details.
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Table 4: Fisher’s Exact Test of Association: Expert Visual vs Econometric Inferences p-values (One-Sided)

Estimator for Econometric Inference

Discontinuity |d| PQ IK CCT AK

0 0.727 0.231 0.616 0.394

0.1944σ 0.000 0.000 0.000 0.000

0.324σ 0.000 0.000 0.000 0.000

0.54σ 0.000 0.000 0.001 0.000

0.9σ 0.073 . 0.042 0.134

1.5σ . . . .

Notes: Missing values indicate that a test always rejects the null hypothesis, in

which case the p-value cannot be computed.
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Figure 1: Illustration of Graphical Parameters Tested
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Notes: Plots are based on the original data from DGP9. The base plot uses IMSE-optimal, evenly spaced bins and Stata’s default axis scaling.

Figure 2: Conditional Expectation Functions DGP1-DGP11
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Figure 3: Creation of Conditional Expectation Functions, DGP9
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Notes: The leftmost figure plots the piecewise quintic CEF fitted to the original microdata underlying DGP9. The central figure removes the

discontinuity by setting the right intercept to equal the left intercept. The rightmost figure plots the final 11 CEFs for DGP9 corresponding to

different levels of discontinuity by further changing the right intercept.
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Figure 4: Lineup Protocol Graph Examples: DGP10 and DGP3

Notes: One of the 20 graphs for each lineup protocol is produced from the real data. The other 19 are produced from simulated data drawn from the DGP calibrated

to the real data. For DGP10 on the left, the graph produced from data used in the original paper is in row −3 ·2+7 and column
√

4+5−2, while the remaining

graphs are generated from our specified DGP (we follow Majumder et al., 2013 and use simple arithmetic to indicate the graph location, so that readers do not

accidentally see the answer before reaching their own conclusion). For DGP3 on the right, the graph made with the original data is in row 3 and column 2.
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Figure 5: Power Functions by Experimental Phase
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Notes: Plotted are empirical power functions from the four non-expert experiments. The power functions are defined in Section 2. The discontinuity

magnitude on the x-axis is specified as a multiple of the error standard deviation. The y-axis represents the share of respondents classifying a graph as

having a discontinuity at the policy threshold.
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Figure 6: Expert vs Non-Expert Performance
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Notes: Plotted are the power functions for the experts and non-experts. Solid (hollow) markers indicate that

non-experts do (not) perform statistically significantly differently at the 5% level from experts under the same

graphical treatment and at the same discontinuity magnitude.

Figure 7: Expert Preferences and Beliefs Regarding Non-Expert Performance

Notes: Each panel shows the number of experts who report the given treatment as being their preferred treat-

ment at a given discontinuity level; believe it to be the best-performing treatment among our non-expert sample;

or believe it to be the worst-performing treatment among our non-expert sample. For comparison, the treat-

ments that performed best and worst in that sample are marked with a + and − sign respectively.
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Figure 8: Expert Visual vs Econometric Inference
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Notes: PQ uses a correctly specified regression model with global piecewise quintics above and below the treatment threshold and assuming homoskedas-

ticity. IK is based on a local linear estimator using the IK bandwidth. CCT Robust is the default RDD inference procedure from CCT’s rdrobust. AK

uses the RDHonest procedure with the rule-of-thumb bound on each DGP’s second derivative. Solid (hollow) markers indicate that the economet-

ric inference procedure does (not) perform statistically significantly differently at the 5% level from expert visual inference at the same discontinuity

magnitude.
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Figure 9: RMSE of Point Estimates and MSE Decomposition by DGP
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Notes: The left panel compares for each DGP the RMSE in estimating the discontinuity magnitude in visual and econometric procedures. The right panel decomposes the difference in

MSE between visual estimation and the IK procedure into bias and variance components.
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Figure 10: Combined Expert Visual and Econometric Inference vs AK
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Notes: PQ uses a correctly specified regression model with global piecewise quintics above and below the

treatment threshold and assuming homoskedasticity. IK is based on a local linear estimator using the IK band-

width. CCT Robust is the default RDD inference procedure from CCT’s rdrobust. AK uses the RDHonest

procedure with the rule-of-thumb bound on each DGP’s second derivative. Solid (hollow) markers indicate

that the combined econometric-expert-visual inference procedure does (not) perform statistically significantly

differently at the 5% level from the AK procedure at the same discontinuity magnitude. In the graph on the

bottom, we plot the difference between the combined IK-expert-visual and AK inference procedures, along

with 95% two-way cluster-robust confidence intervals per Cameron, Gelbach, and Miller (2011) that account

for potential correlation between visual and econometric inferences at the dataset level (see Appendix G for

details).
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Appendix (For Online Publication Only)

A Theoretical Details: Estimator Properties, DGP Space, Bin Selectors, and

MSE Decomposition

A.1 Properties of the Type I and Type II Error Probability Estimators

Following Section 2, Proposition 1 states the properties of the g-specific estimator p̂(γ,g,d).

Proposition 1. Under Assumption 1 and for a given DGP g

1. E[p̂(γ,g,d)] = p(γ,g,d)

2. p̂(γ,g,d) P→ p(γ,g,d) as M→ ∞

3. M · p̂(γ,g,d)∼ Binomial(M, p(γ,g,d))

4.
√

M(p̂(γ,g,d)− p(γ,g,d))⇒ N (0, p(γ,g,d) · (1− p(γ,g,d))) .

The proof of the proposition follows trivially from Assumption 1.

Parts 1 and 2 of the proposition state that p̂(γ,g,d) is an unbiased and consistent estimator for p(γ,g,d).

Part 3 states that p̂(γ,g,d) has a scaled binomial finite sample distribution, for which methods such as the

Clopper-Pearson confidence interval have been developed for finite sample inference, which allows us to

construct confidence intervals on the g-specific type I and II error probabilities. The standard asymptotic

normality result is provided in Part 4, but we do not invoke it in our analysis, as M is equal to eight in our

experiments due to resource constraints.

Now we state the properties of the overall estimator ˆ̄p(γ,d).

Proposition 2. Under Assumptions 1 and 2

1. E[ ˆ̄p(γ,d)] = p̄(γ,d)

2. ˆ̄p(γ,d) P→ p̄(γ,d) as J→ ∞

3. Conditional on {g j}J
j=1, M · J · ˆ̄p(γ,d) follows a Poisson binomial distribution

4. As J→ ∞,
√

J( ˆ̄p(γ,d)− p̄(γ,d))⇒ N
(
0,varg∈G (p̂(γ,g,d))

)
, with

varg∈G (p̂(γ,g,d)) = 1
M p̄(γ,d)+(1− 1

M )E[p(γ,g,d)2]− p̄(γ,d)2.
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Proof. Part 1:

E[ ˆ̄p(γ,d)] =
1
J

J

∑
j=1

Eg j∈G [E[p̂(γ,g j,d)|g j]]

=
1
J

J

∑
j=1

Eg j∈G [p(γ,g j,d)]

= p̄(γ,d)

Part 2: Assumptions 1 and 2 imply that, for any J, { p̂(γ,g j,d)}16 j6J is a set of independent and iden-

tically distributed random variables. Because p̂(γ,g j,d)2 is uniformly bounded between zero and one,

the weak law of large numbers for triangular arrays (see, for example, Durett, 2010) applies to the set

{ p̂(γ,g j,d)}16 j6J,J=1,2,.... Because the expectation of p̂(γ,g j,d) is p̄(γ,d) for each j (Part 1 of the proposi-

tion), we have the desired result.1

Part 3: the statement simply follows the definition of a Poisson binomial distribution.

Part 4: Similar to the proof of part 2 of the Proposition, the result follows from an application of the Central

Limit Theorem for Triangular Arrays (or the Lindeberg-Feller Central Limit Theorem):

√
J( ˆ̄p(γ,d)− p̄(γ,d))⇒ N

(
0,varg∈G (p̂(γ,g,d))

)
.

The law of total variance implies that

varg∈G (p̂(γ,g,d))

=Eg∈G [var(p̂(γ,g,d)|g)]+ varg∈G (E[p̂(γ,g,d)|g])

=Eg∈G

[
p(γ,g,d)(1− p(γ,g,d))

M

]
+ varg∈G (p(γ,g,d))

and the last equality follows from Proposition 1. Because

varg∈G (p(γ,g,d)) = Eg∈G [p(γ,g,d)2]−Eg∈G [p(γ,g,d)]2

we have

varg∈G (p(γ,g,d)) =
1
M

p̄(γ,d)+(1− 1
M
)Eg∈G [p(γ,g,d)2]− p̄(γ,d)2

following simple algebra.

1The application of the law of large numbers for triangular arrays, as opposed to its standard counterpart, allows p̂(γ,g j,d) to
change as J increases. Take p̂(γ,g1,d), for example. We accommodate the scenarios where M, the number of participants who see
g1, changes with J, or where we allocate different individuals to see g1 as we increase the number of DGPs sampled.
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Parts 1 and 2 of Proposition 2 establish unbiasedness and consistency of ˆ̄p(γ,d) as an estimator for

p̄(γ,d). Part 3 provides the finite-sample distribution of ˆ̄p(γ,d); the Poisson binomial distribution is that of

a sum of independent but potentially non-identically distributed Bernoulli random variables. Part 4 states

the asymptotic normality result for ˆ̄p(γ,d) as J→∞. In principle, we can consistently estimate the variance

and use Part 4 to conduct inference on p̄(γ,d) if J is large. As with M, however, we choose a moderate J (11)

in our experiments due to resource constraints, and the asymptotic normality statement is, therefore, more

conceptual than practical. Nevertheless, we make the following observations on the variance expression in

Part 4 to help understand the variation in the estimator ˆ̄p(γ,d). In essence, the variance expression reflects

the block assignment nature of the DGPs to the participants. When M = 1, each DGP is only assigned

to a single participant, the Ri’s are i.i.d., and ˆ̄p(γ,d) simply follows a (scaled) binomial distribution with

variance p̄(γ,d)− p̄(γ,d)2. When M > 1, each DGP is assigned to a block of participants, the Ri’s are no

longer independent within the same block, and the distribution of ˆ̄p(γ,d) generally deviates from a (scaled)

binomial. When M is large, we can precisely estimate p(γ,g,d) for each DGP g, and the variance of ˆ̄p(γ,d)

reduces to that of p(γ,g,d) over the space of DGPs.

In the actual analysis of our experimental data, we use the normal approximation of the binomial ran-

dom variable Binomial(M · J, p̄(γ,d)) when M · J is large. Based on a result from Hoeffding (1956) and

summarized by Percus and Percus (1985), using Binomial(M · J, p̄(γ,d)) leads to conservative inference

on the Poisson binomial random variable M · J · ˆ̄p(γ,d) when conditioning on {g j}J
j=1.2 Therefore, condi-

tioning on the set of selected DGPs, using the normal distribution N
(

ˆ̄p(γ,d), ˆ̄p(γ,d)(1− ˆ̄p(γ,d))/(M · J)
)

provides (approximately) conservative inference for ˆ̄p(γ,d) and only relies on the product M ·J being large,

as opposed to J being large by itself.

A.2 The DGP Space

We formally define the space of DGPs, G . As discussed in Section 2.1, the data generating process g

has four components: i) the running variable distribution; ii) the conditional expectation function which is

continuous at 0; iii) the error term distribution; iv) the sample size. Thus, G is the product of four spaces.

Let GX be the collection of all probability distributions on (R,B) with support on a compact interval

that contains 0 as an interior point, where B is the Borel σ -algebra of R. Let Gµ be the space of real-valued

continuous functions on R. Let Gu be the collection of mean-zero probability distributions on (R,B). Let

2For a given (γ,d), inference for ˆ̄p(γ,d) using Binomial(M · J, p̄(γ,d)) is exact when p(γ,g j,d) is the same for all j.
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GN be the set of positive integers.

We can define the appropriate σ -algebra for each space. The σ -algebra for GX is generated by the

mappings ν → ν(A) from GX to (R,B) for all A ∈B (p. 49 of Kallenberg, 2017). The σ -algebra for Gµ is

the cylinder σ -algebra (p. 2 of Gusak et al., 2010). The σ -algebra for Gu is defined analogously to that for

GX . And the σ -algebra for GN is the the power set of positive integers, i.e., the discrete σ -algebra.

The space of DGPs is

G = GX ×Gµ ×Gu×GN ,

which is naturally equipped with the product σ -algebra F . Let the probability measure P on (G ,F ) reflect

the distribution of DGPs underlying empirical RD datasets. Because of the infinite dimensionality of G , it

is impractical to theoretically characterize P. Instead, we treat the datasets we gather as realizations from

DGPs that are sampled from the probability space (G ,F ,P).

A.3 Calonico et al. (2015) Bin Selection Algorithms

This section describes the two bin width algorithms from Calonico et al. (2015). The IMSE algorithm,

which minimizes the integrated mean squared error of the bin-average estimators of the CEF and results in

fewer, larger bins. The MV algorithm, which aims to approximate the variability of the underlying data and

results in more, smaller bins.

Formally, consider without loss of generality the number of bins above the threshold. We denote the

relevant quantities with a “+” subscript. The IMSE bin selector chooses the number of bins J+,N to minimize

the integrated mean squared error∫ x

0
E[(µ̂+(x)−µ+(x))2|X = x] f (x)dx =

J+,N

N
Var+{1+op(1)}+

1
J2
+,N

Bias+{1+op(1)},

where µ+ denotes the CEF, µ̂+ denotes the bin-average estimator of µ+, f (x) is the density of X , N is the

overall sample size. The constants Var+ and Bias+ are equal to

Var+ =
1
x

∫ x̄

0
σ

2
+(x)dx

Bias+ =
x2

12

∫ x̄

0
(µ ′+(x))

2 f (x)dx,

with x̄ being the upper bound of the support of X , µ ′+ the first derivative of µ+, and σ2
+(x) the conditional

variance of Y given X = x.
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Solving the minimization problem, we obtain the IMSE-optimal number of bins

J+,N,IMSE =

⌈(
2Bias+
Var+

) 1
3

N
1
3

⌉
with an analogous J−,N,IMSE for the number of bins below the threshold.

The goal of the mimicking variance bin selector, on the other hand, is to “choose the number of bins so

that the binned sample means have an asymptotic (integrated) variability approximately equal to the amount

of variability of the raw data” (Calonico et al., 2015). Consider again the problem of choosing the number

of bins above the threshold. The MV criterion translates to setting

J+,N

N
Var+ =Var(Y |X > 0)≡V+.

It follows that the number of bins should be

J+,N =
V+

Var+
N.

However, this number of bins is likely to be too large. There are two ways of seeing this. First, it grows

linearly with the sample size, which is too fast for the rate conditions in Calonico et al. (2015) that ensure

the consistency of µ̂+(x). Second, as a referee points out, the constant V+/Var+ may be larger than one,

resulting in more bins above the threshold than the overall sample size. To see this, consider the simple case

where x̄ = 1. By the law of total variance,

V+ =Var(Y |X > 0)

= E[Var(Y |X)|X > 0]+Var(E[Y |X ]|X > 0).

If the density of X conditional on X > 0 is uniform on [0,1], then

E[Var(Y |X)|X > 0] =
∫ 1

0
Var(Y |X = x)dx =Var+.

Since Var(E[Y |X ]|X > 0) > 0, we have V+ > Var+, with the equality binding if and only if E[Y |X ] is

a constant function almost surely for X > 0. The same result applies if, instead of assuming a uniform

distribution for X , we impose homoskedasticity: Var(Y |X) = σ2 for X > 0.

To avoid the problem having too many bins, Calonico et al. (2015) modify the mimicking variance

formula and use the following bin number

J+,N,MV =

⌈
V+

Var+

N
log(N)2

⌉
.
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A.4 Mean Squared Error Decompositions

For each graph Ti generated from GGP (γ,g,d), let di(Ti(γ,g,d)) be the discontinuity estimate by partici-

pant i. The average visual discontinuity estimate for this GGP is given by d̂(γ,g,d)≡ 1
M ∑

M
i=1 di(Ti(γ,g,d)).

Meanwhile, let d
θ̂
(Wi(g,d)) and d̂

θ̂
(g,d) ≡ 1

M ∑
M
i=1 d

θ̂
(Wi(g,d)) be the corresponding estimates by the

econometric estimator θ̂ . We can easily compare the mean squared errors (MSEs) of the visual and econo-

metric estimates, and we plot their square root in the left panel of Figure 9.

To understand the driving force behind the MSE comparisons, we can further decompose the MSEs into

the square of the bias and the variance, by using the following identities:

1
M

M

∑
i=1

(di(Ti(γ,g,d))−d)2 = (d̂(γ,g,d)−d)2 +
1
M

M

∑
i=1

(di(Ti(γ,g,d))− d̂(γ,g,d))2

1
M

M

∑
i=1

(d
θ̂
(Wi(g,d))−d)2 = (d̂

θ̂
(g,d)−d)2 +

1
M

M

∑
i=1

(d
θ̂
(Wi(g,d))− d̂

θ̂
(g,d))2.

Note that the interpretation of the second term on the right hand side of the first identity differs slightly

from the conventional MSE decomposition, as the randomness here not only comes from the realization of

data, but also from the participant (di). Nevertheless, it can still be conveniently understood as variance, as

di(Ti(γ,g,d)) remains independent and identically distributed for different i. We use these two identities to

decompose the difference between the visual and econometric MSEs into two parts: one due to bias and one

due to variance. To save space, we only plot the decomposition results for the visual-IK comparison in the

right panel of Figure 9, as IK dominates visual in MSE for every DGP.

B Additional Details on DGP Specification and Graph Creation

In conjunction with Section 3.2 in the main text, this appendix describes the process by which we specify

DGPs and create graphs for our experiments.

We identify 110 empirical papers drawn from top economics journals including the American Economic

Review, American Economic Journals, Econometrica, Journal of Business and Economic Statistics, Journal

of Political Economy, Quarterly Journal of Economics, Review of Economic Studies, and Review of Eco-

nomics and Statistics. We then randomly sample 11 papers from this list that have replication data available.

For the specification of the running variable for each DGP, we directly use the empirical distribution of

X from the corresponding paper and normalize the running variable to lie in [−1,1]. If the support of the

running variable is asymmetric, this normalization may create a discontinuity in the density at x = 0, which
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violates the assumptions in the identification framework of Lee (2008) (but not the minimally sufficient

identifying assumptions of Hahn et al., 1999). The original running variable in seven of our 11 papers fails

the McCrary (2008) test for continuity of the running variable density. Among our normalized running

variables, eight fail the test, with two passing only in their non-normalized version and one passing only

after normalizing. In our testing, visual inference performance does not vary significantly across DGPs

whether the support of their original (unnormalized) running variables is symmetric. Following Imbens and

Kalyanaraman (2012) and Calonico et al. (2014), we remove any observations where |X |> 0.99.

Next, we use the resulting datasets and further follow Imbens and Kalyanaraman (2012) and Calonico

et al. (2014) to specify the DGP’s CEF via a piecewise global quintic regression. Denoting the left and right

intercepts of the CEFs by α− and α+, we shift the right arm of the CEF upwards/downwards by the amount

|α+−α−| to make the functions E[Ỹ |X = x] continuous at the policy threshold.

Our specification of the distribution of the error term u as i.i.d. normal similarly follows Imbens and

Kalyanaraman (2012) and Calonico et al. (2014). u has mean zero and standard deviation σ , which is

specified as the root mean squared error of the global quintic regression in the CEF specification above.

We generate eight draws of u for each DGP, enough so that every graph we generate for our experiments

is seen by no more than one participant. Most of our papers use a continuous running variable, but two

feature semi-discrete variables where the running variable takes on many unique values but these points have

multiple observations each. In these two cases, we add small amounts of noise from a N(0,( 1
min{N−,N+})

2)

distribution, where N− and N+ are the number of observations below and above the policy threshold, to

match the continuous running variable condition assumed in Calonico et al. (2015). We add this noise prior

to fitting the piecewise quintic CEF. Perturbing the data prior to fitting the quintics introduces “measurement

error” that can attenuate estimated discontinuities. Alternatives include fitting the CEF prior to adding the

noise or drawing the noise from a uniform distribution to prevent observations from crossing the policy

threshold. For a discussion of measurement error in RD, see, for example, Pei and Shen (2017).

In practice, the difference between adding the noise before and after fitting the CEF is minor. Figure

A.6 presents lineup protocols for these two DGPs. To test the null hypothesis that the DGP resulting from

fitting the piecewise quintic prior to adding noise is indistinguishable from the DGP where noise is added

first, we randomly place one graph from the former distribution among 19 from the latter. All graphs use a

continuous running variable generated by adding noise to the original semi-discrete one. The solutions, i.e.

7



the graphs from the DGP fit on the original data, are in the footnote at the end of this sentence.3 We present

both sets of CEFs in Figure A.7, with the scale of the y-axis chosen to match that of the corresponding graph

in the original paper. Although the differences in the tails for the CEF on the right of Figure A.7 underscore

the sensitivity of the piecewise quintic specifications, the difficulty of these lineup protocols and the general

similarity of the CEFs suggest that the injection of measurement error is not a major concern.

C Robustness to Alternative DGP Specifications

To address concerns about the possible sensitivity of our results to our DGP-specification process, in March

2021, we conducted an additional experimental phase to compare non-expert performances across alterna-

tive DGP specifications (while holding fixed the graphical treatment method). We test all four combinations

of global quintic/local linear CEFs and homoskedastic/heteroskedastic noises.4 The setup for these DGPs

with respect to normalizing and trimming is identical to the procedures from the full paper. In all treatment

arms, we use graphs with evenly spaced small bins with a vertical line at x = 0, no fit lines, and Stata’s

default spacing. We present example plots across these treatments in Figure A.9.

We set the zero-discontinuity dataset by subtracting from the RHS the fitted outcome values at x = 0

based on the local fits on both sides of the treatment cutoff. We continue to specify discontinuities as

multiples of the residual standard deviation from the piecewise quintic regressions to ensure comparability,

so that the discontinuity levels are identical across alternative DGP specifications.

To allow for heteroskedasticity, we follow the approach by Fan and Yao (1998) to estimate conditional

variances of the residuals. Specifically, we estimate the conditional variance of Y given X by fitting local

linear regressions to the squared residuals after we specify the local linear CEF. We multiply the error term

with the square root of these conditional variance estimates.

We plot the four resulting power functions from this experiment in Figure A.10. None of the differences

between treatment arms are statistically significant at any discontinuity magnitude, and the repeated treat-

ment’s power function is not statistically significantly different from the aggregated power function from the

main four phases anywhere. We conclude that our empirical results on visual inference are not driven by the

3The solution for the left lineup is row 5 · 2− 6 and column 22− 1. The solution for the right lineup is row −3 · 2+ 10 and
column 9/3−2.

4We choose local linear to maximize the contrast from the global piecewise quintic specification. Using local cubic, for
example, results in CEFs that looked very similar to the global quintic CEFs. We compare the local linear and local cubic CEFs in
Figure A.8, and the global quintic CEFs are plotted in Figure 2 as mentioned in the main text.
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idiosyncrasies of our DGP-specification process.

D Design of Experiments and Studies

This section outlines the structure of the experiments. We first describe the general sequence of events and

survey structure before discussing the sequential rollouts of the experiments. All parts of this study received

exemption confirmations from the Institutional Review Boards (IRBs) of Cornell University, Princeton Uni-

versity, Columbia Teachers College, and the University of Waterloo and were pre-registered on Open Sci-

ence Framework and at the American Economic Association’s RCT Registry. The supplemental phase 5

was additionally confirmed exempt by the IRB of the University of Delaware because it was conducted after

one of the authors (Korting) changed her affiliation from Cornell. Expert studies run as part of seminars

received separate exemption confirmations from their respective local IRBs. Before beginning any of the

studies, participants completed consent forms. Participants had the opportunity to exit the study at any time.

D.1 Non-Expert Experiment

Each experiment consisted of three parts. In Part 1, participants watched a video tutorial outlining the graph

construction (normalization of the running variable, binning the data, etc.) and stating the objective as classi-

fying a discontinuity in the “true” underlying relationship at x = 0. The video tutorial lasted between three to

four minutes depending on the participant’s graphical representation treatment. For example, participants in

treatment arms featuring fit lines received a brief supplementary segment informing them that fit lines only

serve as approximations of the true underlying relationship between the running variable and the outcome

variable. To ensure participant engagement, the video tutorial featured an attention check about halfway

through the video. This took the form of a colored bird (see example in Figure A.11); the voiceover on this

slide informed participants that when asked about the color of our “bird of interest,” they should report a

specific color that did not match the color of the bird in the picture. For example, participants seeing Figure

A.11 below might be asked to report that the bird is red, not blue. Participants had the opportunity to watch

the video several times or to pause and rewatch specific sections as desired. However, participants were not

able to return to the video tutorial once they had moved on to the next section.

The video tutorial was followed by a sequence of example questions. Participants were asked to classify

tutorial graphs and received feedback on their answers. Participants could navigate between these graphs
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using a panel of buttons on the right-hand side of the screen (see Figures A.12 and A.13).

Part 2 of the experiment consisted of a series of paid classification tasks. Participants were asked to

assess whether a given graph featured a discontinuity or not and could choose between two potential bonus

options for each graph. We discuss this bonus system in detail in section 3.3.2. Figure A.14 shows a typical

classification screen. Participants were not given any feedback regarding their accuracy or earnings between

tasks.

Part 3 of the experiment was an exit survey. We solicited basic sample demographics such as age, gender,

occupation, education level, and prior experience with statistics. For all phases after the initial pilot, we also

asked participants to report whether they had participated in earlier iterations of the study. At the end of

the experiment, participants were informed of the total number of graphs they classified correctly as well as

their corresponding bonus earnings (see Figure A.15 for an example). Experiment participants were paid in

Amazon gift cards after each phase was complete.

D.1.1 Experiment Implementation

The rollout of the experiments was staggered across five phases which were completed between November

2018 and March 2021. Phase 1 served as a pilot and was not part of the pre-registration package. The

goal of this pilot was to gauge effect sizes in the case of the bin width and axis scaling treatments in order

to determine the required sample size for subsequent (pre-registered) phases. Table 1 outlines the graphi-

cal representation treatments implemented in each phase. Each participant’s classification task featured 11

graphs, one from each of the 11 specified DGPs. The order of graphs was randomized within subjects. The

discontinuity levels were chosen as follows: two graphs featured no discontinuity, one graph featured the

extreme discontinuity levels of ±1.5σ , and the remaining eight graphs were based on each of the eight dis-

continuity levels ±0.1944σ ,±0.324σ ,±0.54σ ,±0.9σ . Each treatment arm contained 968 unique graphs

split across 88 unique participants. Figure A.16 outlines the sequence of events within an experiment.

D.2 Expert Study

The expert study was run both online recruiting NBER members in applied microeconomic fields (aging,

children, development, education, health, health care, industrial organization, labor, and public) and IZA

fellows/affiliates, and during three seminar presentations between May and October of 2019. Table A.11
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shows the timeline and number of participants for each session. Figure A.17 outlines the sequence of events

for the expert study.

Unlike in the non-expert experiments, participants in the expert study were not asked to watch a video

tutorial or complete practice questions at the start. Instead, Part 1 of the expert study was a classification task

paralleling the one non-expert participants completed (see Figures A.18 and A.19). In addition, the graphical

representation choices in this study were not randomized between subjects. Participants had the opportunity

to navigate between the 11 graph classifications using a panel of navigation buttons at the bottom of the

screen. This feature was introduced to address feedback we received during the testing of the survey. Figure

A.19 shows an example of the task screens for participants.

Part 2 of the expert study asked participants to rank four alternative graphical representation options

for RDD. The four treatment combinations corresponded to small or large bins interacted with both fit line

treatments, as in phase 4. The instructions for Part 2 of the expert study are outlined in Figures A.20 and

A.21. Figure A.3 shows the power functions for the DGP used in the example graphs in this part of the

expert study. The DGP was selected based on its visual inference performance aligning most closely with

the average performance over all DGPs. Participants were asked to specify which graphing treatment they

believe researchers should use to present evidence of the main treatment effect of a study, as well as which

graphical options they believe would perform best and worst in our non-expert sample. Participants were

also able to report having “no preference” across the different graphing options. These three decisions were

repeated three times in the context of a zero, small, and large discontinuity.

Part 3 of the expert study was an exit survey. We asked about basic sample demographics such as age,

gender, region, main area of research, and prior experience with RDD. After all sessions of the expert study

were complete, we randomly selected four participants to receive a payment of $450 plus $50 for every

correctly classified graph in Part 1 of the study. We did not take the accuracy of the discontinuity magnitude

estimate into account to determine payments, only the binary classification decision.

Table A.11 highlights the different participant pools for the sessions of the expert study and lists the

graphical representation choices in the classification task (Part 1 of the expert study). All graphs in Part 1

used the default Stata axis scaling with no fit lines and a vertical line at x = 0. All but one session of the

expert study used small bins. The exception was the session run at Princeton’s Quantitative Social Science

Colloquium in October 2019 in which we used large bins to compare the effect of bin widths on experts and

non-experts.
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The distributions of graphs seen by the experts and non-experts differ slightly due to the methods used

to randomize participants’ graphs. Non-expert randomization is based around the order in which the 88

participants for each treatment arm begin the survey, i.e. we randomized treatment order in advance and

then assigned each participant a participant-specific survey based on their arrival time. We use the same

randomization mechanism for experts, but repeating the survey in different seminars and online phases

results in more experts at the “beginning” of the randomized assignments. In addition, a few experts did not

complete the study after accessing their participant-specific survey, and we removed their partial responses.

Therefore, although all 88 datasets are represented over the entire power function of expert visual inference,

this is not true at each discontinuity magnitude: there are 85, 82, 84, 84, 87, and 69 datasets at the 0,

0.1944σ , 0.324σ 0.54σ , 0.9σ , and 1.5σ discontinuity magnitudes, respectively (recall that we only have

one graph with 1.5σ discontinuity for every two graphs with other discontinuity magnitudes). Reweighting

the data to match the distribution of graphs seen by non-experts does not meaningfully change any of our

results.

E Subject Characteristics and Performance Predictors

E.1 Demographic Balance and Effects

For our non-expert experiment, we check the validity of our randomization by testing for the balance of

covariates across treatment groups. For each phase, we regress the covariates on treatment group indicators

and test whether all coefficients are equal. Specifically, we test for the balance of sex, education, age cate-

gories, statistical knowledge, passing the attention check, being a first-time participant, and not completing

the experiment. The results are in Tables A.12 through A.16. Across these 44 hypotheses, we cannot reject

balance in all but two instances (4.5% of tests) when using a 5%-level test: college completion and fraction

of participants aged 23-49 in phase 4. In addition, p-values for joint tests of significance for all covariates

within each phase based on Pei, Pischke, and Schwandt (2019) are 0.18, 0.50, 0.65, and 0.14 for phases 1-4.

The evidence is consistent with successful randomization.

As can be seen in Table A.17, participant demographics such as gender, age, college completion, statisti-

cal knowledge, and being a repeat participant are generally not predictive of performance in the experiment,

with insignificant point estimates of a few percentage points. Out of the 34 factors we test, two have a

statistically significant effect on the probability of classifying a graph correctly (5.9% of tests). In phase
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1, failing the attention check is associated with a 5.5pp decrease in the probability of classifying a graph

correctly. This effect is smaller and insignificant in phases 2 (4.3pp), 3 (-1.2pp), and 4 (-1.2pp). In phase

3, being 50 or older correlates with a 9.4pp increase in the probability of classifying a graph correctly. This

lack of predictive strength makes any imbalances in demographics across phases an even smaller concern.

It also suggests that comparisons of treatments across phases are unlikely to be confounded by differing

subject pools.

E.2 DGP Characteristics

While our results in Section 4 focus on the treatment effects of each graphical parameter, in this section we

focus on other factors of inference performance. In particular, we explore how the characteristics of an RD

DGP affect visual inference.

Figure A.22 plots the density of each RD DGP along its running variable. These distributions are varied.

Some are approximately uniform, some are more normal, and others, such as DGPs 6 and 8, are highly

skewed. Some DGPs show clear changes in density at the policy threshold, some of which were present in

the original data and some of which were introduced by having asymmetric supports prior to our rescaling

the running variable. Figure A.23 compares power functions for the eight DGPs with symmetric supports

prior to normalization with the three with asymmetric supports in phase 4. There is a noticeable flatness or

dip in the share of participants reporting a discontinuity between 0 and 0.1944σ . This pattern appears in

every phase, but with only three asymmetric DGPs, this may also be due to the effects of the individual DGPs

rather than something about the effects of normalizing the running variable when asymmetry is present.

When the distribution of the running variable is uniform, there is no difference between graphs generated

with even spacing and quantile spacing. When the distribution is not uniform, we may expect quantile spac-

ing to perform better, for example by preventing outlier bins with very few observations in more sparsely

populated regions of the support. To quantify a DGP’s deviation from a uniform distribution, we can com-

pute Gini coefficients based on the distribution of observations within evenly spaced bins.5 We calculate

Gini coefficients for both the IMSE and MV bin width algorithms and take the average across data real-

izations for each RD DGP. Figure A.24 explores how the Gini coefficient interacts with bin spacing to test

whether quantile spacing outperforms equal spacing when the distribution is more skewed by averaging the

5We do not compute Gini coefficients with quantile spacing, as all bins have about the same number of observations and the
Gini coefficients would all be approximately zero.
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probability of a correct response across treatment arms within each DGP. There is no relationship between

a DGP’s Gini coefficient and performance across spacing types. Among DGPs with higher distributional

inequality, as well as for those with intermediate and lower values, neither spacing dominates the other.

In Table A.18, we examine how the first derivatives of each arm of the DGP interact with the direction

of the discontinuity in impacting type II error rates. Specifically, we ask whether visual inference performs

better if the discontinuity is positive or negative within a combination of left and right slope signs. Look-

ing only at graphs with nonzero discontinuities, with which we measure type II error rates, we regress the

binary classification decision on dummy variables for the negative discontinuity sign within each slopes

combination (omitting the positive discontinuity dummy) with DGP fixed effects and clustering at the par-

ticipant level. These regressions show that visual inference performs better when the discontinuity direction

matches the signs of both the left and right derivatives. For example, when the left and right first derivatives

are both positive, the type II error rate is 11 percentage points higher when the discontinuity is negative than

positive (see Figure A.25 for an illustration). Table A.19 repeats a similar exercise for type I error rates

over the no-discontinuity graphs. We cannot include DGP fixed effects here, as they would eliminate the

variation needed to identify impacts. Unlike with type II error rates, we do not find any meaningful results

for type I error rates.

E.3 Dynamic Visual Inference

In this subsection, we investigate participants’ performance over the course of the 11 graphs they see. This

exercise provides evidence to alleviate the concern that participants have a preconceived notion that about

half of the graphs feature a discontinuity, which may bias our results in favor of good control of type I error

rate by visual inference.

First, we trace out the fraction of participants reporting a discontinuity over their 11 graphs. If there

is a consistent upward or downward trend, it would be indicative of participants having a fixed number of

continuous graphs in mind. As shown in Figure A.26, however, the trends are flat in the treatment arm (small

bins and no fit lines) used to compare visual and econometric inference procedures over the main four RDD

non-expert phases and in the expert sample.6

6Because we randomize the graph order, the flat discontinuity classification rate is consistent with a flat correct classification
rate, which we also verify in the data. That is, no evidence supports “learning” over the 11 graphs in terms of visual inference
success, which is concordant with our design in which participants find out the total number of correct discontinuity classifications
only after they complete the study.
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We also implement an AR(1) regression to more closely examine the dynamic discontinuity classifica-

tion over the 11 graphs, which Figure A.26 may miss:

Ris = ρRi(s−1)+ ci + εis. (A1)

Ris is the binary variable indicating whether participant i reports a discontinuity in graph s, ci is the individual

fixed effect, and εis is the population residual from the projection of Ris on Ri(s−1) and ci. We expect a

negative ρ if participants believe ex-ante that half of the graphs will feature a discontinuity. In fact, we do

see negative estimates of ρ ranging between -0.1 and -0.2 as reported in column (1) of Table A.20. However,

these estimates are subject to a large-N asymptotic bias of order O(1/S) per Nickell (1981) where S is the

number of graphs. Inverting equation (18) from Nickell (1981), we solve for the bias-corrected estimates

of ρ and report them in column (2) of Table A.20. Although these estimates are still negative, they are

considerably closer to zero. For the main four phases of the non-expert phases 1-4, three bias-corrected

estimates are statistically insignificant at the 5% level, while the other one is marginally significant.

Although the estimate of ρ in the expert sample is still significant after bias correction, the fact that it

is the largest in magnitude of the five estimates in Table A.20 is reassuring. Because non-experts appear

to achieve lower a type I error rate than experts and are less experienced with RDD graphs, we may be

more concerned that the non-experts’ performance is driven by having a fixed number of continuous graphs

in mind. However, this is refuted by the four estimates of ρ from the non-expert sample being smaller.

Therefore, we conclude that the evidence does not support the hypothesis that participants expect half of the

graphs to be continuous, and the low type I error rate of RD visual inference is not a result of it.

F What t-Statistic Can Eyes Detect?

Using our experimental results, we can provide an evidence-based answer to the question of how large a

t-statistic needs to be in order for readers to visually detect a discontinuity (a question that was also posed

by Kirabo Jackson on Twitter). We do so by using an alternative scaling of the discontinuity. Instead of

specifying the discontinuity d as a multiple of the error standard deviation σ as in Section 4, we specify the

x-axis of the power functions in Figures A.27 and A.28 as d/σ

√
(X ′X)−1

dd , where X is a regressor matrix

containing the 12 polynomial terms of the running variable for a piecewise quintic regression and the dd

subscript denotes the entry of the matrix corresponding to the discontinuity estimator. Because the denom-

inator is the large-sample error of the discontinuity estimator from a (correctly specified) piecewise quintic
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regression, the x-axes of these figures have a t-statistic interpretation. Note that because the rescaling results

in a distinct set of six discontinuity magnitudes for each of our 11 DGPs, we now have 66 discontinuity

magnitudes. Therefore, we bin points along the x-axis, and consequently, these power functions are no

longer monotone, as the composition of DGPs changes across bin points.

Our analysis shows that 80% of the participants correctly report a discontinuity, across all phases of our

experiment, as the t-statistic from the correctly specified regression exceeds 4 (80% is a threshold commonly

used in power analysis). There are caveats to this already nuanced answer. First, this threshold t-statistic

is specific to the range of parameters we test. For example, one could substantially increase the y-axis

scale, which would be sure to make any discontinuity we test in this paper disappear before the human eye.

Second, this threshold is specific for detecting discontinuities; in separate experiments for regression kink

designs presented in our previous working paper (Korting et al., 2020), we find a much smaller threshold

applies to kink detection.

One might conjecture that the t-statistic threshold is sensitive to the sample size. In particular, it seems

possible to keep the plot fixed and increase the sample size arbitrarily by adding observations in each bin,

which would increase the t-statistic without altering visual inference. The pitfall of this argument is that for

the plot to look the same while increasing sample size, one needs to change σ as well. In fact, σ needs to

increase proportionally to
√

N, leading to an invariant t-statistic.

G Comparing Visual and Econometric Inferences: Details

In this section, we provide additional details on how we construct the confidence intervals for the differences

between visual and econometric inferences, which are plotted, for example, in Figure A.30. We also apply

a similar procedure to generate the confidence intervals on the differences between the combined visual-IK

and AK procedures plotted in Figure 10.

At each discontinuity level, we estimate the difference between visual and econometric inferences via

regressions where we stack visual and econometric classifications for each graph of that discontinuity. With

stacking, we can construct standard errors that account for potential correlation across visual and economet-

ric classifications for the same graph and potential correlation in visual classifications of different graphs by

the same participant.

We now detail the standard error construction. We use Rk
i to denote the classification of graph k by
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participant i and Rk
θ̂

to denote the classification of (the dataset underlying) graph k by econometric procedure

θ̂ . At each discontinuity magnitude, we regress the vector (Rk
i ,R

k
θ̂
)′ on a constant and an indicator for visual

inference, i.e., the regressor matrix

 1 1

1 0

. The difference between visual and econometric inferences

is given by the coefficient on the visual inference indicator. We compute the standard error of the difference

by two-way clustering per Cameron et al. (2011). We cluster by dataset and by participant identifier (each

human participant has a participant identifier, and we assign a unique artificial “participant identifier” to each

observation corresponding to econometric classification that is different from any of the human participant

identifiers). Clustering by dataset accounts for correlation between visual and econometric inferences, and

clustering by participant identifier captures correlation of visual inferences by the same individual.
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Appendix Tables and Figures

Table A.1: Effects of Graphical Methods on Visual Inference: Phase 1

Dependent variable: player reports discontinuity
True discontinuity magnitude =

0 0.1944 σ 0.324 σ 0.54 σ 0.9 σ 1.5 σ

Large bin; Default y-axis 0.197 0.209 0.177 0.140 -0.024 -0.012
(0.039) (0.045) (0.042) (0.046) (0.030) (0.019)

Small bin; Large y-axis -0.024 -0.018 -0.056 0.008 -0.034 -0.035
(0.029) (0.043) (0.042) (0.043) (0.029) (0.026)

Large bin; Large y-axis 0.142 0.186 0.120 0.093 0.013 -0.001
(0.036) (0.040) (0.042) (0.042) (0.025) (0.017)

Small bin; Default y-axis (Mean) 0.054 0.181 0.367 0.669 0.922 0.988
Number of graphs 660 660 660 660 660 330
Number of players 330 330 330 330 330 330

Notes: We have a stratified randomized experiment, where each of the 11 strata is de-

termined by the DGPs seen for every discontinuity magnitude. The treatment effect

estimates come from regressing the participants’ responses on treatment indicators and

strata fixed effects. We obtain standard errors using the procedure from Bugni et al.

(2019) for stratified experiments.

Table A.2: Effects of Graphical Methods on Visual Inference: Phase 2

Dependent variable: player reports discontinuity
True discontinuity magnitude =

0 0.1944 σ 0.324 σ 0.54 σ 0.9 σ 1.5 σ

Large bin; Equal spacing 0.256 0.207 0.204 0.155 0.048 0.011
(0.042) (0.039) (0.045) (0.039) (0.033) (0.029)

Small bin; Quantile spacing 0.034 0.009 -0.012 -0.008 -0.030 -0.013
(0.033) (0.039) (0.046) (0.046) (0.036) (0.033)

Large bin; Qunatile spacing 0.157 0.185 0.217 0.138 0.030 0.024
(0.038) (0.040) (0.046) (0.039) (0.031) (0.023)

Small bin; Equal spacing (Mean) 0.054 0.169 0.355 0.657 0.892 0.964
Number of graphs 650 650 650 650 650 325
Number of players 325 325 325 325 325 325

Notes: We have a stratified randomized experiment, where each of the 11 strata is de-

termined by the DGPs seen for every discontinuity magnitude. The treatment effect

estimates come from regressing the participants’ responses on treatment indicators and

strata fixed effects. We obtain standard errors using the procedure from Bugni et al.

(2019) for stratified experiments.
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Table A.3: Effects of Graphical Methods on Visual Inference: Phase 3

Dependent variable: player reports discontinuity
True discontinuity magnitude =

0 0.1944 σ 0.324 σ 0.54 σ 0.9 σ 1.5 σ

Fit line; Vertical line 0.142 0.215 0.172 0.051 0.057 -0.002
(0.038) (0.046) (0.044) (0.045) (0.029) (0.025)

No fit line; No vertical line 0.017 0.012 -0.007 -0.052 -0.026 -0.023
(0.024) (0.043) (0.045) (0.043) (0.031) (0.025)

No fit line; Vertical line (Mean) 0.037 0.159 0.348 0.634 0.860 0.976
Number of graphs 496 496 496 496 496 248
Number of players 248 248 248 248 248 248

Notes: We have a stratified randomized experiment, where each of the 11 strata is de-

termined by the DGPs seen for every discontinuity magnitude. The treatment effect

estimates come from regressing the participants’ responses on treatment indicators and

strata fixed effects. We obtain standard errors using the procedure from Bugni et al.

(2019) for stratified experiments.

Table A.4: Effects of Graphical Methods on Visual Inference: Phase 4

Dependent variable: player reports discontinuity
True discontinuity magnitude =

0 0.1944 σ 0.324 σ 0.54 σ 0.9 σ 1.5 σ

Large bin; No fit line 0.145 0.283 0.223 0.239 0.074 0.027
(0.038) (0.044) (0.047) (0.042) (0.033) (0.030)

Small bin; Fit line -0.019 0.088 0.047 0.059 0.024 0.002
(0.030) (0.042) (0.049) (0.046) (0.036) (0.034)

Large bin; Fit line 0.230 0.300 0.239 0.207 0.058 0.003
(0.045) (0.046) (0.047) (0.044) (0.034) (0.034)

Small bin; No fit line (Mean) 0.074 0.154 0.395 0.611 0.870 0.951
Number of graphs 680 680 680 680 680 340
Number of players 340 340 340 340 340 340

Notes: We have a stratified randomized experiment, where each of the 11 strata is de-

termined by the DGPs seen for every discontinuity magnitude. The treatment effect

estimates come from regressing the participants’ responses on treatment indicators and

strata fixed effects. We obtain standard errors using the procedure from Bugni et al.

(2019) for stratified experiments.

Table A.5: Effects of DGP Specification on Visual Inference: Supplemental Phase 5

Dependent variable: player reports discontinuity
True discontinuity magnitude =

0 0.1944 σ 0.324 σ 0.54 σ 0.9 σ 1.5 σ

Homoskedastic Local Linear -0.018 -0.044 0.013 -0.006 0.001 0.000
(0.025) (0.042) (0.043) (0.045) (0.026) (0.027)

Heteroskedastic Global Quintic -0.025 -0.052 -0.010 -0.046 0.009 0.023
(0.021) (0.040) (0.043) (0.046) (0.026) (0.022)

Heteroskedastic Local Linear -0.011 -0.063 0.044 0.006 0.008 0.022
(0.023) (0.039) (0.041) (0.047) (0.028) (0.023)

Homoskedastic Global Quintic (Mean) 0.047 0.218 0.359 0.676 0.912 0.965
Number of graphs 678 678 678 678 678 339
Number of players 339 339 339 339 339 339

Notes: We have a stratified randomized experiment, where each of the 11 strata is de-

termined by the DGPs seen for every discontinuity magnitude. The treatment effect

estimates come from regressing the participants’ responses on treatment indicators and

strata fixed effects. We obtain standard errors using the procedure from Bugni et al.

(2019) for stratified experiments.
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Table A.6: Risks: Classical and Andrews and Shapiro, Using All Non-Zero Discontinuities

(1) (2) (3) (4)
Phase Treatment Type I Error Rate (d = 0) Type II Error Rate (d 6= 0) Classical Risk (Equal Weights) Classical Risk (4×Weight at d = 0)
1 Small bins/default axes 0.055 0.374 0.428 0.593
1 Large bins/default axes 0.257 0.277 0.534 (0.042) 1.305 (0.000)
1 Small bins/large axes 0.036 0.403 0.440 (0.947) 0.549 (0.537)
1 Large bins/large axes 0.198 0.294 0.492 (0.168) 1.087 (0.001)
2 Small bins/even spacing 0.053 0.394 0.447 0.606
2 Large bins/even spacing 0.306 0.266 0.572 (0.005) 1.490 (0.000)
2 Small bins/quantile spacing 0.088 0.407 0.495 (0.216) 0.760 (0.263)
2 Large bins/quantile spacing 0.211 0.275 0.485 (0.497) 1.117 (0.001)
3 No fit lines/vertical line 0.036 0.405 0.440 0.548
3 Fit lines/vertical line 0.179 0.308 0.487 (0.374) 1.024 (0.002)
3 No fit lines/no vertical line 0.052 0.424 0.476 (0.277) 0.633 (0.387)
4 Small bins/no fit lines 0.073 0.406 0.479 0.698
4 Large bins/no fit lines 0.218 0.233 0.451 (0.342) 1.104 (0.009)
4 Small bins/fit lines 0.054 0.360 0.413 (0.072) 0.574 (0.304)
4 Large bins/fit lines 0.304 0.244 0.548 (0.270) 1.459 (0.000)
Phase Treatment AS Risk (d = 0) AS Risk (d 6= 0) AS Risk (Equal Weights) AS Risk (4×Weight at d = 0)
1 Small bins/default axes 0.180 0.201 0.381 0.920
1 Large bins/default axes 0.215 0.206 0.421 (0.003) 1.066 (0.000)
1 Small bins/large axes 0.182 0.205 0.387 (0.627) 0.932 (0.765)
1 Large bins/large axes 0.201 0.200 0.402 (0.133) 1.006 (0.044)
2 Small bins/even spacing 0.183 0.199 0.382 0.932
2 Large bins/even spacing 0.226 0.200 0.425 (0.007) 1.103 (0.000)
2 Small bins/quantile spacing 0.212 0.218 0.430 (0.001) 1.066 (0.003)
2 Large bins/quantile spacing 0.229 0.205 0.435 (0.000) 1.122 (0.000)
3 No fit lines/vertical line 0.192 0.202 0.394 0.972
3 Fit lines/vertical line 0.183 0.198 0.381 (0.319) 0.930 (0.333)
3 No fit lines/no vertical line 0.190 0.204 0.393 (0.949) 0.962 (0.835)
4 Small bins/no fit lines 0.198 0.208 0.405 0.998
4 Large bins/no fit lines 0.223 0.200 0.423 (0.277) 1.091 (0.059)
4 Small bins/fit lines 0.192 0.198 0.390 (0.318) 0.967 (0.508)
4 Large bins/fit lines 0.219 0.207 0.425 (0.224) 1.081 (0.083)

Notes: For both the classical and the Andrews and Shapiro risk measures, column (3) is simply the sum of columns (1) and (2); column (4) is equal to four times column (1) plus

column (2). Values when d 6= 0 weight all discontinuity magnitudes equally. In parentheses in columns (3) and (4) are the p-values for testing whether the difference in risks relative

to the first and benchmark treatment (in bold) within each phase is zero. We obtain the p-values by regressing risks on treatment indicators and strata fixed effects, where we define

the 11 strata by the DGPs seen for every discontinuity magnitude, and conducting inference using the procedure from Bugni et al. (2019) for stratified experiments.
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Table A.7: Effects of Graphical Methods on Subjective Probability of Correct Classification: Phase 1

Dependent variable: subjective probability correct
True discontinuity magnitude =

0 0.1944 σ 0.324 σ 0.54 σ 0.9 σ 1.5 σ

Large bin; Default y-axis -0.035 -0.001 -0.014 0.002 -0.012 0.007
(0.009) (0.012) (0.011) (0.012) (0.009) (0.006)

Small bin; Large y-axis -0.001 0.006 0.003 -0.021 -0.006 0.000
(0.007) (0.010) (0.011) (0.011) (0.008) (0.007)

Large bin; Large y-axis -0.020 0.003 -0.007 0.008 -0.004 0.003
(0.009) (0.011) (0.010) (0.011) (0.008) (0.007)

Small bin; Default y-axis (Mean) 0.820 0.791 0.793 0.787 0.812 0.826
Number of graphs 660 660 660 660 660 330
Number of players 330 330 330 330 330 330

Notes: We have a stratified randomized experiment, where each of the 11 strata is de-

termined by the DGPs seen for every discontinuity magnitude. The treatment effect

estimates come from regressing the participants’ imputed subjective probabilities of a

correct classification on treatment indicators and strata fixed effects. We obtain standard

errors using the procedure from Bugni et al. (2019) for stratified experiments.

Table A.8: Effects of Graphical Methods on Subjective Probability of Correct Classification: Phase 2

Dependent variable: subjective probability correct
True discontinuity magnitude =

0 0.1944 σ 0.324 σ 0.54 σ 0.9 σ 1.5 σ

Large bin; Equal spacing -0.044 -0.002 -0.002 0.001 0.001 0.003
(0.011) (0.009) (0.012) (0.011) (0.009) (0.008)

Small bin; Quantile spacing -0.028 -0.014 -0.021 -0.035 -0.012 -0.003
(0.010) (0.010) (0.012) (0.012) (0.009) (0.009)

Large bin; Qunatile spacing -0.046 -0.035 -0.004 0.007 0.001 0.009
(0.011) (0.011) (0.011) (0.010) (0.008) (0.007)

Small bin; Equal spacing (Mean) 0.817 0.802 0.787 0.794 0.809 0.823
Number of graphs 650 650 650 650 650 325
Number of players 325 325 325 325 325 325

Notes: We have a stratified randomized experiment, where each of the 11 strata is de-

termined by the DGPs seen for every discontinuity magnitude. The treatment effect

estimates come from regressing the participants’ imputed subjective probabilities of a

correct classification on treatment indicators and strata fixed effects. We obtain standard

errors using the procedure from Bugni et al. (2019) for stratified experiments.

Table A.9: Effects of Graphical Methods on Subjective Probability of Correct Classification: Phase 3

Dependent variable: subjective probability correct
True discontinuity magnitude =

0 0.1944 σ 0.324 σ 0.54 σ 0.9 σ 1.5 σ

Fit line; Vertical line 0.008 0.010 -0.007 0.020 -0.004 -0.000
(0.008) (0.011) (0.011) (0.011) (0.008) (0.008)

No fit line; No vertical line 0.002 0.002 -0.003 0.007 -0.009 -0.006
(0.009) (0.011) (0.012) (0.011) (0.009) (0.008)

No fit line; Vertical line (Mean) 0.808 0.794 0.791 0.780 0.814 0.826
Number of graphs 496 496 496 496 496 248
Number of players 248 248 248 248 248 248

Notes: We have a stratified randomized experiment, where each of the 11 strata is de-

termined by the DGPs seen for every discontinuity magnitude. The treatment effect

estimates come from regressing the participants’ imputed subjective probabilities of a

correct classification on treatment indicators and strata fixed effects. We obtain standard

errors using the procedure from Bugni et al. (2019) for stratified experiments.
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Table A.10: Effects of Graphical Methods on Subjective Probability of Correct Classification: Phase 4

Dependent variable: subjective probability correct
True discontinuity magnitude =

0 0.1944 σ 0.324 σ 0.54 σ 0.9 σ 1.5 σ

Large bin; No fit line -0.025 -0.006 0.010 0.014 0.016 0.005
(0.011) (0.010) (0.012) (0.011) (0.008) (0.009)

Small bin; Fit line 0.005 0.004 0.011 0.006 0.022 0.004
(0.010) (0.011) (0.013) (0.012) (0.008) (0.009)

Large bin; Fit line -0.021 -0.017 0.011 0.009 0.002 0.001
(0.011) (0.011) (0.012) (0.012) (0.010) (0.010)

Small bin; No fit line (Mean) 0.803 0.796 0.773 0.786 0.801 0.816
Number of graphs 680 680 680 680 680 340
Number of players 340 340 340 340 340 340

Notes: We have a stratified randomized experiment, where each of the 11 strata is de-

termined by the DGPs seen for every discontinuity magnitude. The treatment effect

estimates come from regressing the participants’ imputed subjective probabilities of a

correct classification on treatment indicators and strata fixed effects. We obtain standard

errors using the procedure from Bugni et al. (2019) for stratified experiments.
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Table A.11: Timeline of Expert Study

Participant pool
Graphical Parameters
in Part 1

Date
# participants

recruited
# completions

Cornell Econometrics
Workshop

small binwidth,
even spacing

May 7, 2019 - 12

UC Irvine Econometrics
Series

small binwidth,
even spacing

May 21, 2019 - 15

Princeton Quantitative Social
Science Colloquium

large binwidth,
even spacing

October 11, 2019 - 48

NBER + IZA
(Pilot1)

small binwidth,
even spacing

July 28 - August 2, 2019 101 7 (7%)

NBER + IZA Email list
(Pilot2)

small binwidth,
even spacing

August 12 - 19, 2019 100 10 (10%)

NBER + IZA Email list
small binwidth,
even spacing

August 26 -
September 3, 2019

500 51 (10%)

Table A.12: Covariate Means and Balance across Treatment Arms: Phase 1

T1 T2 T3 T4 p-value

Female 0.687 0.738 0.759 0.688 0.649
Completed college 0.518 0.512 0.482 0.625 0.268
Age 18 to 22 0.422 0.571 0.554 0.425 0.088
Age 23 to 49 0.494 0.381 0.398 0.487 0.318
Age 50 or older 0.060 0.048 0.048 0.087 0.742
Graduate stats knowledge 0.145 0.119 0.133 0.050 0.091
Passed attention check 0.867 0.857 0.843 0.912 0.516
Attrition rate 0.057 0.045 0.057 0.091 0.690
Participants 83 84 83 80

Notes: The p-value for the joint significance of the covariates is 0.175.

Table A.13: Covariate Means and Balance across Treatment Arms: Phase 2

T1 T2 T3 T4 p-value

Female 0.614 0.623 0.617 0.726 0.325
Completed college 0.494 0.429 0.543 0.512 0.526
Age 18 to 22 0.518 0.584 0.481 0.488 0.548
Age 23 to 49 0.386 0.364 0.481 0.429 0.447
Age 50 or older 0.084 0.039 0.037 0.071 0.485
Graduate stats knowledge 0.072 0.143 0.099 0.119 0.499
Passed attention check 0.928 0.870 0.877 0.940 0.306
First time player 0.711 0.805 0.802 0.762 0.466
Attrition rate 0.057 0.125 0.080 0.045 0.264
Participants 83 77 81 84

Notes: The p-value for the joint significance of the covariates is 0.496.
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Table A.14: Covariate Means and Balance across Treatment Arms: Phase 3

T1 T2 T3 p-value

Female 0.683 0.725 0.616 0.323
Completed college 0.659 0.650 0.558 0.339
Age 18 to 22 0.439 0.463 0.523 0.529
Age 23 to 49 0.488 0.512 0.419 0.449
Age 50 or older 0.073 0.025 0.047 0.345
Graduate stats knowledge 0.159 0.113 0.070 0.184
Passed attention check 0.902 0.900 0.907 0.988
First time player 0.488 0.500 0.453 0.823
Attrition rate 0.068 0.091 0.023 0.087
Participants 82 80 86

Notes: The p-value for the joint significance of the covariates is 0.653.

Table A.15: Covariate Balance across Treatment Arms: Phase 4

T1 T2 T3 T4 p-value

Female 0.654 0.782 0.733 0.744 0.327
Completed college 0.543 0.655 0.442 0.535 0.040
Age 18 to 22 0.568 0.471 0.663 0.570 0.084
Age 23 to 49 0.420 0.506 0.291 0.407 0.031
Age 50 or older 0.012 0.023 0.035 0.023 0.797
Graduate stats knowledge 0.160 0.115 0.070 0.047 0.067
Passed attention check 0.914 0.897 0.953 0.907 0.427
First time player 0.556 0.563 0.628 0.581 0.771
Attrition rate 0.080 0.011 0.023 0.023 0.185
Participants 81 87 86 86

Notes: The p-value for the joint significance of the covariates is 0.137.

Table A.16: Covariate Means and Balance across Treatment Arms: Supplemental Phase 5

T1 T2 T3 T4 p-value

Female 0.659 0.706 0.694 0.774 0.388
Completed college 0.576 0.600 0.635 0.560 0.766
Age 18 to 22 0.518 0.518 0.424 0.440 0.466
Age 23 to 49 0.435 0.447 0.518 0.500 0.651
Age 50 or older 0.047 0.035 0.059 0.024 0.670
Graduate stats knowledge 0.176 0.094 0.082 0.155 0.186
Passed attention check 0.941 0.906 0.929 0.964 0.440
First time player 0.671 0.776 0.753 0.690 0.357
Attrition rate 0.034 0.034 0.034 0.045 0.976
Participants 85 85 85 84

Notes: The p-value for the joint significance of the covariates is 0.202.
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Table A.17: Predictions of Correct Classification with Participant Characteristics

Phase I Phase II Phase III Phase IV

Female -0.001 -0.007 -0.019 0.017
(0.014) (0.014) (0.018) (0.017)

Completed college 0.004 -0.018 -0.025 0.015
(0.019) (0.018) (0.019) (0.023)

Age 23 to 49 -0.006 0.003 -0.012 0.009
(0.021) (0.019) (0.021) (0.023)

Age 50 or older 0.004 0.037 0.094 0.055
(0.026) (0.031) (0.033) (0.073)

Graduate stats knowledge -0.013 0.030 0.053 -0.048
(0.022) (0.022) (0.028) (0.029)

Passed attention check 0.055 0.043 -0.014 -0.011
(0.023) (0.026) (0.029) (0.031)

First time player NA 0.000 -0.001 0.018
(NA) (0.016) (0.017) (0.015)

Joint test p-value 0.321 0.460 0.009 0.389

Notes: This table presents the coefficients from regressing whether study participants are

correct in classifying an RD graph on their characteristics. Each of the four columns repre-

sents results from one of the main four phases. Standard errors are clustered at the partici-

pant level.

Table A.18: Predictions of Type II Error Rates with DGP Characteristics

Phase RDD1 Phase RDD2 Phase RDD3 Phase RDD4

LHS deriv-, RHS deriv-, discont- 0.244 0.262 0.267 0.308
(0.032) (0.033) (0.039) (0.031)

LHS deriv+, RHS deriv-, discont- -0.005 0.029 -0.020 0.096
(0.039) (0.042) (0.047) (0.041)

LHS deriv-, RHS deriv+, discont- 0.024 0.103 0.173 0.102
(0.058) (0.057) (0.068) (0.054)

LHS deriv+, RHS deriv+, discont- -0.111 -0.169 -0.103 -0.110
(0.022) (0.022) (0.026) (0.022)

Notes: This table presents the coefficients from regressions of whether the participant is

correct in classifying discontinuous graphs on the interactions of the signs of left and right

derivatives of the CEF with the sign of discontinuity. Each of the four columns represents

results from one of the main four phases. Standard errors are clustered at the participant

level.

Table A.19: Predictions of Type I Error Rate with DGP Characteristics

Phase RDD1 Phase RDD2 Phase RDD3 Phase RDD4

LHS deriv-, RHS deriv- 0.052 0.049 -0.003 0.093
(0.035) (0.037) (0.029) (0.036)

LHS deriv+, RHS deriv- -0.040 -0.018 0.072 -0.048
(0.032) (0.035) (0.037) (0.032)

LHS deriv-, RHS deriv+ -0.124 -0.168 -0.032 -0.074
(0.026) (0.022) (0.033) (0.039)

LHS deriv+, RHS deriv+ (Mean) 0.141 0.168 0.077 0.154
(0.020) (0.022) (0.018) (0.020)

Notes: This table presents the coefficients from regressions of whether the participant is

correct in classifying continuous graphs on the interactions of the signs of left and right

derivatives of the CEF. Each of the four columns represents results from one of the main

four phases. Standard errors are clustered at the participant level.
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Table A.20: Dynamic Discontinuity Classification: AR(1) Regression

(1) (2)

Phase Estimate of ρ from Eq. (A1) Bias-Corrected Estimate of ρ

1 -0.127 -0.041

(0.038) (0.046)

2 -0.170 -0.088

(0.035) (0.039)

3 -0.099 -0.009

(0.029) (0.036)

4 -0.126 -0.034

(0.035) (0.041)

Expert -0.205 -0.126

(0.032) (0.037)

Notes: Standard errors are in parentheses. Standard errors in both columns

are clustered at the participant level, and those in column (2) additionally cor-

rects the O(1/S) bias from regression (A1) by inverting equation (18) of Nickell

(1981).
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Figure A.1: Power Functions by DGP and Phase
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Notes: The figures here break up the power functions plotted in Figure 5 by DGP.
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Figure A.2: Average Subjective Probabilities of Correct Classification by Phase
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Notes: This figure plots the average estimated subjective probabilities of a correct classification among non-expert participants (see Section 4.1.1

for details).
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Figure A.3: Phase 4: Power Functions for DGP Shown to Experts (DGP 9)
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Notes: This figure shows the power functions for DGP 9, the DGP that was used to elicit expert preferences

and beliefs across four considered treatments and three discontinuity levels in the second part of the expert

study. The corresponding expert preferences and beliefs are shown in Figure 7.

Figure A.4: Expert Visual vs CCT Procedure with Inference-Optimal Bandwidth Power Functions
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Notes: This figure plots the power functions of experts’ visual inference and the CCT procedures with inference-optimal bandwidth per Calonico

et al. (2020). Solid (hollow) markers indicate that the econometric inference procedure does (not) perform statistically significantly differently at

the 5% level from expert visual inference at the same discontinuity magnitude.
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Figure A.5: Expert Visual vs Econometric Inference
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Notes: We amend the econometric procedures by incorporating knowledge of the DGPs. We use the theoretical

MSE-optimal bandwidths for IK and CCT, the theoretical asymptotic bias correction for CCT, and the true

second derivative bounds for AK. Solid (hollow) markers indicate that the econometric inference procedure

does (not) perform statistically significantly differently at the 5% level from expert visual inference at the same

discontinuity magnitude.
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Figure A.6: Lineup Protocols for DGPs Specified Before and After Adding Noise to the Running Variable

Figure A.7: Comparison between CEFs from Original Microdata and Adding Noise to Running Variable
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Figure A.8: Comparison between Local Linear (Top) and Cubic (Bottom) Conditional Expectation Func-
tions

.7
.8

.9
1

1.
1

y

-1 -.5 0 .5 1
x

DGP 1

3.
5

4
4.

5
5

y

-1 -.5 0 .5 1
x

DGP 2

-.6
-.4

-.2
0

y

-1 -.5 0 .5 1
x

DGP 3

15
.1

51
5.

21
5.

25
15

.3
15

.3
5

y

-1 -.5 0 .5 1
x

DGP 4
-.2

-.1
0

.1
.2

y

-1 -.5 0 .5 1
x

DGP 5
.7

.7
5

.8
.8

5
.9

y

-1 -.5 0 .5 1
x

DGP 6

-1
-.9

-.8
-.7

-.6
-.5

y

-1 -.5 0 .5 1
x

DGP 7

.0
4

.0
5

.0
6

.0
7

.0
8

.0
9

y

-1 -.5 0 .5 1
x

DGP 8

-.5
0

.5
1

1.
5

y

-1 -.5 0 .5 1
x

DGP 9

.0
5

.1
.1

5
.2

y

-1 -.5 0 .5
x

DGP 10
.6

.6
5

.7
.7

5
.8

y

-1 -.5 0 .5 1
x

DGP 11

.7
.8

.9
1

y

-1 -.5 0 .5 1
x

DGP 1

3
4

5
6

y

-1 -.5 0 .5 1
x

DGP 2

-.6
-.4

-.2
0

y

-1 -.5 0 .5 1
x

DGP 3
15

.1
15

.2
15

.3
15

.4
y

-1 -.5 0 .5 1
x

DGP 4

-.2
-.1

0
.1

.2
y

-1 -.5 0 .5 1
x

DGP 5

.7
.7

5
.8

.8
5

.9
y

-1 -.5 0 .5 1
x

DGP 6

-1
-.9

-.8
-.7

-.6
-.5

y

-1 -.5 0 .5 1
x

DGP 7

.0
4

.0
5

.0
6

.0
7

.0
8

.0
9

y

-1 -.5 0 .5 1
x

DGP 8

-1
0

1
2

y

-1 -.5 0 .5 1
x

DGP 9

0
.0

5
.1

.1
5

.2
y

-1 -.5 0 .5
x

DGP 10

.6
.6

5
.7

.7
5

.8
y

-1 -.5 0 .5 1
x

DGP 11

32



Figure A.9: Example Graphs to Compare Different DGP Calibration Choices

Notes: Plotted are experimental graphs from the supplemental exercise described in Appendix C. Graphs in the left column have CEFs fitted via piecewise
global quintic regressions, while graphs in the right column have CEFs fitted via local linear regressions. Graphs in the top row have homoskedastic noise
terms, while graphs in the bottom row allow for the variance of the noise term to vary with the running variable.
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Figure A.10: Supplemental Phase 5: Power Functions
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Notes: Plotted are power functions from the supplemental phase 5 to test the sensitivity of visual inference to

alternative DGP specifications. The power functions are defined in Section 2. The discontinuity magnitude

on the x-axis is specified as a multiple of the error standard deviation. The y-axis represents the share of

respondents classifying a graph as having a discontinuity at the policy threshold.

Figure A.11: Video Tutorial Attention Check
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Figure A.12: Example Tasks

(a) Example 1 (b) Example 1 - Feedback
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Figure A.13: Example 4 - Feedback and Navigation Buttons
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Figure A.14: Classification Screen

(a) Incentives

(b) Classification Task
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Figure A.15: Results Screen Example

Figure A.16: Sequence of Events Experiments
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Figure A.18: Expert Study - Part 1 Introduction

Figure A.19: Expert Study - Part 1 Classification Task
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Figure A.20: Expert Study - Part 2 Instructions

Figure A.21: Expert Study - Part 2 Decision Screen
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Figure A.22: DGP Histograms
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Notes: This figure presents histograms of the running variable for each DGP.

Figure A.23: Comparison between Power Functions for Phase 4 by Symmetry of DGP Supports
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Notes: This figure plots the power functions from phase 4 broken down into DGPs with symmetric supports prior to normalization and those with

asymmetric supports prior to normalization.
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Figure A.24: DGP Gini Coefficients and Non-Expert Performance
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Notes: This figure compares non-expert accuracy in classifying RDD graphs by DGP based on the uniformity of the distribution of the running

variable as measured by the Gini coefficient. The left panel contains results for graphs with small bins, and the right panel contains results for

graphs with large bins.

Figure A.25: Discontinuity Easier to Detect When Both Slopes at Cutoff are in the Same Direction as the
Discontinuity

(a) Positive Slopes and Positive Discontinuity (b) Positive Slopes and Negative Discontinuity
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Figure A.26: Discontinuity Classifications over 11 Graphs
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Notes: This figure plots participants’ likelihood of reporting a discontinuity over the course of the 11 graphs seen.
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Figure A.27: Power Functions against Asymptotic t-Statistics by Phase
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Figure A.28: Power Functions by DGP and Phase against Asymptotic t-Statistics
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Notes: Plotted are power functions from the main four non-expert experiments broken down by DGP per phase. The power functions are defined in Section 2. The x-axis represents binned values of the

asymptotic t-statistic discussed in Appendix F. The y-axis represents the share of respondents classifying a graph as having a discontinuity at the policy threshold.
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Figure A.29: Expert vs Non-Expert Performance Differences
-.0

5
0

.0
5

.1
.1

5

0 0.1944 0.324 0.54 0.9 1.5
Discontinuity Magnitude

Experts - Non-Experts CI

Small Bins

-.2
-.1

0
.1

0 0.1944 0.324 0.54 0.9 1.5
Discontinuity Magnitude

Experts - Non-Experts CI

Large Bins

Notes: These figures plot the difference in the power functions between experts and non-experts from Figure 6. We compute 95% confidence

intervals using the large sample approximation described at the end of Appendix A.1 and by assuming independence between the experts and

non-experts.
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Figure A.30: Expert Visual vs Econometric Inference Power Function Differences
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Notes: This figure plots the difference in the power functions between experts’ visual inference and four econometric inference procedures from

the left panel of Figure 8. We compute two-way cluster-robust confidence intervals for these differences via a stacked regression where we account

for the potential correlation between visual and econometric inferences at the dataset level (there are 88 datasets in total) and in visual inferences

for the same individual across graphs—see Appendix G for details.
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Figure A.31: Expert Visual vs Type I Error-Adjusted Econometric Inference Power Function Differences

-.1
0

.1
.2

.3

0 0.1944 0.324 0.54 0.9 1.5
Discontinuity Magnitude

IK (Type I Error-Adjusted) - Experts CI

-.1
0

.1
.2

0 0.1944 0.324 0.54 0.9 1.5
Discontinuity Magnitude

CCT Robust (Type I Error-Adjusted) - Experts CI

Notes: This figure plots the difference in the power functions between experts’ visual inference and the type I error rate-adjusted IK and CCT

procedures from the right panel of Figure 8. We compute two-way cluster-robust confidence intervals for these differences via a stacked regression

where we account for the potential correlation between visual and econometric inferences at the dataset level (there are 88 datasets in total) and in

visual inferences for the same individual across graphs—see Appendix G for details.
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